Submitted:
18 July 2025
Posted:
21 July 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
3.1. Flammability
3.2. Fire Behaviour and Ecology of GFBs
4. Discussion
4.1. Wildfire Mitigation:
4.2. Wildfire Preparation:
4.3. Wildfire Response:
4.4. Wildfire Recovery:
4.5. Future Research Directions:
5. Conclusion
Funding
Acknowledgments
Conflicts of Interest
References
- Abram, N. J.; Henley, B. J.; Gupta, A. S.; Lippmann, T. J. R.; Clarke, H.; Dowdy, A. J.; Sharples, J. J.; Nolan, R. H.; Zhang, T.; Wooster, M. J.; et al. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Communications Earth & Environment 2021, 2, 1–17. [Google Scholar] [CrossRef]
- Halofsky, J. E.; Peterson, D. L.; Harvey, B. J. Changing wildfire, changing forests: the effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecology 2020, 16. [Google Scholar] [CrossRef]
- Jan Van Oldenborgh, G.; Krikken, F.; Lewis, S.; Leach, N. J.; Lehner, F.; Saunders, K. R.; Van Weele, M.; Haustein, K.; Li, S.; Wallom, D.; et al. Attribution of the Australian bushfire risk to anthropogenic climate change. Natural Hazards and Earth System Sciences 2021, 21, 941–960. [Google Scholar] [CrossRef]
- Whelan, R. J. The Ecology of Fire; Cambridge University Press, 1995.
- Kelly, L. T.; Giljohann, K. M.; Duane, A.; Aquilué, N.; Archibald, S.; Batllori, E.; Bennett, A. F.; Buckland, S. T.; Canelles, Q.; Clarke, M. F.; et al. Fire and biodiversity in the Anthropocene. Science 2020, 370. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Mathiesen, C.; Ruane, S.; March, A. Integrating wildfire risk management and spatial planning – A historical review of two Australian planning systems. International Journal of Disaster Risk Reduction 2021, 53, 101984. [Google Scholar] [CrossRef]
- Daniel Suarez, C. G. , Andrés L. Medaglia, Raha Akhavan-Tabatabaei, Sthefania Grajales. Integrated Decision Support for Disaster Risk Management: Aiding Preparedness and Response Decisions in Wildfire Management. INFORMS - Information Systems Research 2024, 35, 609–628. [Google Scholar] [CrossRef]
- Tedim, F.; Leone, V. The Dilemma of Wildfire Definition: What It Reveals and What It Implies. Frontiers in Forest and Global Change 2020, 3, Original. [Google Scholar] [CrossRef]
- Pyne, S. J. World Fire: The culture of fire on earth; University of Washington Press, 1997.
- Gammage, B. The Biggest Estate on Earth: How Aborigines made Australia; Allen & Unwin, 2012.
- APC. Natural disaster funding arrangements: Productivity Commission inquiry report. Commission, P., Ed.; Australian Government: Canberra, 2015. [Google Scholar]
- Nolan, R. H.; Bowman, D. M. J. S.; Clarke, H.; Haynes, K.; Ooi, M. K. J.; Price, O. F.; Williamson, G. J.; Whittaker, J.; Bedward, M.; Boer, M. M.; et al. What Do the Australian Black Summer Fires Signify for the Global Fire Crisis? Fire 2021, 4. [Google Scholar] [CrossRef]
- Collins, K. M.; Price, O. F.; Penman, T. D. Suppression resource decisions are the dominant influence on containment of Australian forest and grass fires. Journal of Environmental Management 2018, 228, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Ingalsbee, T. Whither the paradigm shift? Large wildland fires and the wildfire paradox offer opportunities for a new paradigm of ecological fire management. International Journal of Wildland Fire 2017, 26, 557–561. [Google Scholar] [CrossRef]
- Lacey, L. M.; Suraci, J. P.; Littlefield, C. E.; Busse, B. S.; Dickson, B. G. Informing proactive wildfire management that benefits vulnerable communities and ecological values. People and Nature 2024, 7, 52–66. [Google Scholar] [CrossRef]
- Moritz, M. A.; Batllori, E.; Bradstock, R. A.; Gill, A. M.; Handmer, J.; Hessburg, P. F.; Leonard, J.; McCaffrey, S.; Odion, D. C.; Schoennagel, T.; et al. Learning to coexist with wildfire. Nature 2014, 515, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, M.; Salerno, J.; Fischer, A. Cognition of complexity and trade-offs in a wildfire-prone social-ecological system. Environmental Research Letters 2019, 14. [Google Scholar] [CrossRef]
- Gibbons, P.; Gill, A. M.; Shore, N.; Moritz, M. A.; Dovers, S.; Cary, G. J. Options for reducing house-losses during wildfires without clearing trees and shrubs. Landscape and Urban Planning 2018, 174, 10–17. [Google Scholar] [CrossRef]
- Venn, T. J.; Quiggin, J. Early evacuation is the best bushfire risk mitigation strategy for south-eastern Australia. The Australian Journal of Agricultural and Resource Economics 2017, 61, 481–497. [Google Scholar] [CrossRef]
- Saco, P. M.; McDonough, K. R.; Rodriguez, J. F.; Rivera-Zayas, J.; Sandi, S. G. The role of soils in the regulation of hazards and extreme events. Philosophical Transactions of the Royal Society B: Biological Sciences 2021, 376, 20200178. [Google Scholar] [CrossRef] [PubMed]
- DETSI. Science Notes: Erosion control on fences and firebreaks. Department of Environment, T., Science and Innovation, Ed.; Queensland Government: Brisbane, 2018. [Google Scholar]
- Smith, W.; Neale, T.; Weir, J. K. Persuasion without policies: The work of reviving Indigenous peoples’ fire management in southern Australia. Geoforum 2021, 120, 82–92. [Google Scholar] [CrossRef]
- Morgan, G. W.; Tolhurst, K. G.; Poynter, M. W.; Cooper, N.; McGuffog, T.; Ryan, R.; Wouters, M. A.; Stephens, N.; Black, P.; Sheehan, D.; et al. Prescribed burning in south-eastern Australia: history and future directions. Australian Forestry 2020, 83, 4–28. [Google Scholar] [CrossRef]
- Altangerel, K.; Kull, C. A. The prescribed burning debate in Australia: conflicts and compatibilities. Journal of Environmental Planning and Management 2013, 56, 103–120. [Google Scholar] [CrossRef]
- Florec, V.; Burton, M.; Pannell, D.; Kelso, J.; Milne, G. Where to prescribe burn: the costs and benefits of prescribed burning close to houses. International Journal of Wildland Fire 2019, 29, 440–458. [Google Scholar] [CrossRef]
- Bowman, D. M. J. S. Explainer: back burning and fuel reduction. The Conversation 2014, 38. [Google Scholar] [CrossRef]
- Thapa, S. B.; Jenkins, J. S.; Westerling, A. L. Perceptions of wildfire management practices in a California wildland-urban interface. Environmental Advances 2023, 12. [Google Scholar] [CrossRef]
- Penman, T. D.; Collins, L.; Price, O. F.; Bradstock, R. A.; Metcalf, S.; Chong, D. M. O. Examining the relative effects of fire weather, suppression and fuel treatment on fire behaviour - A simulation study. Journal of Environmental Management 2013, 131, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Metlen, K.; Fairbanks, T.; Bennett, M.; Volpe, J.; Kuhn, B.; Thompson, M.; Thrailkill, J.; Schindel, M.; Helmbrecht, D. S.; Borgias, D. Integrating forest restoration, adaptation and proactive fire management: Rogue River Basin case study. Canadian Journal of Forest Research 2021, 51, 1292–1306. [Google Scholar] [CrossRef]
- Oliveras Menor, I.; Prat-Guitart, N.; Spadoni, G. L.; Hsu, A.; Fernandes, P. M.; Puig-Gironès, R.; Ascoli, D.; Bilbao, B. A.; Bacciu, V.; Brotons, L.; et al. Integrated fire management as an adaptation and mitigation strategy to altered fire regimes. Communications Earth & Environment 2025, 6, 202. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M. P.; MacGregor, D. G.; Dunn, C. J.; Calkin, D. E.; Phipps, J. Rethinking the Wildland Fire Management System. Journal of Forestry 2018, 116, 382–390. [Google Scholar] [CrossRef]
- Kirschner, J. A.; Clark, J.; Boustras, G. Governing wildfires: toward a systematic analytical framework. Ecology and Society 2023, 28. [Google Scholar] [CrossRef]
- Herbert, C.; Haya, B. K.; Stephens, S. L.; Butsic, V. Managing nature-based solutions in fire-prone ecosystems: Competing management objectives in California forests evaluated at a landscape scale. Frontiers in Forest and Global Change 2022, 5, 210. [Google Scholar] [CrossRef]
- Blanchi, R. , Warren, G., Opie, K., Leonard, J., March, A., Holland, M., Ollington, B. Best Practice Design for Building in Bushfire Prone areas in Victoria. CSIRO, Ed.; CSIRO: Australia, 2021. [Google Scholar]
- Ingalsbee, T. After the Greenfire Revolution: Reimagining Collective Identities of the Future Wildland Fire Workforce in a Paradigm Shift for Ecological Fire Management. Fire 2024, 7. [Google Scholar] [CrossRef]
- Hand, M. S.; Thompson, M. P.; Calkin, D. E. Examining heterogeneity and wildfire management expenditures using spatially and temporally descriptive data. Journal of Forest Economics 2016, 22, 80–102. [Google Scholar] [CrossRef]
- Burrows, N.; Stephens, C.; Wills, A.; Densmore, V. Fire mosaics in south-west Australian forest landscapes. International Journal of Wildland Fire 2021, 30, 933–945. [Google Scholar] [CrossRef]
- Murray, B. R.; Hawthorne, T.; Curran, T. J.; Krix, D. W.; Wallace, M. I.; Young, K.; Murray, M. L.; Morley, E.; Huber-Smith, N.; Webb, J. K. Shoot flammability patterns among plant species of the wildland–urban interface in the fire-prone Greater Blue Mountains World Heritage Area. International Journal of Wildland Fire 2023, 32, 1119–1134. [Google Scholar] [CrossRef]
- Calviño-Cancela, M.; Chas-Amil, M. L.; García-Martínez, E. D.; Touza, J. Wildfire risk associated with different vegetation types within and outside wildland-urban interfaces. Forest Ecology and Management 2016, 372, 1–9. [Google Scholar] [CrossRef]
- Cui, X.; Alam, M. A.; Perry, G. L. W.; Paterson, A. M.; Wyse, S. V.; Curran, T. J. Green firebreaks as a management tool for wildfires: Lessons from China. Journal of Environmental Management 2019, 233, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Mell, W. E.; Manzello, S. L.; Maranghides, A.; Butry, D.; Rehm, R. G. The wildland-urban interface fire problem - Current approaches and research needs. International Journal of Wildland Fire 2010, 19, 238–251. [Google Scholar] [CrossRef]
- Lohm, D.; Davis, M. Between bushfire risk and love of environment: preparedness, precariousness and survival in the narratives of urban fringe dwellers in Australia. Health, Risk and Society 2015, 17, (5–6). [Google Scholar] [CrossRef]
- Cova, T. J. ; Public Safety in the Urban–Wildland Interface: Should Fire-Prone Communities Have a Maximum Occupancy? 2005, 6, 99–108. [Google Scholar] [CrossRef]
- Curran, T. J.; Perry, G. L. W.; Wyse, S. V.; Alam, M. A. Managing fire and biodiversity in the wildland-urban interface: A role for green firebreaks. Fire 2018, 1, 1–3. [Google Scholar] [CrossRef]
- Bowman, D. M. J. S.; Daniels, L. D.; Johnston, F. H.; Williamson, G. J.; Jolly, W. M.; Magzamen, S.; Rappold, A. G.; Brauer, M.; Henderson, S. B. Can Air Quality Management Drive Sustainable Fuels Management at the Temperate Wildland–Urban Interface? Fire 2018, 1, 27. [Google Scholar] [CrossRef] [PubMed]
- Marshall, E.; Holyland, B.; Parkins, K.; Raulings, E.; Good, M. K.; Swan, M.; Bennett, L. T.; Penman, T. D. Can green firebreaks help balance biodiversity, carbon storage and wildfire risk? Journal of Environmental Management 2024, 369, 122183. [Google Scholar] [CrossRef] [PubMed]
- Batista, A. C.; Biondi, D.; França, A.; Tetto, R. d. A.; Tres, A.; Costa, R.; Travenisk, C.; Kovalsyki, B. Evaluation of the flammability of trees and shrubs used in the implementation of green barriers in southern Brazil. In Proceedings of the Fourth International Symposium on Fire Economics, Planning, and Policy: Climate Change and Wildfires. Gen. Tech. Rep. PSW-GTR-245. González-Cabán, Armando, tech. coord; 2013; 245, pp. 256–264. [Google Scholar]
- Murray, B. R.; Martin, L. J.; Brown, C.; Krix, D. W.; Phillips, M. L. Selecting Low-Flammability Plants as Green Firebreaks within Sustainable Urban Garden Design. Fire 2018, 1. [Google Scholar] [CrossRef]
- Krix, D. W.; Phillips, M. L.; Murray, B. R. Relationships among leaf flammability attributes and identifying low-leaf-flammability species at the wildland-urban interface. International Journal of Wildland Fire 2019, 28, 295–297. [Google Scholar] [CrossRef]
- Murray, B. R.; Brown, C.; Murray, M. L.; Krix, D. W.; Martin, L. J.; Hawthorne, T.; Wallace, M. I.; Potvin, S. A.; Webb, J. K. J. F. An Integrated Approach to Identify Low-Flammability Plant Species for Green Firebreaks. Fire 2020, 3. [Google Scholar] [CrossRef]
- Souza, M. L. A. Low Flammability Plants Of The Cerrado For Green Fire Break. BioBrasil 2020, 10 (Special Issue: 7th International Wildland Conference). [Google Scholar] [CrossRef]
- Lucas, F.; Kovalsyki, B.; Jacobs, R.; Tetto, A.; Batista, A. Flammability of urban ornamental species for use in green firebreaks. Biodiversidade Brasileira - BioBrasil. [CrossRef]
- Santamarta-Cerezal, J. C.; Guzmán, J.; Neris, J.; Arraiza, M. P.; Ioraș, F. Forest Hydrology, Soil Conservation and Green Barriers in Canary Islands. Notulae Botanicae Horti Agrobotanici Cluj-napoca 2013, 40, 09–13. [Google Scholar] [CrossRef]
- Della Rocca, G.; Danti, R.; Raddi, P.; Moya, B.; Moya, J. J. F. M. Implementation of the «cypress system» as a green firewall. Project CypFire. Foret Mediterraneenne 2014, 35, 275–280. [Google Scholar]
- Wang, H. H.; Finney, M. A.; Song, Z. L.; Wang, Z. S.; Li, X. C. Ecological techniques for wildfire mitigation: Two distinct fuelbreak approaches and their fusion. Forest Ecology and Management 2021, 495. [Google Scholar] [CrossRef]
- Della Rocca, G.; Hernando, C.; Madrigal, J.; Danti, R.; Moya, J.; Guijarro, M.; Pecchioli, A.; Moya, B. Possible land management uses of common cypress to reduce wildfire initiation risk: a laboratory study. Journal of Environmental Management 2015, 159, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, A. S.; Goodman, H. D.; Hankenson, L.; Fisk, J. J.; Ortiz, A.; Marinace, H. M.; Bischoff, E. A.; Holman, V. F.; Love, S. M.; Apgaua, D. M. G.; et al. Fighting fire with food: Assessing the flammability of crop plant species for building fire resilient agroforestry systems. Research Square 2022. [Google Scholar] [CrossRef]
- Dios, V. R. d. Pyrophysiology and Wildfire Management. In Plant-Fire Interactions: Applying Ecophysiology to Wildlfire Management, Springer Nature Link, 2020; pp 155-175.
- Vollmer, J. L. New Technology for Fuel Breaks and Green Strips in Urban Interface and Wildland Areas. In Eighth International Wildland Firefighter Safety Summit- Human Factors - 10 Years Later;, Missoula, MT, 26-, 2005; Butler, B. W., Alexander, M. E., Eds.; The International Association of Wildland Fire. 28 April.
- Chifa, D. The design of green firebreaks in Portuguese forest: a case study of Alferce, Monchique. 2021.
- Wang, H.; Zhang, K.; Qin, Z.; Gao, W.; Wang, Z. Refining Ecological Techniques for Forest Fire Prevention and Evaluating Their Diverse Benefits. Fire 2024, 7, 129. [Google Scholar] [CrossRef]
- Pagadala, T.; Alam, M. A.; Maxwell, T. M.; Curran, T. J. J. S. o. t. t. e. Measuring flammability of crops, pastures, fruit trees, and weeds: A novel tool to fight wildfires in agricultural landscapes. Science of The Total Environment 2024, 906, 167489. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Zhang, D.; Zhu, R.; Zhang, Z.; Elsadek, M. Predicting the Integrated Fire Resistance of Wildland–Urban Interface Plant Communities by Spatial Structure Analysis Learning for Shanghai, China. Forests 2024, 15, 1266. [Google Scholar] [CrossRef]
- Blaikie, P. , Cannon, T., Davis, I., & Wisner, B. At Risk: Natural Hazards, People’s Vulnerability and Disasters, 2004. [Google Scholar]
- Kreider, M. R.; Higuera, P. E.; Parks, S. A.; Rice, W. L.; White, N.; Larson, A. J. Fire suppression makes wildfires more severe and accentuates impacts of climate change and fuel accumulation. Nature Communications 2024, 15, 2412. [Google Scholar] [CrossRef] [PubMed]
- Wotton, B. M.; Flannigan, M. D.; Marshall, G. A. Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada. Environmental Research Letters 2017, 12. [Google Scholar] [CrossRef]
- Plucinski, M. Review of aerial suppression effectiveness research literature: Why fly? How do we know that aerial firefighting operations are effective and efficient; 45; Natural Hazards Research Australia, 2025.
- Guo, Y.; Wang, J.; Ge, Y.; Zhou, C. Global expansion of wildland-urban interface intensifies human exposure to wildfire risk in the 21st century. Science Advances 2024, 10. [Google Scholar] [CrossRef] [PubMed]
- Mutch, R. W.; Rogers, M. J.; Stephens, S. L.; Gill, A. M. Protecting Lives and Property in the Wildland-Urban Interface: Communities in Montana and Southern California Adopt Australian Paradigm. Fire Technology 2011, 47, 357–377. [Google Scholar] [CrossRef]
- Naser, M. Z.; Kodur, V. Vulnerability of structures and infrastructure to wildfires: a perspective into assessment and mitigation strategies. Natural Hazards 2025, 121, 9995–10015. [Google Scholar] [CrossRef]
- Lucas, C.; Williamson, G.; Bowman, D. Bushfire Preparedness and Risk Reduction in Hobart Pilot Study 2019 Final Report. 2019.
- CSIRO. Bushfire Resilient Building Guidance for Queensland Homes. Queensland Government: Brisbane, 2020.
- Warnell, K. , Mason, S., Siegle, A., Merritt, M., & Olander, L. Green Firebreaks: A DOI Nature-based Solutions Roadmap Fact Sheet, Nicholas Institute for Energy, Environment & Sustainability, Duke University, Durham, NC. 2023. [Google Scholar]
- Maxwell, T.; Curran, T.; Carpenter, L.; Alam, A.; Pagadala, T.; Mason, N.; Wyse, S.; Perry, G.; Cui, X. Nature-based Solutions for Fire Suppression: Green firebreaks, low-flammability foods and planting fire micro-refugia. In 9th International Fire Ecology and Management Congress, Virtual, 2021; Lincoln University.
- Krix, D. W.; Murray, B. R. Landscape variation in plant leaf flammability is driven by leaf traits responding to environmental gradients:. Ecosphere 2018, 9. [Google Scholar] [CrossRef]
- Dai, A. Increasing drought under global warming in observations and models. Nature Climate Change 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Alessio, G. A.; Peñuelas, J.; De Lillis, M.; Llusià, J. Implications of foliar terpene content and hydration on leaf flammability of Quercus ilex and Pinus halepensis. International Journal of Wildland Fire 2008, 10, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Grootemaat, S.; Wright, I. J.; van Bodegom, P. M.; Cornelissen, J. H. C.; Cornwell, W. K. Burn or rot: Leaf traits explain why flammability and decomposability are decoupled across species. Functional Ecology 2015, 29, 1486–1497. [Google Scholar] [CrossRef]
- Cui, X.; Alam, M. A.; Perry, G. L.; Paterson, A. M.; Wyse, S. V.; Curran, T. J. Green firebreaks as a management tool for wildfires: Lessons from China. Journal of Environmental Management 2019, 233, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Grootemaat, S.; Wright, I. J.; van Bodegom, P. M.; Cornelissen, J. H. C.; Cornwell, W. K. ; Burn or rot: leaf traits explain why flammability and decomposability are decoupled across species. 2015, 29, 1486–1497. [Google Scholar] [CrossRef]
- Copes-Gerbitz, K.; Dickson-Hoyle, S.; Ravensbergen, S. L.; Hagerman, S. M.; Daniels, L. D.; Coutu, J. Community Engagement With Proactive Wildfire Management in British Columbia, Canada: Perceptions, Preferences, and Barriers to Action. Frontiers for Global Change 2022, 5. [Google Scholar] [CrossRef]
- Lambrou, N.; Kolden, C.; Loukaitou-Sideris, A.; Anjum, E.; Acey, C. Social drivers of vulnerability to wildfire disasters: A review of the literature. Landscape and Urban Planning 2023, 237, 104797. [Google Scholar] [CrossRef]
- McCaffrey, S.; McGee, T. K.; Coughlan, M.; Tedim, F. 8 - Understanding wildfire mitigation and preparedness in the context of extreme wildfires and disasters: Social science contributions to understanding human response to wildfire. In Extreme Wildfire Events and Disasters, Tedim, F., Leone, V., McGee, T. K. Eds.; Elsevier, 2020; pp 155-174.
- Mourao, P. R.; Martinho, V. D. Forest fire legislation: Reactive or proactive? Ecological Indicators 2019, 104, 137–144. [Google Scholar] [CrossRef]
- McLennan, B. J.; Handmer, J. Reframing responsibility-sharing for bushfire risk management in Australia after Black Saturday. Environmental Hazards 2012, 11, 1–15. [Google Scholar] [CrossRef]
- McCaffrey, S.; Rhodes, A.; Stidham, M. Wildfire evacuation and its alternatives: perspectives from four United States’ communities. International Journal of Wildland Fire 2014, 24, 170–178. [Google Scholar] [CrossRef]
- McConnell, K.; Koslov, L. Critically assessing the idea of wildfire managed retreat. Environmental Research Letters 2024, 19, 041005. [Google Scholar] [CrossRef] [PubMed]
- Regos, A.; Campos, J. C.; Lecina-Diaz, J.; Pais, S.; Sil, Â.; Cánibe-Iglesias, M.; Freitas, T.; Aquilué, N.; Gonçalves, J.; Carvalho-Santos, C.; et al. Final Report of the FirESmart -Nature-based solutions for preventive fire management and sustained supply of ecosystem services. 2023. [CrossRef]
- Burby, R. J.; Deyle, R. E.; Godschalk, D. R.; Olshansky, R. B. Creating hazard resilient communities through land-use planning. Natural hazards review 2000, 1, 99–106. [Google Scholar] [CrossRef]
- Driscoll, D. A.; Macdonald, K. J.; Gibson, R. K.; Doherty, T. S.; Nimmo, D. G.; Nolan, R. H.; Ritchie, E. G.; Williamson, G. J.; Heard, G. W.; Tasker, E. M.; et al. Biodiversity impacts of the 2019–2020 Australian megafires. Nature 2024. [Google Scholar] [CrossRef] [PubMed]
- Depietri, Y.; Orenstein, D. E. Fire-Regulating Services and Disservices With an Application to the Haifa-Carmel Region in Israel. Frontiers in Environmental Science 2019, 7, 107. [Google Scholar] [CrossRef]
- Kemter, M.; Fischer, M.; Luna, L. V.; Schönfeldt, E.; Vogel, J.; Banerjee, A.; Korup, O.; Thonicke, K. Cascading Hazards in the Aftermath of Australia’s 2019/2020 Black Summer Wildfires. Earth’s Future 2021, 9. [Google Scholar] [CrossRef]
- Yenneti, K.; Ding, L.; Prasad, D.; Ulpiani, G.; Paolini, R.; Haddad, S.; Santamouris, M. Urban Overheating and Cooling Potential in Australia: An Evidence-Based Review. Climate 2020, 8, 126. [Google Scholar] [CrossRef]
- Ying, J.; Xiaojing, Z.; Yiqi, Z.; and Bilan, S. Green infrastructure: systematic literature review. Economic Research-Ekonomska Istraživanja 2022, 35, 343–366. [Google Scholar] [CrossRef]
- Gawne, B.; and Thompson, R. Adaptive water management in response to climate change: the case of the southern Murray-Darling Basin. Australasian Journal of Water Resources 2023, 27, 271–288. [Google Scholar] [CrossRef]
- Lee, K.; Jepson, W. Drivers and barriers to urban water reuse: A systematic review. Water Security 2020, 11. [Google Scholar] [CrossRef]
- Chung, P.-W.; Livesley, S. J.; Rayner, J. P.; Farrell, C. Greywater irrigation can support climbing plant growth on building green façades. Urban Forestry & Urban Greening 2021, 62, 127119. [Google Scholar] [CrossRef]
- Filali, H.; Barsan, N.; Souguir, D.; Nedeff, V.; Tomozei, C.; Hachicha, M. Greywater as an Alternative Solution for a Sustainable Management of Water Resources—A Review. Sustainability 2022, 14, 665. [Google Scholar] [CrossRef]
| Year 2004-24 | Title (Citation) | Location | Approach (Field/ Model/Literature) | Species Flammability |
Fire Behaviour & Ecology |
|---|---|---|---|---|---|
| 2005 | New technology for fuel breaks and Green Strips in urban interface and wildland areas. [59] | USA | S | X | X |
| 2012 | Forest hydrology, soil conservation and green barriers in Canary Islands.[53] | Canary Islands, Spain |
L | X | X |
| 2013 | Evaluation of the flammability of trees and shrubs used in the implementation of green barriers in Southern Brazil [47] | Brazil |
F | X | |
| 2014 | Implementation of the “ cypress system ” as a green firewall. Project CypFire. [54] | Spain |
F, L | X | X |
| 2015 | Possible land management uses of common cypress to reduce wildfire initiation risk: a laboratory study. [56] | Spain |
F | X | |
| 2018 | Managing fire and biodiversity in the Wildland Urban Interface: A role for Green Firebreaks. [44] | Global | L | X | |
| 2018 | Selecting low-flammability plants as Green Firebreaks within sustainable urban garden design. [48] | Australia |
F | X | |
| 2018 | Can air quality management drive sustainable fuels management at the temperate Wildland Urban Interface? [45] | Australia & Canada |
L | X | |
| 2019 | Green Firebreaks as a management tool for wildfires: Lessons from China. [40] | China |
L | X | X |
| 2019 | Relationship among leaf flammability attributes and identifying low-leaf flammability species in the Wildland Urban Interface. [49] | Australia |
F | X | |
| 2020 | An integrated approach to identify low-flammability plant species for Green Firebreaks. [50] | Australia |
F | X | X |
| 2020 | Fire & biodiversity in the Anthropocene [5] | Global - China | L | X | |
| 2020 | Pyrophysiology and wildfire management. [58] | Europe |
L | X | |
| 2020 | Low flammability plants of the Cerrado for Green Fire Break. [51] | Brazil |
F | X | |
| 2021 | Flammability of urban ornamental species for use in Green Firebreaks. [52] | Brazil |
F | X | |
| 2021 | Ecological techniques for wildfire mitigation: Two distinct fuelbreak approaches and their fusion. | China |
L | X | |
| 2021 | The design of green firebreaks in Portugese forest: a case study of Alferce, Monchique. [60] | Portugal |
L | X | |
| 2022 | Fighting fire with food: Assessing the flammability of crop plant species for building fire resilient agro-forestry systems. [57] | Australia |
F | X | X |
| 2024 | Refining ecological techniques for forest fire prevention and evaluating their diverse benefits. [61] | USA & China | L | X | |
| 2024 | Measuring flammability of crops, pastures, fruit trees, and weeds: A novel tool to fight wildfires in agricultural landscapes. [62] | New Zealand |
F | X | X |
| 2024 | Predicting the integrated fire resistance of Wildland Urban Interface plant communities by spatial structure analysis for Shanghai, China. [63] | China |
F | X | X |
| 2024 | Can green firebreaks help balance biodiversity, carbon storage and wildfire risk? [46] | Australia |
S | X | |
| Summary | Twenty-two papers | 8 countries – 4 continents | F=11 L=10 M=2 |
14 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
