Submitted:
08 July 2025
Posted:
09 July 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Evolution of Radiotherapy in GBM: Foundations, Standards, and International Guidelines
3. Limitations of Radiotherapy in GBM
4. Molecular Determinants in Glioblastoma Multiforme
5. Advances in the Treatment of Glioblastoma Multiforme
5.1. Technological Advances in Therapies
5.2. Modified Fractionation Schedules
5.3. Reirradiation
5.4. Neoadjuvant Therapy
5.5. Immunotherapy, Targeted Therapies, and Chemotherapy
5.6. Advanced Imaging and Theranostics
6. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 3D-CRT: Three-Dimensional Conformal Radiotherapy |
| ADC: Apparent Diffusion Coefficient |
| AMF: Alternating Magnetic Field |
| ASCO: American Society of Clinical Oncology |
| ASTRO: American Society for Radiation Oncology |
| BBB: Blood-Brain Barrier |
| BEV: Bevacizumab |
| BNCT: Boron Neutron Capture Therapy |
| BSH: Sodium Borocaptate |
| CDK4/6: Cyclin-Dependent Kinases 4 and 6 |
| CDKN2A/B: Cyclin-Dependent Kinase Inhibitor 2A/B |
| CFRT: Conventional Fractionated Radiotherapy |
| Cho: Choline |
| CIRT: Carbon Ion Radiotherapy |
| Cr: Creatine |
| CRT: Chemoradiation |
| CT: Chemotherapy |
| CTV: Clinical Target Volume |
| ddTMZ: Dense Dose Temozolomide |
| DSC: Dynamic Susceptibility Contrast Perfusion |
| DWI: Diffusion-Weighted Imaging |
| EGFR: Epidermal Growth Factor Receptor |
| EORTC: European Organisation for Research and Treatment of Cancer |
| ESCAT: ESMO Scale for Clinical Actionability of Molecular Targets |
| ESTRO: European Society for Radiotherapy and Oncology |
| EANO: European Association of Neuro-Oncology |
| FSRT: Fractionated Stereotactic Radiotherapy |
| GBM: Glioblastoma Multiforme |
| GTV: Gross Tumor Volume |
| GyE: Gray Equivalent |
| HFRT: Hypofractionated Radiotherapy |
| HIF-1α: Hypoxia-Inducible Factor 1-Alpha |
| HR: Hazard Ratio |
| HSRT: Hypofractionated Stereotactic Radiotherapy |
| ICI: Immune Checkpoint Inhibitor |
| IDH: Isocitrate Dehydrogenase |
| IGRT: Image-Guided Radiotherapy |
| IMPT: Intensity-Modulated Proton Therapy |
| IMRT: Intensity-Modulated Radiotherapy |
| KPS: Karnofsky Performance Status |
| L-BPA: L-4-Boronophenylalanine |
| LITT: Laser Interstitial Thermal Therapy |
| MDACC: MD Anderson Cancer Center |
| mEHT: Modulated Electrohyperthermia |
| MHT: Magnetic Hyperthermia |
| MNP: Magnetic Nanoparticles |
| mOS: Median Overall Survival |
| MRI: Magnetic Resonance Imaging |
| MRS: Magnetic Resonance Spectroscopy |
| MRgRT: Magnetic Resonance-Guided Radiotherapy |
| NAA: N-Acetyl Aspartate |
| NAT: Neoadjuvant Therapy |
| NCCN: National Comprehensive Cancer Network |
| NICE: National Institute for Health and Care Excellence |
| nGBM: Newly Diagnosed Glioblastoma Multiforme |
| OS: Overall Survival |
| PARP: Poly (ADP-Ribose) Polymerase |
| PET: Positron Emission Tomography |
| PFS: Progression-Free Survival |
| PI3K/AKT: Phosphatidylinositol 3-Kinase/Protein Kinase B |
| PIK3CA: Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha |
| PT: Proton Therapy |
| PTEN: Phosphatase and Tensin Homolog |
| PTV: Planning Target Volume |
| RANO: Response Assessment in Neuro-Oncology |
| RBE: Relative Biological Effectiveness |
| rGBM: Recurrent Glioblastoma Multiforme |
| RT: Radiotherapy |
| SRS: Stereotactic Radiosurgery |
| SVZ: Subventricular Zone |
| TERT: Telomerase Reverse Transcriptase |
| TMZ: Temozolomide |
| TP53: Tumor Protein p53 |
| TTFields: Tumor Treating Fields |
| V20Gy: Volume Receiving 20 Gray |
| V40Gy: Volume Receiving 40 Gray |
| VMAT: Volumetric Modulated Arc Therapy |
| WBRT: Whole-Brain Radiotherapy |
| WHO: World Health Organization |
| wt: Wild-Type |
References
- Ostrom, Q. T.; Gittleman, H.; Xu, J.; Kromer, C.; Wolinsky, Y.; Kruchko, C.; Barnholtz-Sloan, J. S. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2009–2013. Neuro-Oncol. 2016, 18 (suppl_5), v1–v75. [Google Scholar] [CrossRef] [PubMed]
- Segura, P. P.; Quintela, N. V.; García, M. M.; del Barco Berrón, S.; Sarrió, R. G.; Gómez, J. G.; Castaño, A. G.; Martín, L. M. N.; Rubio, O. G.; Losada, E. P. SEOM-GEINO clinical guidelines for high-grade gliomas of adulthood (2022). Clin. Transl. Oncol. 2023, 25, 2634–2646. [Google Scholar] [CrossRef] [PubMed]
- Schaff, L. R.; Mellinghoff, I. K. A review of glioblastoma and other primary brain malignancies – reply. JAMA 2023, 189–190, 189–190. [Google Scholar] [CrossRef] [PubMed]
- Wanis, H. A.; Møller, H.; Ashkan, K.; Davies, E. A. The incidence of major subtypes of primary brain tumors in adults in England 1995–2017. Neuro-Oncol. 2021, 23, 1371–1382. [Google Scholar] [CrossRef]
- Louis, D. N.; Perry, A.; Wesseling, P.; Brat, D. J.; Cree, I. A.; Figarella-Branger, D.; Hawkins, C.; Ng, H. K.; Pfister, S. M.; Reifenberger, G.; Soffietti, R.; von Deimling, A.; Ellison, D. W. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Brown, N. F.; Ottaviani, D.; Tazare, J.; Gregson, J.; Kitchen, N.; Brandner, S.; Fersht, N.; Mulholland, P. Survival outcomes and prognostic factors in glioblastoma. Cancers (Basel) 2022, 14, 3161. [Google Scholar] [CrossRef]
- Gorlia, T.; van den Bent, M. J.; Hegi, M. E.; Mirimanoff, R. O.; Weller, M.; Cairncross, J. G.; Eisenhauer, E.; Belanger, K.; Brandes, A. A.; Allgeier, A.; Lacombe, D.; Stupp, R. Nomograms for predicting survival of patients with newly diagnosed glioblastoma: prognostic factor analysis of EORTC and NCIC trial 26981-22981/CE.3. Lancet Oncol. 2008, 9, 29–38. [Google Scholar] [CrossRef]
- Sipos, D.; Raposa, B. L.; Freihat, O.; Simon, M.; Mekis, N.; Cornacchione, P.; Kovács, Á. Glioblastoma: clinical presentation, multidisciplinary management, and long-term outcomes. Cancers (Basel) 2025, 17, 146. [Google Scholar] [CrossRef]
- Aboubakr, O.; Moiraghi, A.; Elia, A.; Tauziede-Espariat, A.; Roux, A.; Leclerc, A.; Planet, M.; Bedioui, A.; Simboli, G. A.; Dhermain, F.; Parraga, E.; Benevello, C.; Fathallah, H.; Muto, J.; Chrétien, F.; Dezamis, E.; Oppenheim, C.; Varlet, P.; Zanello, M.; Pallud, J. Long-term survivors in 976 supratentorial glioblastoma, IDH-wildtype patients. J. Neurosurg. 2025, 142, 174–186. [Google Scholar] [CrossRef]
- Mason, W. P.; Harrison, R. A.; Lapointe, S.; Lim-Fat, M. J.; MacNeil, M. V.; Mathieu, D.; Perry, J. R.; Pitz, M. W.; Roberge, D.; Tsang, D. S.; Tsien, C.; van Landeghem, F. K. H.; Zadeh, G.; Easaw, J. Canadian expert consensus recommendations for the diagnosis and management of glioblastoma: results of a Delphi study. Curr. Oncol. 2025, 32, 207–220. [Google Scholar] [CrossRef]
- Yeboa, D. N.; Braunstein, S. E.; Cabrera, A.; Crago, K.; Galanis, E.; Hattab, E. M.; Heron, D. E.; Huang, J.; Kim, M. M.; Kirkpatrick, J. P.; Knisely, J. P. S.; McAleer, M. F.; McClelland, S. 3rd; Milano, M. T.; Moliterno, J.; Porter, A.; Redmond, K. J.; Trifiletti, D. M.; Tsien, C.; Venkatesulu, B. P.; Vinogradskiy, Y.; Bradfield, L.; Helms, A. R.; Bovi, J. A. Radiation therapy for WHO grade 4 adult-type diffuse glioma: an ASTRO clinical practice guideline. Pract. Radiat. Oncol. 2025, 15, 45–67. [Google Scholar] [CrossRef]
- Stupp, R.; Mason, W. P.; van den Bent, M. J.; Weller, M.; Fisher, B.; Taphoorn, M. J. B.; Belanger, K.; Brandes, A. A.; Marosi, C.; Bogdahn, U.; Curschmann, J.; Janzer, R. C.; Ludwin, S. K.; Gorlia, T.; Allgeier, A.; Lacombe, D.; Cairncross, J. G.; Eisenhauer, E.; Mirimanoff, R. O. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Sulman, E. P.; Ismaila, N.; Armstrong, T. S.; Tsien, C.; Batchelor, T. T.; Cloughesy, T.; Galanis, E.; Gilbert, M.; Gondi, V.; Lovely, M.; Mehta, M.; Mumber, M. P.; Sloan, A.; Chang, S. M. Radiation therapy for glioblastoma: American Society of Clinical Oncology clinical practice guideline endorsement of the American Society for Radiation Oncology guideline. J. Clin. Oncol. 2017, 35, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, A. R.; Kirkpatrick, J. P.; Fiveash, J. B.; Shih, H. A.; Koay, E. J.; Lutz, S.; Petit, J.; Chao, S. T.; Brown, P. D.; Vogelbaum, M.; Reardon, D. A.; Chakravarti, A.; Wen, P. Y.; Chang, E. Radiation therapy for glioblastoma: executive summary of an American Society for Radiation Oncology evidence-based clinical practice guideline. Pract. Radiat. Oncol. 2016, 6, 217–225. [Google Scholar] [CrossRef]
- Balana, C.; Vaz, M. A.; Manuel Sepúlveda, J.; Mesia, C.; Del Barco, S.; Pineda, E.; Muñoz-Langa, J.; Estival, A.; de Las Peñas, R.; Fuster, J.; Gironés, R.; Navarro, L. M.; Gil-Gil, M.; Alonso, M.; Herrero, A.; Peralta, S.; Olier, C.; Perez-Segura, P.; Covela, M.; Martinez-García, M.; Berrocal, A.; Gallego, O.; Luque, R.; Perez-Martín, F. J.; Esteve, A.; Munne, N.; Domenech, M.; Villa, S.; Sanz, C.; Carrato, C. A phase II randomized, multicenter, open-label trial of continuing adjuvant temozolomide beyond six cycles in patients with glioblastoma (GEINO 14-01). Neuro-Oncol. 2020, 22, 1851–1861. [Google Scholar] [CrossRef]
- Stupp, R.; Taillibert, S.; Kanner, A. A.; Kesari, S.; Steinberg, D. M.; Toms, S. A.; Taylor, L. P.; Lieberman, F.; Silvani, A.; Fink, K. L.; Barnett, G. H.; Zhu, J. J.; Henson, J. W.; Engelhard, H. H.; Chen, T. C.; Tran, D. D.; Sroubek, J.; Tran, N. D.; Hottinger, A. F.; Landolfi, J.; Desai, R.; Caroli, M.; Kew, Y.; Honnorat, J.; Idbaih, A.; Kirson, E. D.; Weinberg, U.; Palti, Y.; Hegi, M. E.; Ram, Z. Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial. JAMA 2015, 314, 2535–2543. [Google Scholar] [CrossRef]
- Roubil, J.; Harris, T. Radiotherapeutic approaches in the treatment of adult gliomas. Adv. Cancer Res. 2025, 163, 1–30. [Google Scholar] [CrossRef]
- Perry, J. R.; Laperriere, N.; O’Callaghan, C. J.; Brandes, A. A.; Menten, J.; Phillips, C.; Fay, M.; Nishikawa, R.; Cairncross, J. G.; Roa, W.; Osoba, D.; Rossiter, J. P.; Sahgal, A.; Hirte, H.; Laigle-Donadey, F.; Franceschi, E.; Chinot, O.; Golfinopoulos, V.; Fariselli, L.; Wick, A.; Feuvret, L.; Back, M.; Tills, M.; Winch, C.; Baumert, B. G.; Wick, W.; Ding, K.; Mason, W. P. Short-course radiation plus temozolomide in elderly patients with glioblastoma. N. Engl. J. Med. 2017, 376, 1027–1037. [Google Scholar] [CrossRef]
- Roa, W.; Brasher, P. M. A.; Bauman, G.; Anthes, M.; Bruera, E.; Chan, A.; Fisher, B.; Fulton, D.; Gulavita, S.; Hao, C.; Husain, S.; Murtha, A.; Petruk, K.; Stewart, D.; Tai, P.; Urtasun, R.; Cairncross, J. G.; Forsyth, P. Abbreviated course of radiation therapy in older patients with glioblastoma multiforme: a prospective randomized clinical trial. J. Clin. Oncol. 2004, 22, 1583–1588. [Google Scholar] [CrossRef]
- Roa, W.; Kepka, L.; Kumar, N.; Sinaika, V.; Matiello, J.; Lomidze, D.; Hentati, D.; Guedes de Castro, D.; Dyttus-Cebulok, K.; Drodge, S.; Ghosh, S.; Jeremić, B.; Rosenblatt, E.; Fidarova, E. International Atomic Energy Agency randomized phase III study of radiation therapy in elderly and/or frail patients with newly diagnosed glioblastoma multiforme. J. Clin. Oncol. 2015, 33, 4145–4150. [Google Scholar] [CrossRef]
- Minniti, G.; De Sanctis, V.; Muni, R.; Rasio, D.; Lanzetta, G.; Bozzao, A.; Osti, M. F.; Salvati, M.; Valeriani, M.; Cantore, G. P.; Maurizi Enrici, R. Hypofractionated radiotherapy followed by adjuvant chemotherapy with temozolomide in elderly patients with glioblastoma. J. Neurooncol. 2009, 91, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Malmström, A.; Grønberg, B. H.; Marosi, C.; Stupp, R.; Frappaz, D.; Schultz, H.; Abacioglu, U.; Tavelin, B.; Lhermitte, B.; Hegi, M. E.; Rosell, J.; Henriksson, R. Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. Lancet Oncol. 2012, 13, 916–926. [Google Scholar] [CrossRef]
- Melo, S. M. de; Marta, G. N.; Latorraca, C. de O. C.; Martins, C. B.; Efthimiou, O.; Riera, R. Hypofractionated radiotherapy for newly diagnosed elderly glioblastoma patients: a systematic review and network meta-analysis. PLoS One 2021, 16, e0257384. [Google Scholar] [CrossRef] [PubMed]
- Hanna, C.; Lawrie, T. A.; Rogozińska, E., Kernohan, A., Jefferies, S., Bulbeck, H., Ali, U. M., Robinson, T., Eds.; Grant, R. Treatment of newly diagnosed glioblastoma in the elderly: a network meta-analysis. Cochrane Database Syst. Rev. 2020, (3), CD013261. [Google Scholar] [CrossRef]
- Niyazi, M.; Andratschke, N.; Bendszus, M.; Chalmers, A. J.; Erridge, S. C.; Galldiks, N.; Lagerwaard, F. J.; Navarria, P.; Munck Af Rosenschöld, P.; Ricardi, U.; van den Bent, M. J.; Weller, M.; Belka, C.; Minniti, G. ESTRO-EANO guideline on target delineation and radiotherapy details for glioblastoma. Radiother. Oncol. 2023, 184, 109663. [Google Scholar] [CrossRef] [PubMed]
- Niyazi, M.; Brada, M.; Chalmers, A. J.; Combs, S. E.; Erridge, S. C.; Fiorentino, A.; Grosu, A. L.; Lagerwaard, F. J.; Minniti, G.; Mirimanoff, R.-O.; Ricardi, U.; Short, S. C.; Weber, D. C.; Belka, C. ESTRO-ACROP Guideline “Target Delineation of Glioblastomas”. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2016, 118, 35–42. [Google Scholar] [CrossRef]
- Kumar, N.; Kumar, R.; Sharma, S. C.; Mukherjee, A.; Khandelwal, N.; Tripathi, M.; Miriyala, R.; Oinam, A. S.; Madan, R.; Yadav, B. S.; Khosla, D.; Kapoor, R. Impact of Volume of Irradiation on Survival and Quality of Life in Glioblastoma: A Prospective, Phase 2, Randomized Comparison of RTOG and MDACC Protocols. Neuro-Oncology Pract. 2020, 7, 86. [Google Scholar] [CrossRef]
- Minniti, G.; Amelio, D.; Amichetti, M.; Salvati, M.; Muni, R.; Bozzao, A.; Lanzetta, G.; Scarpino, S.; Arcella, A.; Enrici, R. M. Patterns of Failure and Comparison of Different Target Volume Delineations in Patients with Glioblastoma Treated with Conformal Radiotherapy plus Concomitant and Adjuvant Temozolomide. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2010, 97, 377–381. [Google Scholar] [CrossRef]
- Chang, E. L.; Akyurek, S.; Avalos, T.; Rebueno, N.; Spicer, C.; Garcia, J.; Famiglietti, R.; Allen, P. K.; Chao, K. S. C.; Mahajan, A.; Woo, S. Y.; Maor, M. H. Evaluation of Peritumoral Edema in the Delineation of Radiotherapy Clinical Target Volumes for Glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68, 144–150. [Google Scholar] [CrossRef]
- Karp, J. M.; Kruser, T. J. Contouring with FLAIR: Targeting Peritumoral Edema (and Beyond) in Glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2025, 121, 1182–1184. [Google Scholar] [CrossRef]
- Qiu, Y.; Li, Y.; Jiang, C.; Wu, X.; Liu, W.; Fan, C.; Ye, X.; He, L.; Xiao, S.; Zhao, Q.; Wu, W.; Chen, K.; Tan, C.; Li, Y.; Wang, H.; Liu, F. Toxicity and Efficacy of Different Target Volume Delineations of Radiation Therapy Based on the Updated Radiation Therapy Oncology Group/National Research Group and European Organization for Research and Treatment of Cancer Guidelines in Patients with Glioma. Int. J. Radiat. Oncol. Biol. Phys. 2025, 121, 1168–1181. [Google Scholar] [CrossRef]
- Wallner, K. E.; Galicich, J. H.; Krol, G.; Arbit, E.; Malkin, M. G. Patterns of Failure Following Treatment for Glioblastoma Multiforme and Anaplastic Astrocytoma. Int. J. Radiat. Oncol. Biol. Phys. 1989, 16, 1405–1409. [Google Scholar] [CrossRef] [PubMed]
- Magrowski, Ł.; Nowicka, E.; Masri, O.; Tukiendorf, A.; Tarnawski, R.; Miszczyk, M. The Survival Impact of Significant Delays between Surgery and Radiochemotherapy in Glioblastoma Patients: A Retrospective Analysis from a Large Tertiary Center. J. Clin. Neurosci. 2021, 90, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Xu, F.; Ni, W.; Qi, W.; Cao, W.; Xu, C.; Chen, J.; Gao, Y. Survival Impact of Delaying Postoperative Chemoradiotherapy in Newly Diagnosed Glioblastoma Patients. Transl. Cancer Res. 2020, 9, 5450–5458. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Taillibert, S.; Kanner, A.; Read, W.; Steinberg, D.; Lhermitte, B.; et al. Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients with Glioblastoma: A Randomized Clinical Trial. JAMA 2017, 318, 2306–2316. [Google Scholar] [CrossRef]
- Sim, H.-W.; McDonald, K. L.; Lwin, Z.; Barnes, E. H.; Rosenthal, M.; Foote, M. C.; et al. A Randomized Phase II Trial of Veliparib, Radiotherapy, and Temozolomide in Patients with Unmethylated MGMT Glioblastoma: The VERTU Study. Neuro. Oncol. 2021, 23, 1736–1749. [Google Scholar] [CrossRef]
- Frosina, G. Radiotherapy of High-Grade Gliomas: Dealing with a Stalemate. Crit. Rev. Oncol. Hematol. 2023, 190, 104110. [Google Scholar] [CrossRef]
- van den Bent, M. J.; Brandes, A. A.; Rampling, R.; Kouwenhoven, M. C. M.; Kros, J. M.; Carpentier, A. F.; et al. Randomized Phase II Trial of Erlotinib versus Temozolomide or Carmustine in Recurrent Glioblastoma: EORTC Brain Tumor Group Study 26034. J. Clin. Oncol. 2009, 27, 1268–1274. [Google Scholar] [CrossRef]
- Matarredona, E. R.; Pastor, A. M. Neural Stem Cells of the Subventricular Zone as the Origin of Human Glioblastoma Stem Cells: Therapeutic Implications. Front. Oncol. 2019, 9, 779. [Google Scholar] [CrossRef]
- Mathew, B. S.; Kaliyath, S. B.; Krishnan, J.; Bhasi, S. Impact of Subventricular Zone Irradiation on Outcome of Patients with Glioblastoma. J. Cancer Res. Ther. 2018, 14, 1202–1206. [Google Scholar] [CrossRef]
- Mohan, R.; Liu, A. Y.; Brown, P. D.; Mahajan, A.; Dinh, J.; Chung, C.; et al. Proton Therapy Reduces the Likelihood of High-Grade Radiation-Induced Lymphopenia in Glioblastoma Patients: Phase II Randomized Study of Protons vs Photons. Neuro. Oncol. 2021, 23, 284–294. [Google Scholar] [CrossRef]
- Brandes, A. A.; Franceschi, E.; Tosoni, A.; Blatt, V.; Pession, A.; Tallini, G.; et al. MGMT Promoter Methylation Status Can Predict the Incidence and Outcome of Pseudoprogression after Concomitant Radiochemotherapy in Newly Diagnosed Glioblastoma Patients. J. Clin. Oncol. 2008, 26, 2192–2197. [Google Scholar] [CrossRef] [PubMed]
- Wen, P. Y.; van den Bent, M.; Youssef, G.; Cloughesy, T. F.; Ellingson, B. M.; Weller, M.; et al. RANO 2.0: Update to the Response Assessment in Neuro-Oncology Criteria for High- and Low-Grade Gliomas in Adults. J. Clin. Oncol. 2023, 41, 5187–5199. [Google Scholar] [CrossRef] [PubMed]
- Breen, W. G.; Aryal, M. P.; Cao, Y.; Kim, M. M. Integrating Multi-Modal Imaging in Radiation Treatments for Glioblastoma. Neuro. Oncol. 2024, 26, S17–S25. [Google Scholar] [CrossRef] [PubMed]
- Tan, A. C.; Ashley, D. M.; López, G. Y.; Malinzak, M.; Friedman, H. S.; Khasraw, M. Management of Glioblastoma: State of the Art and Future Directions. CA Cancer J. Clin. 2020, 70, 299–312. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Y.; Nie, C.; Lin, Y. The Efficacy of Targeted Therapy Combined with Radiotherapy and Temozolomide-Based Chemotherapy in the Treatment of Glioma: A Systemic Review and Meta-Analysis of Phase II/III Randomized Controlled Trials. Front. Oncol. 2023, 13, 1082539. [Google Scholar] [CrossRef]
- Hegi, M. E.; Diserens, A.-C.; Gorlia, T.; Hamou, M.-F.; de Tribolet, N.; Weller, M.; et al. MGMT Gene Silencing and Benefit from Temozolomide in Glioblastoma. N. Engl. J. Med. 2005, 352, 997–1003. [Google Scholar] [CrossRef]
- Weller, M.; Stupp, R.; Reifenberger, G.; Brandes, A. A.; van den Bent, M. J.; Wick, W.; et al. MGMT Promoter Methylation in Malignant Gliomas: Ready for Personalized Medicine? Nat. Rev. Neurol. 2010, 6, 39–51. [Google Scholar] [CrossRef]
- Brennan, C. W.; Verhaak, R. G. W.; McKenna, A.; Campos, B.; Noushmehr, H.; Salama, S. R.; et al. The Somatic Genomic Landscape of Glioblastoma. Cell 2013, 155, 462–477. [Google Scholar] [CrossRef]
- Brown, P. D.; Krishnan, S.; Sarkaria, J. N.; Wu, W.; Jaeckle, K. A.; Uhm, J. H.; et al. Phase I/II Trial of Erlotinib and Temozolomide with Radiation Therapy in the Treatment of Newly Diagnosed Glioblastoma Multiforme: North Central Cancer Treatment Group Study N0177. J. Clin. Oncol. 2008, 26, 5603–5609. [Google Scholar] [CrossRef]
- Ma, S.; Rudra, S.; Campian, J. L.; Dahiya, S.; Dunn, G. P.; Johanns, T.; et al. Prognostic impact of CDKN2A/B deletion, TERT mutation, and EGFR amplification on histological and molecular IDH-wildtype glioblastoma. Neuro-Oncol. Adv. 2020, 2, vdaa126. [Google Scholar] [CrossRef]
- Wen, P. Y.; Weller, M.; Lee, E. Q.; Alexander, B. M.; Barnholtz-Sloan, J. S.; Barthel, F. P.; et al. Glioblastoma in adults: A Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro. Oncol. 2020, 22, 1073–1113. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Parsons, D. W.; Jin, G.; McLendon, R.; Rasheed, B. A.; Yuan, W.; et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 2009, 360, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Barthel, F. P.; Johnson, K. C.; Varn, F. S.; Moskalik, A. D.; Tanner, G.; Kocakavuk, E.; et al. Longitudinal molecular trajectories of diffuse glioma in adults. Nature 2019, 576, 112–120. [Google Scholar] [CrossRef] [PubMed]
- van den Bent, M. J.; Franceschi, E.; Touat, M.; French, P. J.; Idbaih, A.; Lombardi, G.; et al. Updated EANO guideline on rational molecular testing of gliomas, glioneuronal, and neuronal tumors in adults for targeted therapy selection-update 1. Neuro. Oncol. 2025, 27, 331–337. [Google Scholar] [CrossRef]
- Dungey, F. A.; Löser, D. A.; Chalmers, A. J. Replication-dependent radiosensitization of human glioma cells by inhibition of poly(ADP-ribose) polymerase: Mechanisms and therapeutic potential. Int. J. Radiat. Oncol. Biol. Phys. 2008, 72, 1188–1197. [Google Scholar] [CrossRef]
- Kotecha, R.; Odia, Y.; Khosla, A. A.; Ahluwalia, M. S. Key clinical principles in the management of glioblastoma. JCO Oncol. Pract. 2023, 19, 180–189. [Google Scholar] [CrossRef]
- Corrales-García, E. M.; Aristu-Mendioroz, J. J.; Castro-Novais, J.; Matute-Martín, R.; Learra-Martínez, M. C.; Delgado-López, P. D. Current state of proton therapy for tumors of the central nervous system in Spain: Physical bases, indications, controversies and perspectives. Clin. Transl. Oncol. 2025, 27, 858–870. [Google Scholar] [CrossRef]
- Brown, P. D.; Chung, C.; Liu, D. D.; et al. A prospective phase II randomized trial of proton radiotherapy vs intensity-modulated radiotherapy for patients with newly diagnosed glioblastoma. Neuro. Oncol. 2021, 23, 1337–1347. [Google Scholar] [CrossRef]
- Gondi, V.; Pugh, S.; Tsien, C.; Chenevert, T.; Gilbert, M.; Omuro, A.; et al. Radiotherapy (RT) dose-intensification (DI) using intensity-modulated RT (IMRT) versus standard-dose (SD) RT with temozolomide (TMZ) in newly diagnosed glioblastoma (GBM): Preliminary results of NRG Oncology BN001. Int. J. Radiat. Oncol. Biol. Phys. 2019, 108, S22–S23. [Google Scholar] [CrossRef]
- Goff, K. M.; Zheng, C.; Alonso-Basanta, M. Proton radiotherapy for glioma and glioblastoma. Chin. Clin. Oncol. 2022, 11, 46. [Google Scholar] [CrossRef]
- Koosha, F.; Ahmadikamalabadi, M.; Mohammadi, M. Review of recent improvements in carbon ion radiation therapy in the treatment of glioblastoma. Adv. Radiat. Oncol. 2024, 9, 101465. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, S.; Suzuki, M.; Hirose, K.; Tanaka, H.; Kato, T.; Goto, H.; et al. Accelerator-based BNCT for patients with recurrent glioblastoma: A multicenter phase II study. Neuro-Oncol. Adv. 2021, 3, vdab067. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, S.; Nakai, K.; Li, Y.; Mizumoto, M.; Kumada, H.; Ishikawa, E.; et al. Boron neutron capture therapy for recurrent glioblastoma multiforme: Imaging evaluation of a case with long-term local control and survival. Cureus 2023, 15, e33898. [Google Scholar] [CrossRef] [PubMed]
- Ocanto, A.; Torres, L.; Montijano, M.; Rincón, D.; Fernández, C.; Sevilla, B.; et al. MR-LINAC, a new partner in radiation oncology: Current landscape. Cancers 2024, 16, 270. [Google Scholar] [CrossRef]
- Detsky, J.; Chan, A. W.; Palhares, D. M.; Hudson, J. M.; Stewart, J.; Chen, H.; et al. MR-Linac on-line weekly adaptive radiotherapy for high grade glioma (HGG): Results from the UNITED single arm phase II trial. Int. J. Radiat. Oncol. Biol. Phys. 2024, 120, S4. [Google Scholar] [CrossRef]
- Ballo, M. T.; Conlon, P.; Lavy-Shahaf, G.; Kinzel, A.; Vymazal, J.; Rulseh, A. M. Association of tumor treating fields (TTFields) therapy with survival in newly diagnosed glioblastoma: A systematic review and meta-analysis. J. Neurooncol. 2023, 164, 1–9. [Google Scholar] [CrossRef]
- Khagi, S.; Kotecha, R.; Gatson, N. T. N.; Jeyapalan, S.; Abdullah, H. I.; Avgeropoulos, N. G.; et al. Recent advances in tumor treating fields (TTFields) therapy for glioblastoma. Oncologist 2025, 30, oyae227. [Google Scholar] [CrossRef]
- Rominiyi, O.; Vanderlinden, A.; Clenton, S. J.; Bridgewater, C.; Al-Tamimi, Y.; Collis, S. J. Tumour treating fields therapy for glioblastoma: Current advances and future directions. Br. J. Cancer 2021, 124, 697–709. [Google Scholar] [CrossRef]
- Szasz, A. M.; Arrojo Alvarez, E. E.; Fiorentini, G.; Herold, M.; Herold, Z.; Sarti, D.; et al. Meta-analysis of modulated electro-hyperthermia and tumor treating fields in the treatment of glioblastomas. Cancers 2023, 15, 880. [Google Scholar] [CrossRef]
- Roussakow, S. V. Clinical and economic evaluation of modulated electrohyperthermia concurrent to dose-dense temozolomide 21/28 days regimen in the treatment of recurrent glioblastoma: A retrospective analysis of a two-centre German cohort trial with systematic comparison. BMJ Open 2017, 7, e017387. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Lorant, G.; Grand, L.; Albrecht, A.; Uhl, M.; Jauch, A.; et al. Hyperthermia with modulated electro-hyperthermia (mEHT) plus temozolomide in the treatment of glioblastoma multiforme. Front. Oncol. 2022, 12, 791035. [Google Scholar]
- Ius, T.; Somma, T.; Pasqualetti, F.; Berardinelli, J.; Vitulli, F.; Caccese, M.; et al. Local therapy in glioma: An evolving paradigm from history to horizons (review). Oncol. Lett. 2024, 28, 440. [Google Scholar] [CrossRef] [PubMed]
- Mallick, S.; Gupta, S.; Amariyil, A.; Kunhiparambath, H.; Laviraj, M. A.; Sharma, S.; et al. Hypo-fractionated accelerated radiotherapy with concurrent and maintenance temozolomide in newly diagnosed glioblastoma: Updated results from phase II HART-GBM trial. J. Neurooncol. 2023, 164, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Chidley, P.; Shanker, M.; Phillips, C.; Haghighi, N.; Pinkham, M. B.; Whittle, J. R.; et al. Moderately hypofractionated versus conventionally fractionated radiation therapy with temozolomide for young and fit patients with glioblastoma: An institutional experience and meta-analysis of literature. J. Neurooncol. 2022, 160, 361–374. [Google Scholar] [CrossRef]
- Guo, L.; Li, X.; Chen, Y.; Liu, R.; Ren, C.; Du, S. The efficacy of hypofractionated radiotherapy (HFRT) with concurrent and adjuvant temozolomide in newly diagnosed glioblastoma: A meta-analysis. Cancer Radiother. 2021, 25, 182–190. [Google Scholar] [CrossRef]
- Klement, R. J.; Popp, I.; Kaul, D.; Ehret, F.; Grosu, A. L.; Polat, B.; et al. Accelerated hyper-versus normofractionated radiochemotherapy with temozolomide in patients with glioblastoma: A multicenter retrospective analysis. J. Neurooncol. 2022, 156, 407–417. [Google Scholar] [CrossRef]
- Liao, G.; Zhao, Z.; Yang, H.; Li, X. Efficacy and safety of hypofractionated radiotherapy for the treatment of newly diagnosed glioblastoma multiforme: A systematic review and meta-analysis. Front. Oncol. 2019, 9, 1017. [Google Scholar] [CrossRef]
- Singh, R.; Lehrer, E. J.; Wang, M.; Perlow, H. K.; Zaorsky, N. G.; Trifiletti, D. M.; et al. Dose escalated radiation therapy for glioblastoma multiforme: An international systematic review and meta-analysis of 22 prospective trials. Int. J. Radiat. Oncol. Biol. Phys. 2021, 111, 371–384. [Google Scholar] [CrossRef]
- Andratschke, N.; Heusel, A.; Albert, N. L.; Alongi, F.; Baumert, B. G.; Belka, C.; et al. ESTRO/EANO recommendation on reirradiation of glioblastoma. Radiother. Oncol. 2025, 204, 110696. [Google Scholar] [CrossRef]
- Lo Greco, M. C.; Milazzotto, R.; Liardo, R. L. E.; Acquaviva, G.; La Rocca, M.; Altieri, R.; et al. Relapsing high-grade glioma from peritumoral zone: Critical review of radiotherapy treatment options. Brain Sci. 2022, 12, 416. [Google Scholar] [CrossRef]
- Preusser, M.; Kazda, T.; Le Rhun, E.; Sahm, F.; Smits, M.; Gempt, J.; et al. Lomustine with or without reirradiation for first progression of glioblastoma, LEGATO, EORTC-2227-BTG: Study protocol for a randomized phase III study. Trials 2024, 25, 366. [Google Scholar] [CrossRef] [PubMed]
- Chen, A. T. C.; Serante, A. R.; Ayres, A. S.; Tonaki, J. O.; Moreno, R. A.; Shih, H.; et al. Prospective randomized phase 2 trial of hypofractionated stereotactic radiation therapy of 25 Gy in 5 fractions compared with 35 Gy in 5 fractions in the reirradiation of recurrent glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2024, 119, 1122–1132. [Google Scholar] [CrossRef] [PubMed]
- Nabian, N.; Ghalehtaki, R.; Zeinalizadeh, M.; Balaña, C.; Jablonska, P. A. State of the neoadjuvant therapy for glioblastoma multiforme—where do we stand? Neuro-Oncol. Adv. 2024, 6, vdae028. [Google Scholar] [CrossRef] [PubMed]
- Miyake, K.; Ogawa, T.; Fujii, T. STMO-15 Our therapeutic strategies for glioblastoma: Intraoperative support systems [intraoperative MRI, PET, 5-aminolevulinic acid (5-ALA)] and neoadjuvant chemotherapy. Neuro-Oncol. Adv. 2019, 1 (Suppl. 2). [Google Scholar] [CrossRef]
- Waqar, M.; Roncaroli, F.; Djoukhadar, I.; Akkari, L.; O’Leary, C.; Hewitt, L.; et al. Study protocol: Preoperative brain irradiation in glioblastoma (POBIG)—a phase I trial. Clin. Transl. Radiat. Oncol. 2023, 39, 100585. [Google Scholar] [CrossRef]
- Bihan, C.; Foscolo, S.; Boone, M.; Blonski, M.; Coutte, A.; Darlix, A.; et al. Upfront bevacizumab and temozolomide or fotemustine before radiotherapy for patients with glioblastoma and severe neurological impairment at diagnosis. Case Rep. Oncol. 2012, 5, 530–536. [Google Scholar] [CrossRef]
- Balana, C.; De Las Penas, R.; Sepúlveda, J. M.; et al. Bevacizumab and temozolomide versus temozolomide alone as neoadjuvant treatment in unresected glioblastoma: The GENOM 009 randomized phase II trial. J. Neurooncol. 2016, 127, 569–579. [Google Scholar] [CrossRef]
- Jiang, H.; Zeng, W.; Ren, X.; Cui, Y.; Li, M.; Yang, K.; et al. Super-early initiation of temozolomide prolongs the survival of glioblastoma patients without gross-total resection: A retrospective cohort study. J. Neurooncol. 2019, 144, 127–135. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Mu, S.; Wu, X.; Yu, S.; Wang, Z. Combining immunotherapy with radiotherapy for glioblastoma: Recent advances and challenges. Front. Oncol. 2025, 15, 1523675. [Google Scholar] [CrossRef]
- Long, G. V.; Shklovskaya, E.; Satgunaseelan, L.; Mao, Y.; da Silva, I. P.; Perry, K. A.; et al. Neoadjuvant triplet immune checkpoint blockade in newly diagnosed glioblastoma. Nat. Med. 2025, 31, 1557–1566. [Google Scholar] [CrossRef]
- Armstrong, T. S.; Wefel, J. S.; Wang, M.; Gilbert, M. R.; Won, M.; Bottomley, A.; et al. Net clinical benefit analysis of Radiation Therapy Oncology Group 0525: A phase III trial comparing conventional adjuvant temozolomide with dose-intensive temozolomide in patients with newly diagnosed glioblastoma. J. Clin. Oncol. 2013, 31, 4076–4084. [Google Scholar] [CrossRef] [PubMed]
- Reardon, D. A.; Desjardins, A.; Peters, K.; Gururangan, S.; Sampson, J.; Rich, J. N.; et al. Phase II study of metronomic chemotherapy with bevacizumab for recurrent glioblastoma after progression on bevacizumab therapy. J. Neurooncol. 2011, 103, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Wick, W.; Gorlia, T.; Bendszus, M.; Taphoorn, M.; Sahm, F.; Harting, I.; et al. Lomustine and bevacizumab in progressive glioblastoma. N. Engl. J. Med. 2017, 377, 1954–1963. [Google Scholar] [CrossRef] [PubMed]
- Cruz Da Silva, E.; Mercier, M.-C.; Etienne-Selloum, N.; Dontenwill, M.; Choulier, L. A systematic review of glioblastoma-targeted therapies in phases II, III, IV clinical trials. Cancers 2021, 13, 1795. [Google Scholar] [CrossRef]
- Herrlinger, U.; Tzaridis, T.; Mack, F.; Steinbach, J. P.; Schlegel, U.; Sabel, M.; et al. Lomustine-temozolomide combination therapy versus standard temozolomide therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/NOA-09): A randomised, open-label, phase 3 trial. Lancet 2019, 393, 678–688. [Google Scholar] [CrossRef]
- Chinot, O. L.; Wick, W.; Mason, W.; Henriksson, R.; Saran, F.; Nishikawa, R.; et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N. Engl. J. Med. 2014, 370, 709–722. [Google Scholar] [CrossRef]
- Friedman, H. S.; Prados, M. D.; Wen, P. Y.; Mikkelsen, T.; Schiff, D.; Abrey, L. E.; et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J. Clin. Oncol. 2009, 27, 4733–4740. [Google Scholar] [CrossRef]
- Stupp, R.; Hegi, M. E.; Gorlia, T.; Erridge, S. C.; Perry, J.; Hong, Y.-K.; et al. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2014, 15, 1100–1108. [Google Scholar] [CrossRef]
- Baskaran, A. B.; Kozel, O. A.; Venkatesh, O.; Wainwright, D. A.; Sonabend, A. M.; Heimberger, A. B.; et al. Immune checkpoint inhibitors in glioblastoma IDHwt treatment: A systematic review. Cancers 2024, 16, 4148. [Google Scholar] [CrossRef]
- Nassiri, F.; Patil, V.; Yefet, L. S.; Singh, O.; Liu, J.; Dang, R. M. A.; et al. Oncolytic DNX-2401 virotherapy plus pembrolizumab in recurrent glioblastoma: A phase 1/2 trial. Nat. Med. 2023, 29, 1370–1378. [Google Scholar] [CrossRef]
- McFaline-Figueroa, J. R.; Sun, L.; Youssef, G. C.; Huang, R.; Li, G.; Kim, J.; et al. Neoadjuvant anti-PD1 immunotherapy for surgically accessible recurrent glioblastoma: Clinical and molecular outcomes of a stage 2 single-arm expansion cohort. Nat. Commun. 2024, 15, 10757. [Google Scholar] [CrossRef] [PubMed]
- Weller, M.; Butowski, N.; Tran, D. D.; et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): A randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017, 18, 1373–1385. [Google Scholar] [CrossRef] [PubMed]
- Martucci, M.; Russo, R.; Giordano, C.; Schiarelli, C.; D’Apolito, G.; Tuzza, L.; et al. Advanced magnetic resonance imaging in the evaluation of treated glioblastoma: A pictorial essay. Cancers 2023, 15, 3790. [Google Scholar] [CrossRef] [PubMed]
- Pineda, C.; Oleaga Zufiria, L.; Valduvieco Ruiz, I.; Pineda Losada, E.; Pujol Farré, T.; González Ortiz, S. RANO-2. Radiologia 2024, 101621. [Google Scholar] [CrossRef]
- Albert, N. L.; Galldiks, N.; Ellingson, B. M.; van den Bent, M. J.; Chang, S. M.; Cicone, F.; et al. PET-based response assessment criteria for diffuse gliomas (PET RANO 1. 0): A report of the RANO group. Lancet Oncol. 2024, 25, e29–e41. [Google Scholar] [CrossRef]
- Galldiks, N.; Lohmann, P.; Friedrich, M.; Werner, J.-M.; Stetter, I.; Wollring, M. M.; et al. PET imaging of gliomas: Status quo and quo vadis? Oncol. 2024, 26 (Suppl. 9), S185–S198. [Google Scholar] [CrossRef]
- Russo, G.; Stefano, A.; Alongi, P.; Comelli, A.; Catalfamo, B.; Mantarro, C.; et al. Feasibility on the use of radiomics features of 11[C]-MET PET/CT in central nervous system tumours: Preliminary results on potential grading discrimination using a machine learning model. Curr. Oncol. 2021, 28, 5318–5331. [Google Scholar] [CrossRef]
- Verma, P.; Singh, B. K.; Sudhan, M. D.; Singh, R. K.; Bagul, S. D.; Chandak, A. R.; et al. 68 Ga-PSMA-11 PET/CT imaging in brain gliomas and its correlation with clinicopathological prognostic parameters. Clin. Nucl. Med. 2023, 48, e559–e563. [Google Scholar] [CrossRef]
| Intervention | Median Survival – Unmethylated | Median Survival – Methylated | Conclusion |
|---|---|---|---|
| Surgery + RT |
11.8 months |
15.3 months |
RT alone improves OS in methylated tumors, but the benefit is limited. |
| Surgery + RT + TMZ |
12.7 months |
21.7 months |
The addition of TMZ significantly increases OS in methylated tumors (p = 0.007). |
| Surgery + RT + TMZ + TTFields |
16.9 months |
31.6 months |
The combination of TTFields with RT and TMZ offers the greatest OS benefit, especially in methylated tumors. |
| Study | Patients | Treatment | Results | Conclusion |
|---|---|---|---|---|
| Roa et al. (2004) [19] |
N=100 ≥60 y.o. KPS ≥50. |
RT (60 Gy/6 weeks) vs. RT (40 Gy/3 weeks). | -OS comparable (5.1 vs. 5.6 months). - Better tolerance - Lower use of post-treatment steroids in short RT. |
Short RT is effective and more comfortable |
| Perry et al. (2017) [18] |
N= 562 ≥65 y.o. |
RT (40 Gy/15fr) ± concomitant and adjuvant TMZ. | - Better OS with combination (9.3 mo vs. 7.6 m), especially in MGMTmet - More hematological adverse effects with TMZ |
Short RT + TMZ improves OS. Standard in eligible patients |
| Malmström et al. Nordic Trial (2012) [22] |
N=342 ≥60 y.o. WHO 0-2 |
TMZ vs RT 60 Gy/6 weeks vs RT 34 Gy/2 weeks. |
-OS: TMZ 8.3 m / RT 6.0 mo / hypofractionated RT 7.5 mo - greater benefit in >70 years - MGMTmet: predictive marker of response to TMZ (OS 9.7mo vs 8.2 in RT) |
- TMZ and hypofractionated RT > standard RT - TMZ vs. hypofractionated RT in patients >70 years old, depending on MGMTmet. Individualized management |
| Roa et al. IAEA Trial (2015) [20] |
N=98 ≥65 y.o. and/or fragile |
RT (25 Gy/5fr) vs. RT (40.05 Gy/15fr). | Similar OS (7.9 vs. 6.4 mo). | Hypofractionated RT is feasible and effective in frail patients |
| Minniti et al. (2009) [21] |
N=43 ≥70 y.o. KPS ≥60 |
RT 30Gy/6fr vs adj. TMZ | -OS 9.3 mo -PFS 6.3 mo -Best in KPS>70 -Acceptable toxicity |
Combination is effective and safe in selected patients with limited prognosis |
| Guideline/Study | GTV | CTV | PTV | Edema Inclusion |
|---|---|---|---|---|
| EORTC (Stupp) [12] |
Tumor + cavity | CTV1: GTV + edema + 20mm CTV2: GTV + 25mm |
PTV = CTV + 3-5mm | Yes, included in initial phase |
| RTOG/NRG (2019) [14] |
Phase 1: tumor + edema; Phase 2: tumor + cavity | CTV1: GTV1 + 20mm CTV2: GTV2 + 20mm |
PTV = CTV + 3-5mm | Yes, included in initial phase |
| ESTRO-EANO 2023 [25] |
Surgical cavity + post-surgical T1 enhancement | GTV + 15 mm (adjusted to anatomy) | CTV + individual margin (usually ≤3 mm with IGRT) | Not systematically included |
| ESTRO-ACROP 2016 [26] |
Cavity + residual tumor | GTV + 15–20 mm, adjusted to anatomical barriers | CTV + 3–5 mm | Not systematically included |
| Minniti et al. (2010) [28] |
Surgical cavity + post-surgical T1 enhancement | CTV1: GTV + 2 cm CTV2: GTV + 1 cm |
CTV + 3mm | Not included |
| Chang et al. (2007) [29] |
Cavity + T1 tumor | CTV1: GTV + 20mm CTV2: GTV + 5mm |
CTV + 5mm | Not included |
| ASTRO 2025 (1-phase) [11] |
Surgical cavity + post-surgical T1 enhancement | GTV + 10–20 mm (adjusted to anatomy, including edema is optional) | PTV = CTV + 3-5 mm |
Optional. |
| ASTRO 2025 (2-phase) [11] |
Phase 1: cavity + T1 + T2/FLAIR enhancement Phase 2: cavity + T1 enhancement |
CTV1: GTV1 + 10–20 mm CTV2: GTV2 + 10–20 mm (adjusted to anatomy) |
PTV = CTV + 3-5 mm |
Yes, included in initial phase; not in phase 2 |
| MDACC Kumar et al. (2020) [27] |
Cavity + T1 enhancement | Initial GTV + 2 cm, boost GTV + 5 mm | CTV +5mm | Not included |
| Category | Limitation | Description/Evidence |
|---|---|---|
|
Technical |
Local recurrence |
80-90% of recurrences occur within 2 cm of the irradiated field due to diffuse infiltration, even with IMRT, VMAT, or proton therapy [32] |
| Dosimetric constraints |
Limits such as <54 Gy to the brainstem and optic chiasm restrict dose escalation; proton therapy minimizes irradiated volumes [25]. |
|
| Acute and late toxicity |
Fatigue, radiation necrosis, and cognitive deficits; brain volumes (V20Gy, V40Gy) increase neurotoxicity, reducible with IMRT, VMAT, and proton therapy [25]. |
|
| Delay in RT initiation |
Delays >6 weeks worsen OS and PFS; moderate delays (~6 weeks) may benefit patients with residual disease [33,34]. |
|
| Cost and adherence of new technologies |
Tumor-Treating Fields (TTFields) extend PFS by 2.7 months (6.7 vs. 4.0 months), limited by cost and adherence (≥18 hours/day) [35]. |
|
|
Biological |
Tumor infiltration |
The diffuse nature of GBM allows tumor cells to escape the radiation field [32]. |
| Tumor hypoxia |
Tumor hypoxia, by activating HIF-1α, reduces RT efficacy by promoting cell survival [37]. |
|
| Cellular radioresistance |
Tumor stem cells and pathways like MGMT, EGFR/PTEN, and CDKN2A/B drive resistance; PARP inhibitors (e.g., veliparib) and other radiosensitizers show promise by inhibiting DNA repair. [36,37]. |
|
| EGFR amplification |
In 40-60%, activates PI3K/Akt and RAS/RAF/MAPK, conferring resistance; PTEN mutations (~40%) enhance this pathway; inhibitors like erlotinib have limited benefits [37,38]. |
|
| SVZ as a reservoir |
The SVZ, with mutated stem cells (TERT, PTEN, TP53, EGFR), drives regrowth; irradiating the SVZ with doses ≥56 Gy (ipsilateral) or ≥50 Gy (contralateral) does not improve PFS or OS [39,40]. |
|
| RT-induced lymphopenia |
Extensive irradiation causes grade 3+ lymphopenia (14% with protons vs. 39% with photons), limiting immunotherapy efficacy [41]. |
|
|
Clinical |
Pseudoprogression |
Affects 30-40% of patients with methylated MGMT after TMZ, complicating radiological assessment up to 12 weeks [42,43]. |
| Lack of clinical impact of biomarkers and advanced imaging |
Multimodal imaging (multiparametric MRI, amino acid PET) enables RT personalization, achieving a median OS of 23 months in a phase I trial [44]. Biomarkers (EGFR, PTEN, TERT) allow patient stratification but, except for MGMT methylation, do not improve OS in phase III trials [45]. |
|
| Lack of consistent benefits from combined therapies |
Targeted therapies and immunotherapies do not improve OS, though they extend PFS in nGBM [46]. |
| Biomarker | Frequency (IDH-wt) | Impact on RT | Therapeutic Status |
|---|---|---|---|
| Methylated MGMT | ~45 % | Greater sensitivity to RT + TMZ | Standard treatment with TMZ. ESCAT I [12,47,48] |
| IDH1/2 Mutation | ~10 % | Greater radiosensitivity and better prognosis | Favorable stratification. ESCAT I [53] |
| Amplified EGFR | 40–60 % | Activates PI3K/AKT; resistance to RT | Inhibitors without relevant clinical efficacy. ESCAT IIIA [50] |
| PTEN mutation/loss | ~40 % | PI3K/AKT pathway; promotes resistance to RT | No approved effective therapies [49,52] |
| PIK3CA mutation | ~10 % | Stimulates cellular survival signals | No approved effective therapies. [49,52] |
| Amplified CDK4/6 | ~15 % | Stimulates cell cycle progression | Inhibitors under clinical study. [49,52] |
| CDKN2A/B deletion | ~50 % | Loss of cell cycle control; poor prognosis | No effective targeted therapies. [45,51] |
| TERT mutation | >80 % | Uncertain impact; possible role in immune evasion | Under investigation as an immunotherapeutic target. [3,54] |
| Technique | Description | mOS/PFS | Evidence | Results Pending | Limitations |
|---|---|---|---|---|---|
| PT | Focused dose delivery (Bragg peak, spread-out Bragg peak [SOBP], intensity-modulated proton therapy [IMPT], RBE 1.1) |
nGBM: mOS 21-24 months; PFS 6.6-8.9 months |
Phase II (NCT01854554, n=67; PT vs. XRT); reduces grade ≥3 lymphopenia (14% vs. 39%, p=0.024), fatigue (24% vs. 58%, p=0.05), toxicity grade ≥2 (0.35 vs. 1.15, p=0.02), V5-V40[41,59,60,61] |
NRG-BN001 (NCT02179086): Phase III randomized, dose escalation PT vs. photons in nGBM[60,61] | Cost, accessibility |
|
CIRT |
High energy transfer, RBE 2.5-5 | nGBM: mOS 18 months; rGBM: mOS 8 months |
nGBM: CIRT boost (18 GyE/6 fx) or with TMZ (retrospective randomized phase II); rGBM: 45 GyE/15 fx (non-randomized comparative)[62] |
CINDERELLA (NCT01166308): Phase I/II, CIRT vs. FSRT in rGBM; CLEOPATRA (NCT01165671): Phase II randomized, CIRT vs. proton boost in nGBM[62] |
Cost, limited centers |
|
BNCT |
Selective damage with boron-10 (L-BPA, BSH); planning with 18F-BPA PET |
nGBM: mOS 25.7 months (with surgery+TMZ); rGBM: mOS 18.9 months | nGBM: Surgery, BNCT (~40 Gy-Eq) and TMZ, without conventional RT; rGBM: Non-randomized Phase II (JG002), minimum 39.8 Gy-Eq [63,64] | under investigation, non-randomized [63,64] |
Toxicity (cerebral edema, hyperamylasemia, alopecia); infrastructure |
|
MRgRT |
Daily adaptation with T1/T2 MRI | nGBM: mOS 18.5 months, PFS 11.6 months (long course); marginal failure 4.1% | Non-randomized Phase II UNITED (NCT04726397, n=98; CTV 5 mm, 60 Gy/30 fx)[65,66] | UNITED2 (NCT05565521): Phase II non-randomized, 40 Gy/15 fx + boost 52.5 Gy/15 fx, PFS at 6 months [65] |
Cost, evidence in development |
|
TTFields |
Alternating electric fields (200 kHz, 1-3 V/cm); with TMZ+RT | nGBM: mOS 20.9 months, PFS 6.7 months (EF-14) rGBM: mOS 10.3 months (EF-11) nGBM: mOS 24.8 months, PFS 12.0 months, 1-year survival 82.61% (2-THE-TOP) |
Phase III EF-14 (NCT00916409, n=695; TTFields+TMZ in nGBM, HR 0.63, p<0.001); phase III EF-11 (NCT00379470, TTFields in rGBM); phase II 2-THE-TOP (NCT03405792, TTFields+TMZ+pembrolizumab in nGBM) [67,68,69] |
Phase III TRIDENT (NCT04471844): RT/TMZ in nGBM; EF-41 (NCT06556363): TMZ+pembrolizumab+TTFields in nGBM[67,68,69] |
Cost, adherence, dermatitis; NICE does not endorse it due to cost-effectiveness, EF-14 biases (unblinded, selected patients) |
|
mEHT |
Thermal radiosensitization (13.56 MHz, 40-43°C); immunogenic potential |
nGBM: 1-year survival 73.33%; rGBM: mOS 7.7 months, 1-year survival 37.33% |
Observational studies 2006–2018 (n=450); 1 nGBM study, 6 rGBM studies (with ddTMZ); phase I for safety; no RCTs [70,71,72] |
In research, non-randomized [70,71,72] | Weak evidence, not in guidelines, few centers |
|
LITT |
MRI-guided laser thermal ablation | rGBM: mOS ~8-12 months |
Phase I/II in rGBM; comparable to re-surgery in unifocal lobar rGBM; no RCTs [73] |
In research, non-randomized [73] |
Small focal lesions, no RCTs, post-procedural edema |
|
MHT |
AMF-guided hyperthermia with magnetic nanoparticles (40–45°C) | rGBM: mOS not reported |
Phase I/II in rGBM with RT; Proven safety and feasibility; no RCTs.[73] |
In research, non-randomized [73] |
No RCTs, technical challenges (MNP, thermometry), few centers |
| Schedule/ Description/ Indications. |
mOS/PFS |
Evidence | Ongoing Trials | Limitations |
|---|---|---|---|---|
| Hypofractionation: 50–60 Gy/20 fractions with TMZ, primarily in younger patients (≤65 years, KPS ≥70) |
mOS: 26.5 months, PFS: 13.2 months [74]; mOS: 19.8 months, PFS: 7.7 months [75]; 12-month OS: 71.3%, 12-month PFS: 40.8% (various ages) [76] |
HART-GBM trial (phase II, 60 Gy/20 fx vs. 60 Gy/30 fx, n=83, with TMZ, patients aged 16–65 years) [74]; Institutional study (50 Gy/20 fx vs. 60 Gy/30 fx, n=41, with TMZ, patients <65 years) [75]; Meta-analysis (n=484, phase I/II and retrospective, various ages) [76]; Meta-analysis (n not specified, phase II/III, HFRT vs. CFRT, various ages) [78] |
SAGA (NCT05781321, randomized phase II, 5–10 fx photons guided by [18F]-FDOPA PET, evaluating survival, cost-effectiveness, and failure patterns, patients ≥18 years, ClinicalTrials.gov) |
Grade ≥3 radionecrosis (6.7% HFRT, 7.7% CFRT), tumor heterogeneity [75,78] |
| Hyperfractionation: 37 × 1.6 Gy or 30 × 1.8 Gy bid with TMZ, experimental |
No clear benefit (mOS 14.9 vs. 16.9 months, p=0.26) [77] |
Retrospective analysis (HFRT vs. NFRT, n=484, with TMZ) [77]; Review (variable dose, with TMZ) [37] |
Lack of efficacy; moderate toxicity [37,77] | |
| Dose escalation: 75 Gy/30 fx (IMRT/PT) with TMZ or 16.8–24.8 GyE boost (CIRT), selected patients (KPS ≥70) |
mOS: 18.7 months (photons), improved PFS (60); mOS: 18 months (CIRT boost) [62] |
NRG-BN001 trial (randomized phase II, 75 Gy/30 fx vs. 60 Gy/30 fx, n=299, with TMZ, photons) [60]; CIRT retrospective study (16.8–24.8 GyE/8 fx after 50 Gy photons, n=32) [62] |
NRG-BN001 (PT arm, randomized phase II) [60]; CLEOPATRA (CIRT boost, randomized phase II) [62] |
Grade ≥3 radionecrosis (up to 29%), tumor heterogeneity, no mOS improvement [60,79] |
| Modality | Description | Indications | MOS/ PFS |
Evidence | Trials | Limitations |
|---|---|---|---|---|---|---|
| HFRT/. CFRT |
35 Gy/10 fx or 36 Gy/18 fx ± BEV (CTV: GTV + ≤5 mm, adjusted to anatomical barriers; PTV: CTV + ≤3 mm) [80] |
KPS >60, recurrence >6 months, volume <35 cm³ (ESTRO/EANO); KPS ≥70, volume ≤6 cm³ (ASTRO), multidisciplinary discussion [11,80] |
mOS 7–12 months, PFS 3–6 months [80] |
NRG Oncology/RTOG 1205 (phase II, HFRT + BEV, mOS 10.1 months) [80] |
LEGATO (phase III, lomustine ± HFRT) [82] |
Radionecrosis (~5%), lack of phase III trials [80] |
|
SRS/ HSRT |
SRS: 12–15 Gy/1 fx (CTV: GTV, usually without margin; PTV: CTV + 0–1 mm); HSRT: 25 Gy/5 fx (CTV: GTV, without margin; PTV: CTV + 3 mm) [80,81,83] |
SRS: volume <10 cm³; HSRT: volume ≤150 cm³ (median 55 cm³) [80,81,83] | mOS 9–11 months, PFS 5–6 months [80,81,83] |
Retrospective trials (SRS, volume <12.5 cm³) [80]; Phase II, HSRT 25 Gy/5 fx, mOS 9.2 months, PFS 4.9 months; 35 Gy/5 fx shows no improvement in PFS (4.9 vs. 5.2 months) or OS (9.2 vs. 10 months) [83] |
Radionecrosis (<3.5% if volume <12.5 cm³ [80]; ~25% in HSRT [83]), phase II escalation from 25 Gy/5 fx to 35 Gy/5 fx does not improve PFS (4.9 vs. 5.2 months) or OS (9.2 vs. 10 months) [83] |
|
|
CIRT/PT |
CIRT: 45 Gy RBE/15 fx; PT: 33–46.2 Gy variable (CTV: GTV + ≤3 mm, adjusted to anatomical barriers; PTV: CTV + ≤3 mm) [61,62,81] |
Selected patients [61,62,81] |
mOS 7.8–19.4 months, PFS 5.5–13.9 months [61,62,81] |
Retrospective studies (CIRT, PT) [81]; CIRT 45 Gy RBE/15 fx, mOS 8.0 months vs. photons [62]; PT 33–46.2 Gy, mOS 7.8–19.4 months, low toxicity [61] |
CINDERELLA (phase I/II, CIRT vs. FSRT) (61) |
Cost, accessibility, limited prospective data, toxicity not reported |
| Preoperative Neoadjuvant Therapy for GBM | ||||
|---|---|---|---|---|
| Modality | Description |
mOS/PFS |
Trial/ Evidence |
Limitations |
| Preoperative RT | SRS (6–14 Gy/1 fx) |
Not reported | POBIG (phase I) [86] |
No phase III trials |
| RT + Preoperative TMZ |
RT + Preoperative TMZ | Not reported | PARADIGMA (phase II, NCT03480867) [84] |
Pending results |
| BEV |
BEV (10 mg/kg) preoperative |
mOS: 15.7 months, PFS: 10.1 months |
Miyake et al. (phase II, n=12) [85] |
Small sample size; limited data on toxicity |
| Pembrolizumab |
Pembrolizumab (ICI, 200 mg every 3 weeks) pre-surgery |
mOS: 13.7 months |
(phase II, rGBM) [90] |
Small sample size, immunological toxicity, dose heterogeneity, potential influence of steroids and bevacizumab |
| Triple Immunotherapy |
Nivolumab + ipilimumab + relatlimab pre-surgery |
No recurrence at 17 months (n=1) | GIANT (phase I, nGBM, NCT06816927) [91] |
Single case; preliminary data |
| Postoperative Neoadjuvant Systemic Therapy Prior to Standard Chemoradiotherapy for Unresectable or Inoperable GBM | ||||
| Modality |
Description |
mOS/PFS |
Trial /Evidence |
Limitations |
| TMZ + BEV |
TMZ (75 mg/m²) + BEV (10 mg/kg) pre-RT |
mOS: 12.5 months, PFS: 7.4–8.6 months |
Bihan et al. (retrospective, n=8)(87) Balana et al. (phase II, n=102) [88] |
Intracranial hemorrhages*; increased toxicity |
| Postoperative Neoadjuvant Systemic Therapy Prior to Chemoradiotherapy for Resectable GBM | ||||
| Modality | Description |
mOS/PFS |
Trial/Evidence | Limitations |
| TMZ |
TMZ (75 mg/m² daily) <7 days post-surgery and extended adjuvant (150–200 mg/m² until progression), before CRT (60 Gy/20 fx in MAGMA) |
mOS: 23 months, PFS: 11.5 months |
Jiang et al. (retrospective, n=375); MAGMA (phase III) [89]** | Hematological toxicity, MAGMA pending |
| Category | Modality | mOS/PFS | Evidence | Notes |
|---|---|---|---|---|
|
Chemotherapy (nGBM) |
Standard TMZ | mOS 14.6 months, mPFS 6.9 months |
EORTC/NCIC CE.3 [12] |
Standard treatment |
| Intensive TMZ | No improvement in mOS or PFS |
RTOG 0525 [92] |
Not recommended | |
| Lomustine + TMZ |
mOS 48.1 months |
CeTeG/NOA-09 [96] |
Methylated MGMT | |
|
Chemotherapy (rGBM) |
Metronomic TMZ | PFS-6 24% (1st recurrence); PFS-6 4.4% (post-BEV) | Phase II, [93] |
Limited efficacy, especially after bevacizumab |
| Lomustine |
mPFS 1.5 months |
EORTC 26101 [94,95] |
Limited efficacy; alone or with bevacizumab | |
| Targeted Therapies (nGBM) | BVZ |
mOS 16.8 months, mPFS 10.6 months |
AVAglio, RTOG 0825 [95,97,98] |
Not recommended as initial treatment; see Table 9 for neoadjuvant use |
| Cilengitide + TMZ |
No improvement SG/PFS | CENTRIC, CORE [95,99] |
Not recommended | |
| PARP inhibitors (e.g., veliparib) |
6-month PFS 46% (95% CI: 36%–57%) vs. 31% (95% CI: 18%–46%) in nGBM with unmethylated MGMT; no mOS benefit (12.7 vs. 12.8 months) |
Phase II VERTU, preclinical synergy with RT/TMZ 36 |
Promising for 6-month PFS in nGBM with unmethylated MGMT, requires phase III confirmation, limited by tumor heterogeneity |
|
|
Targeted Therapies (rGBM) |
BVZ |
mOS 9.2 months, mPFS 4.2 months |
BRAIN, EORTC 26101, BELOB [94,95,98] |
Recommended in symptomatic relapse; see Table 9 for neoadjuvant use. |
| Regorafenib |
mOS 7.4 months, mPFS 2.0 months |
REGOMA [95] |
Limited efficacy in rGBM | |
| BRAF/MEK inhibitors | Partial answers | Basket trials [95] |
Compassionate use or use in clinical trials | |
| IDH inhibitors (vorasidenib) | No data in GBM | Phase I [95] |
In research for IDH-mutant gliomas | |
| Erlotinib, Everolimus |
Ineffective | Phase II [38,95] |
Not recommended | |
| IT (rGBM) |
ICI: Nivolumab |
mOS 9.8 months |
CheckMate 143 [3,90] |
No advantage over BEV |
| ICI: Pembrolizumab |
mOS 13.8 months, mPFS 3.3 months, PFS-6 19.5% |
Phase II (NCT02852655) [90,102] |
Phase II, neoadjuvant to surgery; benefit in subgroups; see Table 9. |
|
| ACT: CAR-T, TILs, LAK |
mOS 20.5 months, 1 RC |
Phase I [90] |
Phase I, preliminary data | |
| Vaccines: DCVax-L |
mOS 13.2 months |
Phase III [90] |
Phase III, without RT; benefit in mOS, non-standard | |
| OV: DNX-2401, G47Δ, PVSRIPO |
mOS 12.5-20.2 months |
Phase I/II [90,101] |
Preliminary results from CAPTIVE (DNX-2401 + pembrolizumab, ongoing) | |
| Cytokines: L19TNF + lomustine |
mPFS 43.3 weeks |
[90] |
Phase I, preliminary data. | |
| IT (nGBM) |
ICI: Nivolumab + RT |
mOS 13.4 months |
CheckMate 498 [100] |
No advantage over TMZ + RT; MGMT not methylated |
| ICI: Nivolumab + TMZ + RT |
mOS 28.9 months |
CheckMate 548 [100] |
No advantage over TMZ + RT; methylated MGMT | |
| Vaccines: DCVax-L |
mOS 19.3 months |
Phase III [90] |
Phase III, with RT + TMZ; benefit in mOS, non-standard | |
| Vaccines: Rindopepimut + TMZ |
mOS 20.0 months |
ACT IV [90,103] |
Phase III, no improvement in OS; not recommended for EGFRvIII+ | |
| Cytokines: IFN-α + TMZ |
mOS 26.7 months |
Phase III [90] |
Phase III, adjuvant after RT; benefit in mOS, non-standard | |
| Triple IT | No recurrence at 17 months | GIANT, ongoing [91] |
Neoadjuvant to surgery; single case; ongoing trials |
| Modality | Application | Performance | Limitations |
|---|---|---|---|
| Multiparametric MRI | Diagnosis, recurrence, pseudoprogression |
High sensitivity, RANO 2.0; DSC (90% sensitivity, 88% specificity), DWI (ADC >1200 × 10⁻⁶ mm²/s), MRS (low Cho/Cr and Cho/NAA) for pseudoprogression [43,104,105] |
Cost, need for specialized interpretation |
| PET 18F-FET |
Theranostics (general) |
High specificity (~80-90%), PET RANO 1.0 [106,107] |
Cost, accessibility |
| PET [11C]-MET |
Diagnosis, recurrence/ pseudoprogression |
~95% sensitivity/specificity for grading; high accuracy for recurrence [107,108] |
Short half-life, accessibility |
| PET [18F]F-DOPA |
Diagnosis, recurrence/ pseudoprogression |
92% sensitivity, 75% specificity for recurrence [106] |
Cost, need for additional studies |
| PET [18F]FACBC |
Diagnosis, recurrence/ pseudoprogression |
90% sensitivity, 83% specificity for recurrence [107] |
Need for further studies, accessibility |
| PET [68Ga]-PSMA-11 |
Diagnosis, recurrence/ pseudoprogression |
High uptake in high-grade gliomas [109] | Need for further studies |
| Multiparametric MRI/PET-guided RT |
Personalized RT with dose escalation |
mOS 23 months in a phase I trial using multiparametric MRI and [18F]-FDOPA PET; no OS benefit in phase III trials [44] |
Cost, accessibility, need for phase III validation |
| Theranostics [131I]-IPA |
Treatment, evaluation |
mOS 16 months in rGBM [107,109] |
Limited BBB penetration, need for validation |
| Theranostics (general) |
Treatment, evaluation | Ongoing trials (e.g., [177Lu]-PSMA, [177Lu]-6A10, [177Lu]-NeoB) [108,109] |
Limited BBB penetration, need for validation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
