Preprint
Review

This version is not peer-reviewed.

Radiotherapy in Glioblastoma Multiforme: Evolution, Limitations, and Molecularly Guided Future

A peer-reviewed article of this preprint also exists.

Submitted:

08 July 2025

Posted:

09 July 2025

You are already at the latest version

Abstract
Glioblastoma multiforme (GBM), the most aggressive primary brain tumor in adults, has a poor prognosis due to rapid recurrence and treatment resistance. This review examines the evolution of radiotherapy (RT) for GBM management, from whole-brain RT to modern techniques like intensity-modulated RT (IMRT) and volumetric modulated arc therapy (VMAT), guided by 2023 European Society for Radiotherapy and Oncology (ESTRO)-European Association of Neuro-Oncology (EANO) and 2025 American Society for Radiation Oncology (ASTRO) recommendations. The standard Stupp protocol (60 Gy/30 fractions with temozolomide [TMZ]) improves overall survival (OS) to 14.6 months, with greater benefits in O6-methylguanine-DNA methyltransferase (MGMT)-methylated tumors (21.7 months). Tumor Treating Fields (TTFields) extend OS to 31.6 months in selected cases. However, 80–90% of recurrences occur within 2 cm of the irradiated field due to tumor infiltration and radiorresistencia driven by epidermal growth factor receptor (EGFR) amplification, phosphatase and tensin homolog (PTEN) mutations, cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) deletions, tumor hypoxia, and tumor stem cells. Pseudoprogression, distinguished using Response Assessment in Neuro-Oncology (RANO) criteria and positron emission tomography (PET), complicates response evaluation. Targeted therapies (e.g., bevacizumab, PARP inhibitors) and immunotherapies (e.g., pembrolizumab, oncolytic viruses), alongside advanced imaging (multiparametric magnetic resonance imaging [MRI], amino acid PET), support personalized RT. Future strategies, including reirradiation, hypofractionation, stereotactic radiosurgery, neoadjuvant therapies, proton therapy (PT) and boron neutron capture therapy (BNCT), aim to enhance efficacy for GBM IDH-wildtype, but phase III trials are needed to improve survival and quality of life.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  ;  

1. Introduction

Glioblastoma multiforme (GBM), the most common malignant primary brain tumor in adults, has an incidence of 3–5 cases per-100,000 people annually, with a male predominance (1.6:1) and peak incidence at 50–60 years [1,2,3,4]. According to the 2021 World Health Organization (WHO) classification, GBM is defined as an isocitrate dehydrogenase (IDH)-Wild-Type (IDH-wt), grade 4 astrocytoma, diagnosed by histological features (necrosis, microvascular proliferation) or molecular markers, including telomerase reverse transcriptase (TERT) promoter mutation, epidermal growth factor receptor (EGFR) amplification, or +7/−10 chromosomal alterations [5]. Most GBMs arise de novo, though a small percentage develop from lower-grade gliomas; risk factors include prior cranial radiotherapy (RT) or hereditary syndromes such as Cowden, Turcot, Lynch, Li-Fraumeni, or neurofibromatosis type I [2]. Characterized by rapid progression and treatment resistance, GBM has a poor prognosis, with a median overall survival (mOS) of 12–15 months and a 5-year survival rate below 10%, varying by prognostic factors such as age, functional status, O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation, tumor location, and involvement of deep structures or functional areas [6,7,8,9]. Multidisciplinary treatment combines maximal safe resection, RT, and chemotherapy (CTx), with no defined second-line therapy, necessitating personalized approaches. Despite recent advances, limited progress in improving outcomes underscores the urgent need for innovative strategies to improve oncologic outcomes and quality of life. This review explores the evolution, limitations, and molecularly guided advances in RT for GBM management.

2. Evolution of Radiotherapy in GBM: Foundations, Standards, and International Guidelines

The first-line treatment for GBM involves maximal safe resection, followed by adjuvant RT and CTx to target residual microscopic disease due to the tumor’s infiltrative nature [10,11]. Preoperative neuronavigation magnetic resonance imaging (MRI) and early postoperative contrast-enhanced MRI (within 48–72 hours) are recommended, with intraoperative biopsy for diagnosis confirmation if resection is not feasible [2,10]. RT should begin 3–6 weeks post-surgery to minimize recurrence risk [10,11].The standard protocol, established by the European Organisation for Research and Treatment of Cancer (EORTC) 26981/22981 trial, combines normofractionated RT (60 Gy in 30 fractions) with concomitant temozolomide (TMZ, 75 mg/m²/day), followed by 6 cycles of adjuvant TMZ (150–200 mg/m²/day, 5/28 days), improving overall survival (OS) from 12.1 to 14.6 months, particularly in patients with MGMT promoter methylation (Table 1) [12]. This regimen is recommended for patients ≤70 years with good functional status (Karnofsky Performance Status [KPS] ≥60) [13,14]. Extending TMZ beyond 6 cycles lacks evidence [15]. Tumor Treating Fields (TTFields), which disrupt cell division with alternating electric fields, further improve OS to 31.6 months in MGMT-methylated tumors (EF-14 trial) with minimal toxicity (mainly skin irritation) and are endorsed by National Comprehensive Cancer Network (NCCN) and American Society for Radiation Oncology (ASTRO) 2025 guidelines for supratentorial GBM (Table 1) [12,16,17]. Other therapeutic innovations and systemic treatment options are discussed in the therapeutic innovations section.
Hypofractionated RT (40.05 Gy/15 fractions with TMZ, 34 Gy/10 fractions, or 25 Gy/5 fractions without TMZ) is effective and better tolerated in elderly (≥70 years) or frail patients (KPS 50–70), offering comparable OS with reduced toxicity, as supported by clinical trials and meta-analyses (Table 2) [18,19,20,21,22,23,24]. ASTRO 2025 and European Society for Radiotherapy and Oncology (ESTRO)-European Association of Neuro-Oncology (EANO) 2023 guidelines conditionally recommend these regimens for elderly or frail patients, while those with poor KPS (≤40) or extreme frailty may receive hypofractionated RT alone, TMZ alone (if MGMT-methylated), or palliative care to prioritize quality of life [10,11,13,14,25].
RT techniques have evolved from whole-brain RT (WBRT) in the 1970s to three-dimensional conformal RT (3D-CRT) in the 1990s, and now to intensity-modulated RT (IMRT) and volumetric modulated arc therapy (VMAT), which optimize dose delivery and spare healthy tissues. Treatment planning integrates thin-slice CT and MRI (T1 with gadolinium, T2/FLAIR) performed ≤14 days before RT for precise tumor and organ-at-risk delineation. ASTRO 2025 and ESTRO-EANO 2023 guidelines prioritize IMRT/VMAT over 3D-CRT to reduce neurological toxicity. ESTRO-EANO 2023 recommends a single-phase approach (gross tumor volume [GTV]: surgical cavity + T1 enhancement, clinical target volume [CTV]: GTV + 15 mm, edema optional only for non-hyperintense T1 tumors), while ASTRO 2025 allows a single phase (edema optional) or two phases (initial phase with T2/FLAIR, boost without edema), with CTV of 10–20 mm and planning target volume (PTV) of 2–5 mm with image-guided RT (IGRT) (Table 3) [11,12,14,25,26,27,28,29]. A randomized trial with 245 patients with grade 3–4 gliomas compared the RTOG/NRG approach (including edema with a boost) and the EORTC approach (including edema in the initial phase), finding no significant differences in grade 3–4 toxicity (36.1% vs. 32.3%) or recurrence patterns (predominantly central), though neurocognitive outcomes were not assessed [30,31]. The MD Anderson Cancer Center (MDACC) protocol, excluding edema, improved OS (17 vs. 12 months) and quality of life without increasing toxicity, suggesting smaller volumes may be beneficial (Table 3) [27].
Post-treatment follow-up includes MRI at 4 weeks, then every 2–4 months, per Response Assessment in Neuro-Oncology (RANO) criteria. Pseudoprogression, challenging to distinguish from true progression, may require advanced imaging (diffusion MRI, spectroscopy MRI, or amino acid positron emission tomography (PET)/CT), correlating findings with conventional MRI. In case of progression, a personalized approach is recommended, considering tumor characteristics (size, location, molecular profile), initial treatment response, age, KPS, symptoms, needs, and patient preferences, with multidisciplinary evaluation of options (reoperation, reirradiation, or systemic therapy) [11,25]. These advances underscore the need for tailored RT strategies to optimize GBM treatment outcomes.

3. Limitations of Radiotherapy in GBM

RT combined with TMZ is a cornerstone of GBM treatment but faces technical, biological, and clinical limitations that reduce efficacy and lead to high recurrence and resistance rates. These barriers, summarized in Table 4, underscore the need for innovative strategies discussed later.
Technically, 90% of GBMs recur within 2 cm of the irradiated field due to diffuse infiltration [32], despite advanced techniques like IMRT, VMAT, or proton therapy (PT). High doses cause fatigue, radiation necrosis, and cognitive deficits, linked to irradiated brain volumes receiving 20 Gy (V20Gy) and 40 Gy (V40Gy) , though IMRT, VMAT, and PT reduce neurotoxicity [25]. Dosimetric constraints (<54 Gy to brainstem and optic chiasm) limit dose escalation [25]. Delays >6 weeks from surgery to RT worsen OS and PFS, though moderate delays (~6 weeks) may benefit patients with residual disease [33,34]. TTFields extend PFS by 2.7 months (6.7 vs. 4.0 months) but are limited by cost and adherence (≥18 hours/day) [35]. Biologically, GBM radioresistance is driven by genetic heterogeneity, including EGFR amplification (40–60%), phosphatase and tensin homolog (PTEN) mutations, or or cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) deletions, and tumor stem cells [36,37]. Poly (ADP-ribose) polymerase (PARP) inhibitors such as veliparib and other radiosensitizers show promise in early-phase trials by inhibiting DNA repair, awaiting phase III confirmation [36,37]. EGFR amplification activates the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway, conferring RT resistance, with limited benefits from inhibitors like erlotinib [38]. Tumor hypoxia, mediated by hypoxia-inducible factor 1-alpha (HIF-1α), promotes resistance [37]. The subventricular zone (SVZ), a reservoir of tumor stem cells with genetic alterations, drives recurrence; irradiating the SVZ with doses ≥56 Gy (ipsilateral) or ≥50 Gy (contralateral) does not significantly improve PFS or OS [39,40]. RT-induced lymphopenia (14% with PT vs. 39% with photons) limits immunotherapy efficacy [41]. Clinically, pseudoprogression (30–40% with methylated MGMT) complicates assessment up to 12 weeks [42,43]. Multimodal imaging, including multiparametric MRI and amino acid PET enables RT personalization, achieving a median overall survival (mOS) of 23 months in a phase I trial without significant toxicity [44]. Biomarkers (EGFR, PTEN, TERT, MGMT) enable stratification; only MGMT methylation improves OS in phase III trials [45]. A recent meta-analysis showed that combined targeted therapies improve PFS in newly diagnosed GBM (nGBM) but not OS in nGBM or recurrent GBM (rGBM), reflecting tumor heterogeneity and molecular resistance [46].

4. Molecular Determinants in Glioblastoma Multiforme

Most GBMs, classified as IDH-wt, exhibit aggressive biology and radioresistance due to genetic and epigenetic alterations that enhance DNA repair and cell survival [45]. MGMT methylation (~45%) increases sensitivity to chemoradiation (CRT), while EGFR, PTEN, and TERT contribute to resistance [12,45]. Patients with MGMT methylation show significantly higher OS (21.7 vs. 15.3 months) and better response to reirradiation in relapse compared to unmethylated cases [12,47,48] (Table 5).
A key radioresistance mechanism in IDH-wt GBMs is activation of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway, driven by EGFR amplification and PTEN loss, which promotes proliferation, inhibits apoptosis, and enhances DNA repair post-RT [49]. Inhibitors like erlotinib yield modest results (ESMO Scale for Clinical Actionability of Molecular Targets (ESCAT) IIIA) [50]. Other alterations, including phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) mutations and cyclin-dependent kinases 4 and 6 (CDK4/6) amplification, enhance cell cycle progression, while CDKN2A/B homozygous deletion, causing loss of cyclin-dependent kinase inhibitor 2A (p16^INK4a^) and alternate reading frame protein p14 (p14^ARF^), is linked to poor prognosis [45,51]. These biomarkers lack effective targeted therapies due to signaling redundancy and pharmacokinetic limitations in the central nervous system [52]. In contrast, IDH1/2 mutations (~10%) confer greater radiosensitivity and better prognosis (ESCAT I) [53]. TERT promoter mutations, present in >80% of IDH-wt GBMs, activate telomerase and may promote immune evasion, though their role as predictive markers or therapeutic targets remains unclear [3,54]. Ongoing clinical trials are exploring TERT as a potential immunotherapeutic target, particularly in combination with immune checkpoint inhibitors, to enhance RT efficacy in immunosuppressive tumor microenvironments [3]. Given the limited clinical impact of standard RT in unfavorable molecular subgroups, radiosensitization strategies are being explored to enhance its therapeutic effect [55]. Among the most promising are poly (ADP-ribose) polymerase (PARP) inhibitors, which interfere with single-strand DNA break repair, exacerbating radiation-induced damage [56]. These inhibitors are particularly relevant for MGMT-unmethylated tumors, where TMZ resistance limits therapeutic options [12]. Although preclinical evidence shows synergy between PARP inhibitors and RT, their clinical efficacy is still under evaluation [45]. A recent phase II trial demonstrated that the PARP inhibitor veliparib, combined with TMZ and RT, improved PFS in MGMT-unmethylated patients, pending phase III confirmation (see Section 4 for details) [36]. RT-induced lymphopenia restricts synergy with immunotherapy, but MGMT methylation identifies patients with favorable immune microenvironments, and PT may reduce lymphopenia to enhance combined therapies [41]. Genomic profiling is a promising approach to personalize RT and its combination with targeted therapies or immunotherapy, with EANO 2025 guidelines recommending systematic profiling to optimize diagnosis and identify candidates for personalized trials [55,57].

5. Advances in the Treatment of Glioblastoma Multiforme

GBM is an aggressive brain tumor with a high recurrence rate. In non-elderly patients with good functional status (KPS ≥70), the Stupp protocol has been the standard of care for nearly two decades [12]. However, tumor resistance has limited progress over the past decade [37]. Novel approaches, including advanced radiotherapies, immunotherapies, targeted therapies, advanced imaging, and nuclear medicine, aim to improve tumor control and quality of life while reducing toxicity.

5.1. Technological Advances in Therapies

Technological advancements have enhanced the precision of treatment, minimizing damage to healthy tissues [58]. PT is increasingly relevant, particularly in reirradiation and selected cases [58]. It leverages the Bragg peak, depositing maximum energy at the end of its range with a sharp fall-off, to target the tumor, with a relative biological effectiveness (RBE) of 1.1 [58]. A phase II trial (NCT01854554) demonstrated that PT (60 Gy/30 fractions) significantly reduced grade ≥3 lymphopenia (14% vs. 39%), minimized irradiated brain volumes (V5–V40), and preserved immune function, potentially enhancing immunotherapy efficacy [6,41]. Although it did not delay cognitive decline compared to IMRT, it reduced fatigue and grade ≥2 toxicity, lowering doses to critical structures, suggesting potential for cognitive preservation in low-grade gliomas [6,59]. The NRG-BN001 trial is evaluating PT dose escalation versus photons, with results pending [60,61]. Carbon ion radiotherapy (CIRT) achieves a median mOS of 18 months in nGBM, surpassing 14 months with photons plus TMZ [62]. Boron neutron capture therapy (BNCT) reports an mOS of 25.7 months in nGBM with TMZ and 18.9 months in rGBM [63,64]. Magnetic resonance-guided radiotherapy (MRgRT) achieves an mOS of 18.5 months and a PFS of 11.6 months in nGBM (UNITED, non-randomized phase II), with UNITED2 ongoing [65,66]. TTFields, a standard in NCCN (category 1) and American Society of Clinical Oncology (ASCO) guidelines but not endorsed by the National Institute for Health and Care Excellence (NICE) due to cost-effectiveness, low adherence, and biases in EF-14 (unblinded, selected patients), achieve an mOS of 20.9 months (PFS 6.7 months) in nGBM (phase III EF-14) and an mOS of 10.3 months in rGBM (EF-11). These biases include lack of blinding and selection of healthier patients, potentially inflating efficacy estimates. Trials include phase II 2-THE-TOP (NCT03405792), reporting an mOS of 24.8 months and PFS of 12.0 months with pembrolizumab plus TMZ in nGBM [14], and ongoing phase III trials (TRIDENT with RT/TMZ, EF-41 with TMZ plus pembrolizumab in nGBM) [67,68,69]. Modulated electrohyperthermia (mEHT), laser interstitial thermal therapy (LITT), and magnetic hyperthermia (MHT) have limited evidence in rGBM, supported by non-randomized phase I/II trials [70,71,72,73]. These techniques, detailed in Table 6, face challenges related to cost and accessibility.

5.2. Modified Fractionation Schedules

Modified fractionation schedules optimize RT by counteracting tumor repopulation and reducing treatment duration [37,74]. Hypofractionation, standard in elderly patients with poor functional status (40 Gy/15 fractions), shows promise in younger patients (50–60 Gy/20 fractions with TMZ). The randomized phase II HART-GBM trial achieved an mOS of 26.5 months compared to 22.4 months with standard fractionation [74]. An institutional study reported an mOS of 19.8 months [75], and a meta-analysis showed a 12-month OS of 71.3% across various ages [76]. Hyperfractionation shows no clear benefit, with similar survival outcomes and moderate toxicity compared to standard fractionation [37,77]. Dose escalation (75 Gy/30 fractions) improves PFS but not mOS (NRG-BN001, randomized phase II, mOS 18.7 months, PT arm ongoing) [60]. Dose escalation with a CIRT boost (16.8–24.8 GyE) achieves an mOS of 18 months [62]. Toxicities include radionecrosis (6.7–14.2%) and cognitive decline [75,78,79]. Tumor heterogeneity and hypoxia necessitate phase III trials, as detailed in Table 7.

5.3. Reirradiation

Reirradiation is a viable option for rGBM in patients with recurrence more than 6 months after initial RT, following multidisciplinary discussion. The 2025 ESTRO/EANO guidelines (KPS >60, tumor volume <35 cm³) and ASTRO 2025 guidelines (KPS ≥70, tumor volume ≤6 cm³) endorse its selective use [11,80]. Post-contrast T1 MRI delineates the GTV, complemented by [18F]-FET or [18F]-FDOPA PET to detect recurrence [80,81]. Regimens such as hypofractionated RT (35 Gy/10 fractions) with bevacizumab (BEV) achieve an mOS of 10.1 months and PFS of 3–6 months, with approximately 5% radionecrosis [80]. NRG Oncology/RTOG 1205 demonstrated improved PFS with hypofractionated RT plus BEV [80]. The LEGATO trial evaluates lomustine with or without reirradiation [82]. Hypofractionated stereotactic RT (25 Gy/5 fractions) showed outcomes similar to 35 Gy/5 fractions, with lower toxicity but higher radionecrosis in larger volumes [83]. CIRT (45 Gy RBE/15 fractions) improves mOS (8.0 months) compared to photons [62]. PT achieves an mOS of 7.8–19.4 months in reirradiation [61]. While not detailed here, brachytherapy, pulsed low-dose-rate radiotherapy (pLDR), and flash radiotherapy are promising for recurrent GBM [11,37] See Table 8.

5.4. Neoadjuvant Therapy

Neoadjuvant therapy (NAT) reduces tumor volume to facilitate resection or enhance CRT, though it faces challenges such as the need for invasive stereotactic biopsy to confirm diagnosis [84]. In preoperative NAT, BEV in patients with low KPS improves resection (>95%), with an mOS of 15.7 months [85]. POBIG (phase I) evaluates stereotactic RT (6–14 Gy/1 fraction) [86], and PARADIGMA (phase II, NCT03480867) explores RT plus TMZ [84]. In postoperative NAT for unresectable GBM, TMZ plus BEV, the most promising regimen, achieves an mOS of 12.5 months and PFS of 7.4–8.6 months, but BEV increases intracranial hemorrhages [84,87,88]. In resectable GBM, MAGMA (phase III) evaluates neoadjuvant TMZ (75 mg/m² daily) and extended adjuvant TMZ (150–200 mg/m² until progression) before CRT (60 Gy/20 fractions), achieving an mOS of 23 months in MGMT-methylated cases [89]. Neoadjuvant immunotherapies, such as pembrolizumab in resectable rGBM and triple immunotherapy (nivolumab plus ipilimumab plus relatlimab) in nGBM, show potential in selected subgroups [90,91]. Preliminary data from a single nGBM case in the GIANT trial (NCT06816927) suggest no recurrence at 17 months, pending further validation [91]. Future trials should combine immune checkpoint inhibitors (ICIs) with intratumoral oncolytic viruses to enhance immune responses, with strict patient selection due to variable toxicity [84]. ICI immunotherapy combined with oncolytic viruses may benefit selected subgroups [84] (Table 9)

5.5. Immunotherapy, Targeted Therapies, and Chemotherapy

Chemotherapies, targeted therapies, and immunotherapies are evaluated for nGBM and rGBM (Table 10).
Standard TMZ chemotherapy, established by the EORTC/NCIC CE.3 trial, is the reference treatment in nGBM, improving survival compared to RT alone [12], though intensive TMZ offers no benefit (RTOG 0525) [92]. In rGBM, metronomic TMZ shows limited activity, particularly after BEV (RESCUE), and lomustine offers modest results (EORTC 26101) [93-95]. Lomustine plus TMZ achieves an mOS of 48.1 months in nGBM with MGMT methylation (CeTeG/NOA-09) [96]. Chemotherapy- and RT-induced lymphopenia, as discussed in Section 4, may limit subsequent immunotherapy efficacy. Targeted therapies, such as BEV, do not extend OS in nGBM (AVAglio, RTOG 0825; mOS 16.8 months, mPFS 10.6 months) but improve disease control in rGBM (BRAIN, EORTC 26101, BELOB; mOS 9.2 months, mPFS 4.2 months) [94,95,97,98] (see Table 9 for its neoadjuvant role). PARP inhibitors, such as veliparib, tested in the VERTU trial, are a promising targeted therapy in nGBM with unmethylated MGMT by enhancing radiation-induced damage, one of the few strategies with clinical evidence in specific subgroups [36].Cilengitide is ineffective in nGBM (CENTRIC, CORE) [95,99], as are erlotinib and everolimus, both inhibitors of tumor signaling pathways [38,95]. Regorafenib has limited efficacy in rGBM (REGOMA), outperforming erlotinib or everolimus but with modest benefits [95]. BRAF/MEK inhibitors show promising responses in BRAF V600E-mutated cases [95]. IDH inhibitors, such as vorasidenib, are under investigation for IDH-mutant gliomas, with no data in GBM [95]. In immunotherapy, nivolumab does not outperform BEV in rGBM (CheckMate 143) or TMZ with RT in nGBM with unmethylated (CheckMate 498) or methylated MGMT (CheckMate 548), where treatment-induced lymphopenia may reduce efficacy [3,90,100]. Adoptive cellular therapies and oncolytic viruses, such as G47Δ (modified herpes simplex virus) or DNX-2401 (adenovirus), are promising in rGBM. DNX-2401, in monotherapy (20% 3-year survival) or combined with pembrolizumab in the CAPTIVE trial (mOS 12.5 months, ongoing), shows preliminary efficacy, though immunosuppression from dexamethasone and RT may limit its effectiveness [90,101]. Neoadjuvant pembrolizumab before surgery in rGBM improves survival with an mOS of 13.8 months in specific subgroups [90,102] (see Table 9 for neoadjuvant use). The DCVax-L vaccine benefits nGBM (mOS 19.3 months) and rGBM (mOS 13.2 months) but is not standard; rindopepimut does not improve survival in EGFRvIII-positive nGBM (ACT IV) [90,103]. Other vaccines are in development for GBM [90]. Cytokines like interferon-alpha (IFN-α) enhance TMZ in nGBM (mOS 26.7 months, phase III), though not standard, and neoadjuvant triple immunotherapy before surgery prevents recurrences in isolated nGBM cases (GIANT, ongoing) [3,91]. The blood–brain barrier (BBB) and treatment-induced immunosuppression limit the combination of immunotherapy with RT [90] (Table 10).

5.6. Advanced Imaging and Theranostics

Multiparametric MRI, including T1/T2-FLAIR, dynamic susceptibility contrast perfusion (DSC), diffusion-weighted imaging (DWI), and magnetic resonance spectroscopy (MRS), detects gliomas with high sensitivity, evaluates recurrence per RANO 2.0 criteria, including non-enhancing disease in IDH-mutant gliomas, and distinguishes pseudoprogression from true progression using DSC, DWI, and MRS (Table 11) [43,104,105]. Challenges include high costs and the need for specialized expertise in interpreting multiparametric MRI [104,105]. PET with amino acid tracers ([18F]-FET, [11C]-MET, [18F]-FDOPA, [18F]-FACBC) and [68Ga]-PSMA-11 differentiates recurrence from pseudoprogression with high specificity [106,107,108,109]. These techniques optimize RT planning by improving tumor delineation and enabling dose escalation in high-risk regions. A phase I trial using multiparametric MRI and [18F]-FDOPA PET achieved an mOS of 23 months without significant toxicity, though phase III trials have not confirmed OS benefits [44].Theranostics with [131I]-IPA achieves an mOS of 16 months in rGBM, limited by BBB penetration [107] (Table 11). Ongoing trials are evaluating novel theranostic agents [107,109].

6. Conclusions and Future Directions

Despite significant advancements in GBM management, RT continues to face inherent limitations, primarily due to diffuse tumor infiltration and intrinsic radioresistance, often driven by specific molecular alterations. While advanced RT techniques, including IMRT, adaptive RT, PT, and TTFields, have refined dose precision, their direct translation into substantial clinical benefits remains limited.
However, promising strategies are emerging. Neoadjuvant approaches, modified fractionation (such as hypofractionated RT), and reirradiation for recurrent GBM show therapeutic potential. The integration of various systemic therapies, including immunotherapies, chemotherapies, and targeted agents, is crucial for enhancing tumor control. Furthermore, radiotheranostics are expanding treatment possibilities.
The future of GBM RT lies in leveraging molecular biomarkers (e.g., MGMT methylation, IDH mutations) and advanced imaging to enable truly tailored treatment planning. The paramount challenge will be to effectively integrate complex tumor biology, cutting-edge technological tools, and comprehensive clinical data, ideally through AI-driven predictive models, to achieve precise and adaptive RT planning. Only through this integrated and individualized approach can we anticipate significant improvements in oncological outcomes for GBM patients.

Author Contributions

Conceptualization, C.F.; methodology, C.F.; literature review, C.F., R.C., A.D., and I.G.; writing—original draft preparation, C.F., R.C., A.D., and I.G.; writing—review and editing, C.F., R.C., A.D., and I.G.; data curation, R.C.; supervision, C.F. and F.C.; resources, F.C. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article as all data discussed are derived from publicly available sources cited in the references.

Acknowledgments

None.

Conflicts of Interest

F. C. declares the following conflicts of interest: sponsored research support from Janssen; consulting or advisory roles with Janssen and AstraZeneca; honoraria for lectures or educational activities from Janssen, Roche Farma, AstraZeneca, Astellas, Recordati, and Ipsen; and travel, accommodation, or expense support from AstraZeneca, Astellas, Janssen, and Roche Farma. The remaining authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:
3D-CRT: Three-Dimensional Conformal Radiotherapy
ADC: Apparent Diffusion Coefficient
AMF: Alternating Magnetic Field
ASCO: American Society of Clinical Oncology
ASTRO: American Society for Radiation Oncology
BBB: Blood-Brain Barrier
BEV: Bevacizumab
BNCT: Boron Neutron Capture Therapy
BSH: Sodium Borocaptate
CDK4/6: Cyclin-Dependent Kinases 4 and 6
CDKN2A/B: Cyclin-Dependent Kinase Inhibitor 2A/B
CFRT: Conventional Fractionated Radiotherapy
Cho: Choline
CIRT: Carbon Ion Radiotherapy
Cr: Creatine
CRT: Chemoradiation
CT: Chemotherapy
CTV: Clinical Target Volume
ddTMZ: Dense Dose Temozolomide
DSC: Dynamic Susceptibility Contrast Perfusion
DWI: Diffusion-Weighted Imaging
EGFR: Epidermal Growth Factor Receptor
EORTC: European Organisation for Research and Treatment of Cancer
ESCAT: ESMO Scale for Clinical Actionability of Molecular Targets
ESTRO: European Society for Radiotherapy and Oncology
EANO: European Association of Neuro-Oncology
FSRT: Fractionated Stereotactic Radiotherapy
GBM: Glioblastoma Multiforme
GTV: Gross Tumor Volume
GyE: Gray Equivalent
HFRT: Hypofractionated Radiotherapy
HIF-1α: Hypoxia-Inducible Factor 1-Alpha
HR: Hazard Ratio
HSRT: Hypofractionated Stereotactic Radiotherapy
ICI: Immune Checkpoint Inhibitor
IDH: Isocitrate Dehydrogenase
IGRT: Image-Guided Radiotherapy
IMPT: Intensity-Modulated Proton Therapy
IMRT: Intensity-Modulated Radiotherapy
KPS: Karnofsky Performance Status
L-BPA: L-4-Boronophenylalanine
LITT: Laser Interstitial Thermal Therapy
MDACC: MD Anderson Cancer Center
mEHT: Modulated Electrohyperthermia
MHT: Magnetic Hyperthermia
MNP: Magnetic Nanoparticles
mOS: Median Overall Survival
MRI: Magnetic Resonance Imaging
MRS: Magnetic Resonance Spectroscopy
MRgRT: Magnetic Resonance-Guided Radiotherapy
NAA: N-Acetyl Aspartate
NAT: Neoadjuvant Therapy
NCCN: National Comprehensive Cancer Network
NICE: National Institute for Health and Care Excellence
nGBM: Newly Diagnosed Glioblastoma Multiforme
OS: Overall Survival
PARP: Poly (ADP-Ribose) Polymerase
PET: Positron Emission Tomography
PFS: Progression-Free Survival
PI3K/AKT: Phosphatidylinositol 3-Kinase/Protein Kinase B
PIK3CA: Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha
PT: Proton Therapy
PTEN: Phosphatase and Tensin Homolog
PTV: Planning Target Volume
RANO: Response Assessment in Neuro-Oncology
RBE: Relative Biological Effectiveness
rGBM: Recurrent Glioblastoma Multiforme
RT: Radiotherapy
SRS: Stereotactic Radiosurgery
SVZ: Subventricular Zone
TERT: Telomerase Reverse Transcriptase
TMZ: Temozolomide
TP53: Tumor Protein p53
TTFields: Tumor Treating Fields
V20Gy: Volume Receiving 20 Gray
V40Gy: Volume Receiving 40 Gray
VMAT: Volumetric Modulated Arc Therapy
WBRT: Whole-Brain Radiotherapy
WHO: World Health Organization
wt: Wild-Type

References

  1. Ostrom, Q. T.; Gittleman, H.; Xu, J.; Kromer, C.; Wolinsky, Y.; Kruchko, C.; Barnholtz-Sloan, J. S. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2009–2013. Neuro-Oncol. 2016, 18 (suppl_5), v1–v75. [Google Scholar] [CrossRef] [PubMed]
  2. Segura, P. P.; Quintela, N. V.; García, M. M.; del Barco Berrón, S.; Sarrió, R. G.; Gómez, J. G.; Castaño, A. G.; Martín, L. M. N.; Rubio, O. G.; Losada, E. P. SEOM-GEINO clinical guidelines for high-grade gliomas of adulthood (2022). Clin. Transl. Oncol. 2023, 25, 2634–2646. [Google Scholar] [CrossRef] [PubMed]
  3. Schaff, L. R.; Mellinghoff, I. K. A review of glioblastoma and other primary brain malignancies – reply. JAMA 2023, 189–190, 189–190. [Google Scholar] [CrossRef] [PubMed]
  4. Wanis, H. A.; Møller, H.; Ashkan, K.; Davies, E. A. The incidence of major subtypes of primary brain tumors in adults in England 1995–2017. Neuro-Oncol. 2021, 23, 1371–1382. [Google Scholar] [CrossRef]
  5. Louis, D. N.; Perry, A.; Wesseling, P.; Brat, D. J.; Cree, I. A.; Figarella-Branger, D.; Hawkins, C.; Ng, H. K.; Pfister, S. M.; Reifenberger, G.; Soffietti, R.; von Deimling, A.; Ellison, D. W. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
  6. Brown, N. F.; Ottaviani, D.; Tazare, J.; Gregson, J.; Kitchen, N.; Brandner, S.; Fersht, N.; Mulholland, P. Survival outcomes and prognostic factors in glioblastoma. Cancers (Basel) 2022, 14, 3161. [Google Scholar] [CrossRef]
  7. Gorlia, T.; van den Bent, M. J.; Hegi, M. E.; Mirimanoff, R. O.; Weller, M.; Cairncross, J. G.; Eisenhauer, E.; Belanger, K.; Brandes, A. A.; Allgeier, A.; Lacombe, D.; Stupp, R. Nomograms for predicting survival of patients with newly diagnosed glioblastoma: prognostic factor analysis of EORTC and NCIC trial 26981-22981/CE.3. Lancet Oncol. 2008, 9, 29–38. [Google Scholar] [CrossRef]
  8. Sipos, D.; Raposa, B. L.; Freihat, O.; Simon, M.; Mekis, N.; Cornacchione, P.; Kovács, Á. Glioblastoma: clinical presentation, multidisciplinary management, and long-term outcomes. Cancers (Basel) 2025, 17, 146. [Google Scholar] [CrossRef]
  9. Aboubakr, O.; Moiraghi, A.; Elia, A.; Tauziede-Espariat, A.; Roux, A.; Leclerc, A.; Planet, M.; Bedioui, A.; Simboli, G. A.; Dhermain, F.; Parraga, E.; Benevello, C.; Fathallah, H.; Muto, J.; Chrétien, F.; Dezamis, E.; Oppenheim, C.; Varlet, P.; Zanello, M.; Pallud, J. Long-term survivors in 976 supratentorial glioblastoma, IDH-wildtype patients. J. Neurosurg. 2025, 142, 174–186. [Google Scholar] [CrossRef]
  10. Mason, W. P.; Harrison, R. A.; Lapointe, S.; Lim-Fat, M. J.; MacNeil, M. V.; Mathieu, D.; Perry, J. R.; Pitz, M. W.; Roberge, D.; Tsang, D. S.; Tsien, C.; van Landeghem, F. K. H.; Zadeh, G.; Easaw, J. Canadian expert consensus recommendations for the diagnosis and management of glioblastoma: results of a Delphi study. Curr. Oncol. 2025, 32, 207–220. [Google Scholar] [CrossRef]
  11. Yeboa, D. N.; Braunstein, S. E.; Cabrera, A.; Crago, K.; Galanis, E.; Hattab, E. M.; Heron, D. E.; Huang, J.; Kim, M. M.; Kirkpatrick, J. P.; Knisely, J. P. S.; McAleer, M. F.; McClelland, S. 3rd; Milano, M. T.; Moliterno, J.; Porter, A.; Redmond, K. J.; Trifiletti, D. M.; Tsien, C.; Venkatesulu, B. P.; Vinogradskiy, Y.; Bradfield, L.; Helms, A. R.; Bovi, J. A. Radiation therapy for WHO grade 4 adult-type diffuse glioma: an ASTRO clinical practice guideline. Pract. Radiat. Oncol. 2025, 15, 45–67. [Google Scholar] [CrossRef]
  12. Stupp, R.; Mason, W. P.; van den Bent, M. J.; Weller, M.; Fisher, B.; Taphoorn, M. J. B.; Belanger, K.; Brandes, A. A.; Marosi, C.; Bogdahn, U.; Curschmann, J.; Janzer, R. C.; Ludwin, S. K.; Gorlia, T.; Allgeier, A.; Lacombe, D.; Cairncross, J. G.; Eisenhauer, E.; Mirimanoff, R. O. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef] [PubMed]
  13. Sulman, E. P.; Ismaila, N.; Armstrong, T. S.; Tsien, C.; Batchelor, T. T.; Cloughesy, T.; Galanis, E.; Gilbert, M.; Gondi, V.; Lovely, M.; Mehta, M.; Mumber, M. P.; Sloan, A.; Chang, S. M. Radiation therapy for glioblastoma: American Society of Clinical Oncology clinical practice guideline endorsement of the American Society for Radiation Oncology guideline. J. Clin. Oncol. 2017, 35, 361–369. [Google Scholar] [CrossRef] [PubMed]
  14. Cabrera, A. R.; Kirkpatrick, J. P.; Fiveash, J. B.; Shih, H. A.; Koay, E. J.; Lutz, S.; Petit, J.; Chao, S. T.; Brown, P. D.; Vogelbaum, M.; Reardon, D. A.; Chakravarti, A.; Wen, P. Y.; Chang, E. Radiation therapy for glioblastoma: executive summary of an American Society for Radiation Oncology evidence-based clinical practice guideline. Pract. Radiat. Oncol. 2016, 6, 217–225. [Google Scholar] [CrossRef]
  15. Balana, C.; Vaz, M. A.; Manuel Sepúlveda, J.; Mesia, C.; Del Barco, S.; Pineda, E.; Muñoz-Langa, J.; Estival, A.; de Las Peñas, R.; Fuster, J.; Gironés, R.; Navarro, L. M.; Gil-Gil, M.; Alonso, M.; Herrero, A.; Peralta, S.; Olier, C.; Perez-Segura, P.; Covela, M.; Martinez-García, M.; Berrocal, A.; Gallego, O.; Luque, R.; Perez-Martín, F. J.; Esteve, A.; Munne, N.; Domenech, M.; Villa, S.; Sanz, C.; Carrato, C. A phase II randomized, multicenter, open-label trial of continuing adjuvant temozolomide beyond six cycles in patients with glioblastoma (GEINO 14-01). Neuro-Oncol. 2020, 22, 1851–1861. [Google Scholar] [CrossRef]
  16. Stupp, R.; Taillibert, S.; Kanner, A. A.; Kesari, S.; Steinberg, D. M.; Toms, S. A.; Taylor, L. P.; Lieberman, F.; Silvani, A.; Fink, K. L.; Barnett, G. H.; Zhu, J. J.; Henson, J. W.; Engelhard, H. H.; Chen, T. C.; Tran, D. D.; Sroubek, J.; Tran, N. D.; Hottinger, A. F.; Landolfi, J.; Desai, R.; Caroli, M.; Kew, Y.; Honnorat, J.; Idbaih, A.; Kirson, E. D.; Weinberg, U.; Palti, Y.; Hegi, M. E.; Ram, Z. Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial. JAMA 2015, 314, 2535–2543. [Google Scholar] [CrossRef]
  17. Roubil, J.; Harris, T. Radiotherapeutic approaches in the treatment of adult gliomas. Adv. Cancer Res. 2025, 163, 1–30. [Google Scholar] [CrossRef]
  18. Perry, J. R.; Laperriere, N.; O’Callaghan, C. J.; Brandes, A. A.; Menten, J.; Phillips, C.; Fay, M.; Nishikawa, R.; Cairncross, J. G.; Roa, W.; Osoba, D.; Rossiter, J. P.; Sahgal, A.; Hirte, H.; Laigle-Donadey, F.; Franceschi, E.; Chinot, O.; Golfinopoulos, V.; Fariselli, L.; Wick, A.; Feuvret, L.; Back, M.; Tills, M.; Winch, C.; Baumert, B. G.; Wick, W.; Ding, K.; Mason, W. P. Short-course radiation plus temozolomide in elderly patients with glioblastoma. N. Engl. J. Med. 2017, 376, 1027–1037. [Google Scholar] [CrossRef]
  19. Roa, W.; Brasher, P. M. A.; Bauman, G.; Anthes, M.; Bruera, E.; Chan, A.; Fisher, B.; Fulton, D.; Gulavita, S.; Hao, C.; Husain, S.; Murtha, A.; Petruk, K.; Stewart, D.; Tai, P.; Urtasun, R.; Cairncross, J. G.; Forsyth, P. Abbreviated course of radiation therapy in older patients with glioblastoma multiforme: a prospective randomized clinical trial. J. Clin. Oncol. 2004, 22, 1583–1588. [Google Scholar] [CrossRef]
  20. Roa, W.; Kepka, L.; Kumar, N.; Sinaika, V.; Matiello, J.; Lomidze, D.; Hentati, D.; Guedes de Castro, D.; Dyttus-Cebulok, K.; Drodge, S.; Ghosh, S.; Jeremić, B.; Rosenblatt, E.; Fidarova, E. International Atomic Energy Agency randomized phase III study of radiation therapy in elderly and/or frail patients with newly diagnosed glioblastoma multiforme. J. Clin. Oncol. 2015, 33, 4145–4150. [Google Scholar] [CrossRef]
  21. Minniti, G.; De Sanctis, V.; Muni, R.; Rasio, D.; Lanzetta, G.; Bozzao, A.; Osti, M. F.; Salvati, M.; Valeriani, M.; Cantore, G. P.; Maurizi Enrici, R. Hypofractionated radiotherapy followed by adjuvant chemotherapy with temozolomide in elderly patients with glioblastoma. J. Neurooncol. 2009, 91, 95–100. [Google Scholar] [CrossRef] [PubMed]
  22. Malmström, A.; Grønberg, B. H.; Marosi, C.; Stupp, R.; Frappaz, D.; Schultz, H.; Abacioglu, U.; Tavelin, B.; Lhermitte, B.; Hegi, M. E.; Rosell, J.; Henriksson, R. Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. Lancet Oncol. 2012, 13, 916–926. [Google Scholar] [CrossRef]
  23. Melo, S. M. de; Marta, G. N.; Latorraca, C. de O. C.; Martins, C. B.; Efthimiou, O.; Riera, R. Hypofractionated radiotherapy for newly diagnosed elderly glioblastoma patients: a systematic review and network meta-analysis. PLoS One 2021, 16, e0257384. [Google Scholar] [CrossRef] [PubMed]
  24. Hanna, C.; Lawrie, T. A.; Rogozińska, E., Kernohan, A., Jefferies, S., Bulbeck, H., Ali, U. M., Robinson, T., Eds.; Grant, R. Treatment of newly diagnosed glioblastoma in the elderly: a network meta-analysis. Cochrane Database Syst. Rev. 2020, (3), CD013261. [Google Scholar] [CrossRef]
  25. Niyazi, M.; Andratschke, N.; Bendszus, M.; Chalmers, A. J.; Erridge, S. C.; Galldiks, N.; Lagerwaard, F. J.; Navarria, P.; Munck Af Rosenschöld, P.; Ricardi, U.; van den Bent, M. J.; Weller, M.; Belka, C.; Minniti, G. ESTRO-EANO guideline on target delineation and radiotherapy details for glioblastoma. Radiother. Oncol. 2023, 184, 109663. [Google Scholar] [CrossRef] [PubMed]
  26. Niyazi, M.; Brada, M.; Chalmers, A. J.; Combs, S. E.; Erridge, S. C.; Fiorentino, A.; Grosu, A. L.; Lagerwaard, F. J.; Minniti, G.; Mirimanoff, R.-O.; Ricardi, U.; Short, S. C.; Weber, D. C.; Belka, C. ESTRO-ACROP Guideline “Target Delineation of Glioblastomas”. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2016, 118, 35–42. [Google Scholar] [CrossRef]
  27. Kumar, N.; Kumar, R.; Sharma, S. C.; Mukherjee, A.; Khandelwal, N.; Tripathi, M.; Miriyala, R.; Oinam, A. S.; Madan, R.; Yadav, B. S.; Khosla, D.; Kapoor, R. Impact of Volume of Irradiation on Survival and Quality of Life in Glioblastoma: A Prospective, Phase 2, Randomized Comparison of RTOG and MDACC Protocols. Neuro-Oncology Pract. 2020, 7, 86. [Google Scholar] [CrossRef]
  28. Minniti, G.; Amelio, D.; Amichetti, M.; Salvati, M.; Muni, R.; Bozzao, A.; Lanzetta, G.; Scarpino, S.; Arcella, A.; Enrici, R. M. Patterns of Failure and Comparison of Different Target Volume Delineations in Patients with Glioblastoma Treated with Conformal Radiotherapy plus Concomitant and Adjuvant Temozolomide. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2010, 97, 377–381. [Google Scholar] [CrossRef]
  29. Chang, E. L.; Akyurek, S.; Avalos, T.; Rebueno, N.; Spicer, C.; Garcia, J.; Famiglietti, R.; Allen, P. K.; Chao, K. S. C.; Mahajan, A.; Woo, S. Y.; Maor, M. H. Evaluation of Peritumoral Edema in the Delineation of Radiotherapy Clinical Target Volumes for Glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68, 144–150. [Google Scholar] [CrossRef]
  30. Karp, J. M.; Kruser, T. J. Contouring with FLAIR: Targeting Peritumoral Edema (and Beyond) in Glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2025, 121, 1182–1184. [Google Scholar] [CrossRef]
  31. Qiu, Y.; Li, Y.; Jiang, C.; Wu, X.; Liu, W.; Fan, C.; Ye, X.; He, L.; Xiao, S.; Zhao, Q.; Wu, W.; Chen, K.; Tan, C.; Li, Y.; Wang, H.; Liu, F. Toxicity and Efficacy of Different Target Volume Delineations of Radiation Therapy Based on the Updated Radiation Therapy Oncology Group/National Research Group and European Organization for Research and Treatment of Cancer Guidelines in Patients with Glioma. Int. J. Radiat. Oncol. Biol. Phys. 2025, 121, 1168–1181. [Google Scholar] [CrossRef]
  32. Wallner, K. E.; Galicich, J. H.; Krol, G.; Arbit, E.; Malkin, M. G. Patterns of Failure Following Treatment for Glioblastoma Multiforme and Anaplastic Astrocytoma. Int. J. Radiat. Oncol. Biol. Phys. 1989, 16, 1405–1409. [Google Scholar] [CrossRef] [PubMed]
  33. Magrowski, Ł.; Nowicka, E.; Masri, O.; Tukiendorf, A.; Tarnawski, R.; Miszczyk, M. The Survival Impact of Significant Delays between Surgery and Radiochemotherapy in Glioblastoma Patients: A Retrospective Analysis from a Large Tertiary Center. J. Clin. Neurosci. 2021, 90, 39–47. [Google Scholar] [CrossRef] [PubMed]
  34. Zhang, M.; Xu, F.; Ni, W.; Qi, W.; Cao, W.; Xu, C.; Chen, J.; Gao, Y. Survival Impact of Delaying Postoperative Chemoradiotherapy in Newly Diagnosed Glioblastoma Patients. Transl. Cancer Res. 2020, 9, 5450–5458. [Google Scholar] [CrossRef] [PubMed]
  35. Stupp, R.; Taillibert, S.; Kanner, A.; Read, W.; Steinberg, D.; Lhermitte, B.; et al. Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients with Glioblastoma: A Randomized Clinical Trial. JAMA 2017, 318, 2306–2316. [Google Scholar] [CrossRef]
  36. Sim, H.-W.; McDonald, K. L.; Lwin, Z.; Barnes, E. H.; Rosenthal, M.; Foote, M. C.; et al. A Randomized Phase II Trial of Veliparib, Radiotherapy, and Temozolomide in Patients with Unmethylated MGMT Glioblastoma: The VERTU Study. Neuro. Oncol. 2021, 23, 1736–1749. [Google Scholar] [CrossRef]
  37. Frosina, G. Radiotherapy of High-Grade Gliomas: Dealing with a Stalemate. Crit. Rev. Oncol. Hematol. 2023, 190, 104110. [Google Scholar] [CrossRef]
  38. van den Bent, M. J.; Brandes, A. A.; Rampling, R.; Kouwenhoven, M. C. M.; Kros, J. M.; Carpentier, A. F.; et al. Randomized Phase II Trial of Erlotinib versus Temozolomide or Carmustine in Recurrent Glioblastoma: EORTC Brain Tumor Group Study 26034. J. Clin. Oncol. 2009, 27, 1268–1274. [Google Scholar] [CrossRef]
  39. Matarredona, E. R.; Pastor, A. M. Neural Stem Cells of the Subventricular Zone as the Origin of Human Glioblastoma Stem Cells: Therapeutic Implications. Front. Oncol. 2019, 9, 779. [Google Scholar] [CrossRef]
  40. Mathew, B. S.; Kaliyath, S. B.; Krishnan, J.; Bhasi, S. Impact of Subventricular Zone Irradiation on Outcome of Patients with Glioblastoma. J. Cancer Res. Ther. 2018, 14, 1202–1206. [Google Scholar] [CrossRef]
  41. Mohan, R.; Liu, A. Y.; Brown, P. D.; Mahajan, A.; Dinh, J.; Chung, C.; et al. Proton Therapy Reduces the Likelihood of High-Grade Radiation-Induced Lymphopenia in Glioblastoma Patients: Phase II Randomized Study of Protons vs Photons. Neuro. Oncol. 2021, 23, 284–294. [Google Scholar] [CrossRef]
  42. Brandes, A. A.; Franceschi, E.; Tosoni, A.; Blatt, V.; Pession, A.; Tallini, G.; et al. MGMT Promoter Methylation Status Can Predict the Incidence and Outcome of Pseudoprogression after Concomitant Radiochemotherapy in Newly Diagnosed Glioblastoma Patients. J. Clin. Oncol. 2008, 26, 2192–2197. [Google Scholar] [CrossRef] [PubMed]
  43. Wen, P. Y.; van den Bent, M.; Youssef, G.; Cloughesy, T. F.; Ellingson, B. M.; Weller, M.; et al. RANO 2.0: Update to the Response Assessment in Neuro-Oncology Criteria for High- and Low-Grade Gliomas in Adults. J. Clin. Oncol. 2023, 41, 5187–5199. [Google Scholar] [CrossRef] [PubMed]
  44. Breen, W. G.; Aryal, M. P.; Cao, Y.; Kim, M. M. Integrating Multi-Modal Imaging in Radiation Treatments for Glioblastoma. Neuro. Oncol. 2024, 26, S17–S25. [Google Scholar] [CrossRef] [PubMed]
  45. Tan, A. C.; Ashley, D. M.; López, G. Y.; Malinzak, M.; Friedman, H. S.; Khasraw, M. Management of Glioblastoma: State of the Art and Future Directions. CA Cancer J. Clin. 2020, 70, 299–312. [Google Scholar] [CrossRef]
  46. Ma, Y.; Wang, Y.; Nie, C.; Lin, Y. The Efficacy of Targeted Therapy Combined with Radiotherapy and Temozolomide-Based Chemotherapy in the Treatment of Glioma: A Systemic Review and Meta-Analysis of Phase II/III Randomized Controlled Trials. Front. Oncol. 2023, 13, 1082539. [Google Scholar] [CrossRef]
  47. Hegi, M. E.; Diserens, A.-C.; Gorlia, T.; Hamou, M.-F.; de Tribolet, N.; Weller, M.; et al. MGMT Gene Silencing and Benefit from Temozolomide in Glioblastoma. N. Engl. J. Med. 2005, 352, 997–1003. [Google Scholar] [CrossRef]
  48. Weller, M.; Stupp, R.; Reifenberger, G.; Brandes, A. A.; van den Bent, M. J.; Wick, W.; et al. MGMT Promoter Methylation in Malignant Gliomas: Ready for Personalized Medicine? Nat. Rev. Neurol. 2010, 6, 39–51. [Google Scholar] [CrossRef]
  49. Brennan, C. W.; Verhaak, R. G. W.; McKenna, A.; Campos, B.; Noushmehr, H.; Salama, S. R.; et al. The Somatic Genomic Landscape of Glioblastoma. Cell 2013, 155, 462–477. [Google Scholar] [CrossRef]
  50. Brown, P. D.; Krishnan, S.; Sarkaria, J. N.; Wu, W.; Jaeckle, K. A.; Uhm, J. H.; et al. Phase I/II Trial of Erlotinib and Temozolomide with Radiation Therapy in the Treatment of Newly Diagnosed Glioblastoma Multiforme: North Central Cancer Treatment Group Study N0177. J. Clin. Oncol. 2008, 26, 5603–5609. [Google Scholar] [CrossRef]
  51. Ma, S.; Rudra, S.; Campian, J. L.; Dahiya, S.; Dunn, G. P.; Johanns, T.; et al. Prognostic impact of CDKN2A/B deletion, TERT mutation, and EGFR amplification on histological and molecular IDH-wildtype glioblastoma. Neuro-Oncol. Adv. 2020, 2, vdaa126. [Google Scholar] [CrossRef]
  52. Wen, P. Y.; Weller, M.; Lee, E. Q.; Alexander, B. M.; Barnholtz-Sloan, J. S.; Barthel, F. P.; et al. Glioblastoma in adults: A Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro. Oncol. 2020, 22, 1073–1113. [Google Scholar] [CrossRef] [PubMed]
  53. Yan, H.; Parsons, D. W.; Jin, G.; McLendon, R.; Rasheed, B. A.; Yuan, W.; et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 2009, 360, 765–773. [Google Scholar] [CrossRef] [PubMed]
  54. Barthel, F. P.; Johnson, K. C.; Varn, F. S.; Moskalik, A. D.; Tanner, G.; Kocakavuk, E.; et al. Longitudinal molecular trajectories of diffuse glioma in adults. Nature 2019, 576, 112–120. [Google Scholar] [CrossRef] [PubMed]
  55. van den Bent, M. J.; Franceschi, E.; Touat, M.; French, P. J.; Idbaih, A.; Lombardi, G.; et al. Updated EANO guideline on rational molecular testing of gliomas, glioneuronal, and neuronal tumors in adults for targeted therapy selection-update 1. Neuro. Oncol. 2025, 27, 331–337. [Google Scholar] [CrossRef]
  56. Dungey, F. A.; Löser, D. A.; Chalmers, A. J. Replication-dependent radiosensitization of human glioma cells by inhibition of poly(ADP-ribose) polymerase: Mechanisms and therapeutic potential. Int. J. Radiat. Oncol. Biol. Phys. 2008, 72, 1188–1197. [Google Scholar] [CrossRef]
  57. Kotecha, R.; Odia, Y.; Khosla, A. A.; Ahluwalia, M. S. Key clinical principles in the management of glioblastoma. JCO Oncol. Pract. 2023, 19, 180–189. [Google Scholar] [CrossRef]
  58. Corrales-García, E. M.; Aristu-Mendioroz, J. J.; Castro-Novais, J.; Matute-Martín, R.; Learra-Martínez, M. C.; Delgado-López, P. D. Current state of proton therapy for tumors of the central nervous system in Spain: Physical bases, indications, controversies and perspectives. Clin. Transl. Oncol. 2025, 27, 858–870. [Google Scholar] [CrossRef]
  59. Brown, P. D.; Chung, C.; Liu, D. D.; et al. A prospective phase II randomized trial of proton radiotherapy vs intensity-modulated radiotherapy for patients with newly diagnosed glioblastoma. Neuro. Oncol. 2021, 23, 1337–1347. [Google Scholar] [CrossRef]
  60. Gondi, V.; Pugh, S.; Tsien, C.; Chenevert, T.; Gilbert, M.; Omuro, A.; et al. Radiotherapy (RT) dose-intensification (DI) using intensity-modulated RT (IMRT) versus standard-dose (SD) RT with temozolomide (TMZ) in newly diagnosed glioblastoma (GBM): Preliminary results of NRG Oncology BN001. Int. J. Radiat. Oncol. Biol. Phys. 2019, 108, S22–S23. [Google Scholar] [CrossRef]
  61. Goff, K. M.; Zheng, C.; Alonso-Basanta, M. Proton radiotherapy for glioma and glioblastoma. Chin. Clin. Oncol. 2022, 11, 46. [Google Scholar] [CrossRef]
  62. Koosha, F.; Ahmadikamalabadi, M.; Mohammadi, M. Review of recent improvements in carbon ion radiation therapy in the treatment of glioblastoma. Adv. Radiat. Oncol. 2024, 9, 101465. [Google Scholar] [CrossRef] [PubMed]
  63. Kawabata, S.; Suzuki, M.; Hirose, K.; Tanaka, H.; Kato, T.; Goto, H.; et al. Accelerator-based BNCT for patients with recurrent glioblastoma: A multicenter phase II study. Neuro-Oncol. Adv. 2021, 3, vdab067. [Google Scholar] [CrossRef] [PubMed]
  64. Shimizu, S.; Nakai, K.; Li, Y.; Mizumoto, M.; Kumada, H.; Ishikawa, E.; et al. Boron neutron capture therapy for recurrent glioblastoma multiforme: Imaging evaluation of a case with long-term local control and survival. Cureus 2023, 15, e33898. [Google Scholar] [CrossRef] [PubMed]
  65. Ocanto, A.; Torres, L.; Montijano, M.; Rincón, D.; Fernández, C.; Sevilla, B.; et al. MR-LINAC, a new partner in radiation oncology: Current landscape. Cancers 2024, 16, 270. [Google Scholar] [CrossRef]
  66. Detsky, J.; Chan, A. W.; Palhares, D. M.; Hudson, J. M.; Stewart, J.; Chen, H.; et al. MR-Linac on-line weekly adaptive radiotherapy for high grade glioma (HGG): Results from the UNITED single arm phase II trial. Int. J. Radiat. Oncol. Biol. Phys. 2024, 120, S4. [Google Scholar] [CrossRef]
  67. Ballo, M. T.; Conlon, P.; Lavy-Shahaf, G.; Kinzel, A.; Vymazal, J.; Rulseh, A. M. Association of tumor treating fields (TTFields) therapy with survival in newly diagnosed glioblastoma: A systematic review and meta-analysis. J. Neurooncol. 2023, 164, 1–9. [Google Scholar] [CrossRef]
  68. Khagi, S.; Kotecha, R.; Gatson, N. T. N.; Jeyapalan, S.; Abdullah, H. I.; Avgeropoulos, N. G.; et al. Recent advances in tumor treating fields (TTFields) therapy for glioblastoma. Oncologist 2025, 30, oyae227. [Google Scholar] [CrossRef]
  69. Rominiyi, O.; Vanderlinden, A.; Clenton, S. J.; Bridgewater, C.; Al-Tamimi, Y.; Collis, S. J. Tumour treating fields therapy for glioblastoma: Current advances and future directions. Br. J. Cancer 2021, 124, 697–709. [Google Scholar] [CrossRef]
  70. Szasz, A. M.; Arrojo Alvarez, E. E.; Fiorentini, G.; Herold, M.; Herold, Z.; Sarti, D.; et al. Meta-analysis of modulated electro-hyperthermia and tumor treating fields in the treatment of glioblastomas. Cancers 2023, 15, 880. [Google Scholar] [CrossRef]
  71. Roussakow, S. V. Clinical and economic evaluation of modulated electrohyperthermia concurrent to dose-dense temozolomide 21/28 days regimen in the treatment of recurrent glioblastoma: A retrospective analysis of a two-centre German cohort trial with systematic comparison. BMJ Open 2017, 7, e017387. [Google Scholar] [CrossRef]
  72. Lee, S.-Y.; Lorant, G.; Grand, L.; Albrecht, A.; Uhl, M.; Jauch, A.; et al. Hyperthermia with modulated electro-hyperthermia (mEHT) plus temozolomide in the treatment of glioblastoma multiforme. Front. Oncol. 2022, 12, 791035. [Google Scholar]
  73. Ius, T.; Somma, T.; Pasqualetti, F.; Berardinelli, J.; Vitulli, F.; Caccese, M.; et al. Local therapy in glioma: An evolving paradigm from history to horizons (review). Oncol. Lett. 2024, 28, 440. [Google Scholar] [CrossRef] [PubMed]
  74. Mallick, S.; Gupta, S.; Amariyil, A.; Kunhiparambath, H.; Laviraj, M. A.; Sharma, S.; et al. Hypo-fractionated accelerated radiotherapy with concurrent and maintenance temozolomide in newly diagnosed glioblastoma: Updated results from phase II HART-GBM trial. J. Neurooncol. 2023, 164, 141–146. [Google Scholar] [CrossRef] [PubMed]
  75. Chidley, P.; Shanker, M.; Phillips, C.; Haghighi, N.; Pinkham, M. B.; Whittle, J. R.; et al. Moderately hypofractionated versus conventionally fractionated radiation therapy with temozolomide for young and fit patients with glioblastoma: An institutional experience and meta-analysis of literature. J. Neurooncol. 2022, 160, 361–374. [Google Scholar] [CrossRef]
  76. Guo, L.; Li, X.; Chen, Y.; Liu, R.; Ren, C.; Du, S. The efficacy of hypofractionated radiotherapy (HFRT) with concurrent and adjuvant temozolomide in newly diagnosed glioblastoma: A meta-analysis. Cancer Radiother. 2021, 25, 182–190. [Google Scholar] [CrossRef]
  77. Klement, R. J.; Popp, I.; Kaul, D.; Ehret, F.; Grosu, A. L.; Polat, B.; et al. Accelerated hyper-versus normofractionated radiochemotherapy with temozolomide in patients with glioblastoma: A multicenter retrospective analysis. J. Neurooncol. 2022, 156, 407–417. [Google Scholar] [CrossRef]
  78. Liao, G.; Zhao, Z.; Yang, H.; Li, X. Efficacy and safety of hypofractionated radiotherapy for the treatment of newly diagnosed glioblastoma multiforme: A systematic review and meta-analysis. Front. Oncol. 2019, 9, 1017. [Google Scholar] [CrossRef]
  79. Singh, R.; Lehrer, E. J.; Wang, M.; Perlow, H. K.; Zaorsky, N. G.; Trifiletti, D. M.; et al. Dose escalated radiation therapy for glioblastoma multiforme: An international systematic review and meta-analysis of 22 prospective trials. Int. J. Radiat. Oncol. Biol. Phys. 2021, 111, 371–384. [Google Scholar] [CrossRef]
  80. Andratschke, N.; Heusel, A.; Albert, N. L.; Alongi, F.; Baumert, B. G.; Belka, C.; et al. ESTRO/EANO recommendation on reirradiation of glioblastoma. Radiother. Oncol. 2025, 204, 110696. [Google Scholar] [CrossRef]
  81. Lo Greco, M. C.; Milazzotto, R.; Liardo, R. L. E.; Acquaviva, G.; La Rocca, M.; Altieri, R.; et al. Relapsing high-grade glioma from peritumoral zone: Critical review of radiotherapy treatment options. Brain Sci. 2022, 12, 416. [Google Scholar] [CrossRef]
  82. Preusser, M.; Kazda, T.; Le Rhun, E.; Sahm, F.; Smits, M.; Gempt, J.; et al. Lomustine with or without reirradiation for first progression of glioblastoma, LEGATO, EORTC-2227-BTG: Study protocol for a randomized phase III study. Trials 2024, 25, 366. [Google Scholar] [CrossRef] [PubMed]
  83. Chen, A. T. C.; Serante, A. R.; Ayres, A. S.; Tonaki, J. O.; Moreno, R. A.; Shih, H.; et al. Prospective randomized phase 2 trial of hypofractionated stereotactic radiation therapy of 25 Gy in 5 fractions compared with 35 Gy in 5 fractions in the reirradiation of recurrent glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2024, 119, 1122–1132. [Google Scholar] [CrossRef] [PubMed]
  84. Nabian, N.; Ghalehtaki, R.; Zeinalizadeh, M.; Balaña, C.; Jablonska, P. A. State of the neoadjuvant therapy for glioblastoma multiforme—where do we stand? Neuro-Oncol. Adv. 2024, 6, vdae028. [Google Scholar] [CrossRef] [PubMed]
  85. Miyake, K.; Ogawa, T.; Fujii, T. STMO-15 Our therapeutic strategies for glioblastoma: Intraoperative support systems [intraoperative MRI, PET, 5-aminolevulinic acid (5-ALA)] and neoadjuvant chemotherapy. Neuro-Oncol. Adv. 2019, 1 (Suppl. 2). [Google Scholar] [CrossRef]
  86. Waqar, M.; Roncaroli, F.; Djoukhadar, I.; Akkari, L.; O’Leary, C.; Hewitt, L.; et al. Study protocol: Preoperative brain irradiation in glioblastoma (POBIG)—a phase I trial. Clin. Transl. Radiat. Oncol. 2023, 39, 100585. [Google Scholar] [CrossRef]
  87. Bihan, C.; Foscolo, S.; Boone, M.; Blonski, M.; Coutte, A.; Darlix, A.; et al. Upfront bevacizumab and temozolomide or fotemustine before radiotherapy for patients with glioblastoma and severe neurological impairment at diagnosis. Case Rep. Oncol. 2012, 5, 530–536. [Google Scholar] [CrossRef]
  88. Balana, C.; De Las Penas, R.; Sepúlveda, J. M.; et al. Bevacizumab and temozolomide versus temozolomide alone as neoadjuvant treatment in unresected glioblastoma: The GENOM 009 randomized phase II trial. J. Neurooncol. 2016, 127, 569–579. [Google Scholar] [CrossRef]
  89. Jiang, H.; Zeng, W.; Ren, X.; Cui, Y.; Li, M.; Yang, K.; et al. Super-early initiation of temozolomide prolongs the survival of glioblastoma patients without gross-total resection: A retrospective cohort study. J. Neurooncol. 2019, 144, 127–135. [Google Scholar] [CrossRef]
  90. Sun, Y.; Wang, Y.; Mu, S.; Wu, X.; Yu, S.; Wang, Z. Combining immunotherapy with radiotherapy for glioblastoma: Recent advances and challenges. Front. Oncol. 2025, 15, 1523675. [Google Scholar] [CrossRef]
  91. Long, G. V.; Shklovskaya, E.; Satgunaseelan, L.; Mao, Y.; da Silva, I. P.; Perry, K. A.; et al. Neoadjuvant triplet immune checkpoint blockade in newly diagnosed glioblastoma. Nat. Med. 2025, 31, 1557–1566. [Google Scholar] [CrossRef]
  92. Armstrong, T. S.; Wefel, J. S.; Wang, M.; Gilbert, M. R.; Won, M.; Bottomley, A.; et al. Net clinical benefit analysis of Radiation Therapy Oncology Group 0525: A phase III trial comparing conventional adjuvant temozolomide with dose-intensive temozolomide in patients with newly diagnosed glioblastoma. J. Clin. Oncol. 2013, 31, 4076–4084. [Google Scholar] [CrossRef] [PubMed]
  93. Reardon, D. A.; Desjardins, A.; Peters, K.; Gururangan, S.; Sampson, J.; Rich, J. N.; et al. Phase II study of metronomic chemotherapy with bevacizumab for recurrent glioblastoma after progression on bevacizumab therapy. J. Neurooncol. 2011, 103, 371–379. [Google Scholar] [CrossRef] [PubMed]
  94. Wick, W.; Gorlia, T.; Bendszus, M.; Taphoorn, M.; Sahm, F.; Harting, I.; et al. Lomustine and bevacizumab in progressive glioblastoma. N. Engl. J. Med. 2017, 377, 1954–1963. [Google Scholar] [CrossRef] [PubMed]
  95. Cruz Da Silva, E.; Mercier, M.-C.; Etienne-Selloum, N.; Dontenwill, M.; Choulier, L. A systematic review of glioblastoma-targeted therapies in phases II, III, IV clinical trials. Cancers 2021, 13, 1795. [Google Scholar] [CrossRef]
  96. Herrlinger, U.; Tzaridis, T.; Mack, F.; Steinbach, J. P.; Schlegel, U.; Sabel, M.; et al. Lomustine-temozolomide combination therapy versus standard temozolomide therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/NOA-09): A randomised, open-label, phase 3 trial. Lancet 2019, 393, 678–688. [Google Scholar] [CrossRef]
  97. Chinot, O. L.; Wick, W.; Mason, W.; Henriksson, R.; Saran, F.; Nishikawa, R.; et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N. Engl. J. Med. 2014, 370, 709–722. [Google Scholar] [CrossRef]
  98. Friedman, H. S.; Prados, M. D.; Wen, P. Y.; Mikkelsen, T.; Schiff, D.; Abrey, L. E.; et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J. Clin. Oncol. 2009, 27, 4733–4740. [Google Scholar] [CrossRef]
  99. Stupp, R.; Hegi, M. E.; Gorlia, T.; Erridge, S. C.; Perry, J.; Hong, Y.-K.; et al. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2014, 15, 1100–1108. [Google Scholar] [CrossRef]
  100. Baskaran, A. B.; Kozel, O. A.; Venkatesh, O.; Wainwright, D. A.; Sonabend, A. M.; Heimberger, A. B.; et al. Immune checkpoint inhibitors in glioblastoma IDHwt treatment: A systematic review. Cancers 2024, 16, 4148. [Google Scholar] [CrossRef]
  101. Nassiri, F.; Patil, V.; Yefet, L. S.; Singh, O.; Liu, J.; Dang, R. M. A.; et al. Oncolytic DNX-2401 virotherapy plus pembrolizumab in recurrent glioblastoma: A phase 1/2 trial. Nat. Med. 2023, 29, 1370–1378. [Google Scholar] [CrossRef]
  102. McFaline-Figueroa, J. R.; Sun, L.; Youssef, G. C.; Huang, R.; Li, G.; Kim, J.; et al. Neoadjuvant anti-PD1 immunotherapy for surgically accessible recurrent glioblastoma: Clinical and molecular outcomes of a stage 2 single-arm expansion cohort. Nat. Commun. 2024, 15, 10757. [Google Scholar] [CrossRef] [PubMed]
  103. Weller, M.; Butowski, N.; Tran, D. D.; et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): A randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017, 18, 1373–1385. [Google Scholar] [CrossRef] [PubMed]
  104. Martucci, M.; Russo, R.; Giordano, C.; Schiarelli, C.; D’Apolito, G.; Tuzza, L.; et al. Advanced magnetic resonance imaging in the evaluation of treated glioblastoma: A pictorial essay. Cancers 2023, 15, 3790. [Google Scholar] [CrossRef] [PubMed]
  105. Pineda, C.; Oleaga Zufiria, L.; Valduvieco Ruiz, I.; Pineda Losada, E.; Pujol Farré, T.; González Ortiz, S. RANO-2. Radiologia 2024, 101621. [Google Scholar] [CrossRef]
  106. Albert, N. L.; Galldiks, N.; Ellingson, B. M.; van den Bent, M. J.; Chang, S. M.; Cicone, F.; et al. PET-based response assessment criteria for diffuse gliomas (PET RANO 1. 0): A report of the RANO group. Lancet Oncol. 2024, 25, e29–e41. [Google Scholar] [CrossRef]
  107. Galldiks, N.; Lohmann, P.; Friedrich, M.; Werner, J.-M.; Stetter, I.; Wollring, M. M.; et al. PET imaging of gliomas: Status quo and quo vadis? Oncol. 2024, 26 (Suppl. 9), S185–S198. [Google Scholar] [CrossRef]
  108. Russo, G.; Stefano, A.; Alongi, P.; Comelli, A.; Catalfamo, B.; Mantarro, C.; et al. Feasibility on the use of radiomics features of 11[C]-MET PET/CT in central nervous system tumours: Preliminary results on potential grading discrimination using a machine learning model. Curr. Oncol. 2021, 28, 5318–5331. [Google Scholar] [CrossRef]
  109. Verma, P.; Singh, B. K.; Sudhan, M. D.; Singh, R. K.; Bagul, S. D.; Chandak, A. R.; et al. 68 Ga-PSMA-11 PET/CT imaging in brain gliomas and its correlation with clinicopathological prognostic parameters. Clin. Nucl. Med. 2023, 48, e559–e563. [Google Scholar] [CrossRef]
Table 1. Survival Patterns in Glioblastoma Multiforme by MGMT Methylation Status and Therapy.
Table 1. Survival Patterns in Glioblastoma Multiforme by MGMT Methylation Status and Therapy.
Intervention Median Survival – Unmethylated Median Survival – Methylated Conclusion
Surgery + RT
11.8 months
15.3 months
RT alone improves OS in methylated tumors, but the benefit is limited.
Surgery + RT + TMZ
12.7 months
21.7 months
The addition of TMZ significantly increases OS in methylated tumors (p = 0.007).
Surgery + RT + TMZ + TTFields
16.9 months
31.6 months
The combination of TTFields with RT and TMZ offers the greatest OS benefit, especially in methylated tumors.
Legend: RT: Radiotherapy; TMZ: Temozolomide; TTFields: Tumor Treating Fields; OS: Overall Survival. Adapted from Roubil JG et al. [17], with data from Stupp et al. [12,16].
Table 2. Summary of studies on hypofractionation in patients with GBM.
Table 2. Summary of studies on hypofractionation in patients with GBM.
Study Patients Treatment Results Conclusion
Roa et al.
(2004) [19]
N=100
≥60 y.o.
KPS ≥50.
RT (60 Gy/6 weeks) vs. RT (40 Gy/3 weeks). -OS comparable (5.1 vs. 5.6 months).
- Better tolerance
- Lower use of post-treatment steroids in short RT.
Short RT is effective and more comfortable
Perry et al.
(2017) [18]
N= 562
≥65 y.o.
RT (40 Gy/15fr) ± concomitant and adjuvant TMZ. - Better OS with combination (9.3 mo vs. 7.6 m), especially in MGMTmet
- More hematological adverse effects with TMZ
Short RT + TMZ improves OS.
Standard in eligible patients
Malmström et al. Nordic Trial
(2012) [22]
N=342
≥60 y.o.
WHO 0-2
TMZ
vs
RT 60 Gy/6 weeks
vs
RT 34 Gy/2 weeks.
-OS: TMZ 8.3 m / RT 6.0 mo / hypofractionated RT 7.5 mo
- greater benefit in >70 years
- MGMTmet: predictive marker of response to TMZ (OS 9.7mo vs 8.2 in RT)
- TMZ and hypofractionated RT > standard RT
- TMZ vs. hypofractionated RT in patients >70 years old, depending on MGMTmet. Individualized management
Roa et al.
IAEA Trial
(2015) [20]
N=98
≥65 y.o. and/or fragile
RT (25 Gy/5fr) vs. RT (40.05 Gy/15fr). Similar OS (7.9 vs. 6.4 mo). Hypofractionated RT is feasible and effective in frail patients
Minniti et al.
(2009) [21]
N=43
≥70 y.o.
KPS ≥60
RT 30Gy/6fr vs adj. TMZ -OS 9.3 mo
-PFS 6.3 mo
-Best in KPS>70
-Acceptable toxicity
Combination is effective and safe in selected patients with limited prognosis
Legend: RT: Radiotherapy; TMZ: Temozolomide; KPS: Karnofsky Performance Status; WHO: World Health Organization scale; OS: Overall Survival; PFS: Progression-Free Survival; MGMTmet: MGMT Methylation; mo: Months; fr: Fractions.
Table 3. Summary of Radiotherapy Volumes for GBM.
Table 3. Summary of Radiotherapy Volumes for GBM.
Guideline/Study GTV CTV PTV Edema Inclusion
EORTC (Stupp)
[12]
Tumor + cavity CTV1: GTV + edema + 20mm
CTV2: GTV + 25mm
PTV = CTV + 3-5mm Yes, included in initial phase
RTOG/NRG
(2019) [14]
Phase 1: tumor + edema; Phase 2: tumor + cavity CTV1: GTV1 + 20mm
CTV2: GTV2 + 20mm
PTV = CTV + 3-5mm Yes, included in initial phase
ESTRO-EANO 2023 [25]
Surgical cavity + post-surgical T1 enhancement GTV + 15 mm (adjusted to anatomy) CTV + individual margin (usually ≤3 mm with IGRT) Not systematically included
ESTRO-ACROP 2016 [26]
Cavity + residual tumor GTV + 15–20 mm, adjusted to anatomical barriers CTV + 3–5 mm Not systematically included
Minniti et al. (2010) [28]
Surgical cavity + post-surgical T1 enhancement CTV1: GTV + 2 cm
CTV2: GTV + 1 cm
CTV + 3mm Not included
Chang et al.
(2007) [29]
Cavity + T1 tumor CTV1: GTV + 20mm
CTV2: GTV + 5mm
CTV + 5mm Not included
ASTRO 2025
(1-phase) [11]
Surgical cavity + post-surgical T1 enhancement GTV + 10–20 mm (adjusted to anatomy, including edema is optional) PTV = CTV + 3-5 mm
Optional.
ASTRO 2025
(2-phase) [11]
Phase 1: cavity + T1 + T2/FLAIR enhancement
Phase 2: cavity + T1 enhancement
CTV1: GTV1 + 10–20 mm
CTV2: GTV2 + 10–20 mm (adjusted to anatomy)
PTV = CTV + 3-5 mm
Yes, included in initial phase; not in phase 2
MDACC
Kumar et al.
(2020)
[27]
Cavity + T1 enhancement Initial GTV + 2 cm, boost GTV + 5 mm CTV +5mm Not included
Legend: GTV: Gross Tumor Volume; CTV: Clinical Target Volume; PTV: Planning Target Volume; IGRT: Image-Guided Radiotherapy; MDACC: MD Anderson Cancer Center.
Table 4. Limiting Factors of Radiotherapy in the Treatment of GBM.
Table 4. Limiting Factors of Radiotherapy in the Treatment of GBM.
Category Limitation Description/Evidence
Technical
Local recurrence
80-90% of recurrences occur within 2 cm of the irradiated field due to diffuse infiltration, even with IMRT, VMAT, or proton therapy [32]
Dosimetric constraints
Limits such as <54 Gy to the brainstem and optic chiasm restrict dose escalation; proton therapy minimizes irradiated volumes [25].
Acute and late toxicity
Fatigue, radiation necrosis, and cognitive deficits; brain volumes (V20Gy, V40Gy) increase neurotoxicity, reducible with IMRT, VMAT, and proton therapy [25].
Delay in RT initiation
Delays >6 weeks worsen OS and PFS; moderate delays (~6 weeks) may benefit patients with residual disease [33,34].
Cost and adherence of new technologies
Tumor-Treating Fields (TTFields) extend PFS by 2.7 months (6.7 vs. 4.0 months), limited by cost and adherence (≥18 hours/day) [35].
Biological
Tumor infiltration
The diffuse nature of GBM allows tumor cells to escape the radiation field [32].
Tumor hypoxia
Tumor hypoxia, by activating HIF-1α, reduces RT efficacy by promoting cell survival [37].
Cellular radioresistance
Tumor stem cells and pathways like MGMT, EGFR/PTEN, and CDKN2A/B drive resistance; PARP inhibitors (e.g., veliparib) and other radiosensitizers show promise by inhibiting DNA repair. [36,37].
EGFR amplification
In 40-60%, activates PI3K/Akt and RAS/RAF/MAPK, conferring resistance; PTEN mutations (~40%) enhance this pathway; inhibitors like erlotinib have limited benefits [37,38].
SVZ as a reservoir
The SVZ, with mutated stem cells (TERT, PTEN, TP53, EGFR), drives regrowth; irradiating the SVZ with doses ≥56 Gy (ipsilateral) or ≥50 Gy (contralateral) does not improve PFS or OS [39,40].
RT-induced lymphopenia
Extensive irradiation causes grade 3+ lymphopenia (14% with protons vs. 39% with photons), limiting immunotherapy efficacy [41].
Clinical
Pseudoprogression
Affects 30-40% of patients with methylated MGMT after TMZ, complicating radiological assessment up to 12 weeks [42,43].
Lack of clinical impact of biomarkers and advanced imaging
Multimodal imaging (multiparametric MRI, amino acid PET) enables RT personalization, achieving a median OS of 23 months in a phase I trial [44]. Biomarkers (EGFR, PTEN, TERT) allow patient stratification but, except for MGMT methylation, do not improve OS in phase III trials [45].
Lack of consistent benefits from combined therapies
Targeted therapies and immunotherapies do not improve OS, though they extend PFS in nGBM [46].
Legend: PFS: Progression-Free Survival; OS: Overall Survival; IMRT: Intensity-Modulated Radiotherapy; VMAT: Volumetric Modulated Arc Therapy; PT: Proton Therapy; MGMT: O6-Methylguanine-DNA Methyltransferase; EGFR: Epidermal Growth Factor Receptor; PTEN: Phosphatase and Tensin Homolog; TERT: Telomerase Reverse Transcriptase; TP53: Tumor Protein p53; SVZ: Subventricular Zone; HIF-1α: Hypoxia-Inducible Factor 1-Alpha; nGBM: Newly Diagnosed Glioblastoma Multiforme; rGBM: Recurrent Glioblastoma Multiforme; RT: Radiotherapy; TMZ: Temozolomide; MRI: Magnetic Resonance Imaging; PET: Positron Emission Tomography.
Table 5. Molecular Biomarkers in RT for GBM.
Table 5. Molecular Biomarkers in RT for GBM.
Biomarker Frequency (IDH-wt) Impact on RT Therapeutic Status
Methylated MGMT ~45 % Greater sensitivity to RT + TMZ Standard treatment with TMZ. ESCAT I [12,47,48]
IDH1/2 Mutation ~10 % Greater radiosensitivity and better prognosis Favorable stratification. ESCAT I [53]
Amplified EGFR 40–60 % Activates PI3K/AKT; resistance to RT Inhibitors without relevant clinical efficacy. ESCAT IIIA [50]
PTEN mutation/loss ~40 % PI3K/AKT pathway; promotes resistance to RT No approved effective therapies [49,52]
PIK3CA mutation ~10 % Stimulates cellular survival signals No approved effective therapies. [49,52]
Amplified CDK4/6 ~15 % Stimulates cell cycle progression Inhibitors under clinical study. [49,52]
CDKN2A/B deletion ~50 % Loss of cell cycle control; poor prognosis No effective targeted therapies. [45,51]
TERT mutation >80 % Uncertain impact; possible role in immune evasion Under investigation as an immunotherapeutic target. [3,54]
Legend: IDH: Isocitrate Dehydrogenase; wt: Wild-Type; MGMT: O6-Methylguanine-DNA Methyltransferase; RT: Radiotherapy; TMZ: Temozolomide; ESCAT: ESMO Scale for Clinical Actionability of Molecular Targets; EGFR: Epidermal Growth Factor Receptor; PTEN: Phosphatase and Tensin Homolog; PI3K/AKT: Phosphatidylinositol 3-Kinase/Protein Kinase B; CDK4/6: Cyclin-Dependent Kinases 4 and 6; TERT: Telomerase Reverse Transcriptase; CDKN2A/B: Cyclin-Dependent Kinase Inhibitor 2A/B.
Table 6. Technological Advances in Therapies against GBM.
Table 6. Technological Advances in Therapies against GBM.
Technique Description mOS/PFS Evidence Results Pending Limitations
PT Focused dose delivery (Bragg peak, spread-out Bragg peak [SOBP], intensity-modulated proton therapy [IMPT], RBE 1.1)
nGBM: mOS 21-24 months; PFS 6.6-8.9 months
Phase II (NCT01854554, n=67; PT vs. XRT); reduces grade ≥3 lymphopenia (14% vs. 39%, p=0.024), fatigue (24% vs. 58%, p=0.05), toxicity grade ≥2 (0.35 vs. 1.15, p=0.02), V5-V40[41,59,60,61]
NRG-BN001 (NCT02179086): Phase III randomized, dose escalation PT vs. photons in nGBM[60,61] Cost, accessibility
CIRT
High energy transfer, RBE 2.5-5 nGBM: mOS 18 months; rGBM: mOS 8 months
nGBM: CIRT boost (18 GyE/6 fx) or with TMZ (retrospective randomized phase II); rGBM: 45 GyE/15 fx (non-randomized comparative)[62]
CINDERELLA (NCT01166308): Phase I/II, CIRT vs. FSRT in rGBM; CLEOPATRA (NCT01165671): Phase II randomized, CIRT vs. proton boost in nGBM[62]
Cost, limited centers
BNCT
Selective damage with boron-10 (L-BPA, BSH); planning
with 18F-BPA PET
nGBM: mOS 25.7 months (with surgery+TMZ); rGBM: mOS 18.9 months nGBM: Surgery, BNCT (~40 Gy-Eq) and TMZ, without conventional RT; rGBM: Non-randomized Phase II (JG002), minimum 39.8 Gy-Eq [63,64] under investigation, non-randomized
[63,64]
Toxicity (cerebral edema, hyperamylasemia, alopecia); infrastructure
MRgRT
Daily adaptation with T1/T2 MRI nGBM: mOS 18.5 months, PFS 11.6 months (long course); marginal failure 4.1% Non-randomized Phase II UNITED (NCT04726397, n=98; CTV 5 mm, 60 Gy/30 fx)[65,66] UNITED2 (NCT05565521): Phase II non-randomized, 40 Gy/15 fx + boost 52.5 Gy/15 fx, PFS at 6 months [65]
Cost, evidence in development
TTFields
Alternating electric fields (200 kHz, 1-3 V/cm); with TMZ+RT nGBM: mOS 20.9 months, PFS 6.7 months (EF-14)
rGBM: mOS 10.3 months (EF-11)
nGBM: mOS 24.8 months, PFS 12.0 months, 1-year survival 82.61% (2-THE-TOP)
Phase III EF-14 (NCT00916409, n=695; TTFields+TMZ in nGBM, HR 0.63, p<0.001); phase III EF-11 (NCT00379470, TTFields in rGBM); phase II 2-THE-TOP (NCT03405792, TTFields+TMZ+pembrolizumab in nGBM) [67,68,69]
Phase III TRIDENT (NCT04471844): RT/TMZ in nGBM; EF-41 (NCT06556363): TMZ+pembrolizumab+TTFields in nGBM[67,68,69]
Cost, adherence, dermatitis; NICE does not endorse it due to cost-effectiveness, EF-14 biases (unblinded, selected patients)
mEHT
Thermal radiosensitization (13.56 MHz, 40-43°C); immunogenic potential
nGBM: 1-year survival 73.33%; rGBM: mOS 7.7 months, 1-year survival 37.33%
Observational studies 2006–2018 (n=450); 1 nGBM study, 6 rGBM studies (with ddTMZ); phase I for safety; no RCTs
[70,71,72]
In research, non-randomized [70,71,72] Weak evidence, not in guidelines, few centers
LITT
MRI-guided laser thermal ablation rGBM: mOS ~8-12 months
Phase I/II in rGBM; comparable to re-surgery in unifocal lobar rGBM; no RCTs [73]
In research, non-randomized [73]
Small focal lesions, no RCTs, post-procedural edema
MHT
AMF-guided hyperthermia with magnetic nanoparticles (40–45°C) rGBM: mOS not reported
Phase I/II in rGBM with RT; Proven safety and feasibility; no RCTs.[73]
In research, non-randomized [73]
No RCTs, technical challenges (MNP, thermometry), few centers
Legend: AMF: Alternating magnetic field; BSH: Sodium borocaptate; CIRT: Carbon ion radiotherapy; ddTMZ: Dense dose temozolomide; FSRT: Fractionated stereotactic radiotherapy; GyE: Gray equivalent; HR: Hazard ratio; IMPT: Intensity-modulated proton therapy; L-BPA: L-4-boronophenylalanine; LITT: Laser interstitial thermal therapy; mEHT: Modulated electrohyperthermia; MHT: Magnetic hyperthermia; MNP: Magnetic nanoparticles; MRgRT: Magnetic resonance-guided radiotherapy; RBE: Relative biological effectiveness; RCTs: Randomized clinical trials; SOBP: Spread-out Bragg peak; V5–V40: Volume of tissue receiving 5 to 40 Gy of radiation; XRT: Photon radiotherapy.
Table 7. Modified Fractionation Schedules.
Table 7. Modified Fractionation Schedules.
Schedule/
Description/
Indications.
mOS/PFS
Evidence Ongoing Trials Limitations
Hypofractionation: 50–60 Gy/20 fractions with TMZ, primarily in younger patients (≤65 years, KPS ≥70)
mOS: 26.5 months, PFS: 13.2 months [74]; mOS: 19.8 months, PFS: 7.7 months [75]; 12-month OS: 71.3%, 12-month PFS: 40.8% (various ages) [76]
HART-GBM trial (phase II, 60 Gy/20 fx vs. 60 Gy/30 fx, n=83, with TMZ, patients aged 16–65 years) [74]; Institutional study (50 Gy/20 fx vs. 60 Gy/30 fx, n=41, with TMZ, patients <65 years) [75]; Meta-analysis (n=484, phase I/II and retrospective, various ages) [76]; Meta-analysis (n not specified, phase II/III, HFRT vs. CFRT, various ages) [78]
SAGA (NCT05781321, randomized phase II, 5–10 fx photons guided by [18F]-FDOPA PET, evaluating survival, cost-effectiveness, and failure patterns, patients ≥18 years, ClinicalTrials.gov)
Grade ≥3 radionecrosis (6.7% HFRT, 7.7% CFRT), tumor heterogeneity [75,78]
Hyperfractionation: 37 × 1.6 Gy or 30 × 1.8 Gy bid with TMZ, experimental
No clear benefit (mOS 14.9 vs. 16.9 months, p=0.26) [77]
Retrospective analysis (HFRT vs. NFRT, n=484, with TMZ) [77]; Review (variable dose, with TMZ) [37]
Lack of efficacy; moderate toxicity [37,77]
Dose escalation: 75 Gy/30 fx (IMRT/PT) with TMZ or 16.8–24.8 GyE boost (CIRT), selected patients (KPS ≥70)
mOS: 18.7 months (photons), improved PFS (60); mOS: 18 months (CIRT boost) [62]
NRG-BN001 trial (randomized phase II, 75 Gy/30 fx vs. 60 Gy/30 fx, n=299, with TMZ, photons) [60]; CIRT retrospective study (16.8–24.8 GyE/8 fx after 50 Gy photons, n=32) [62]
NRG-BN001 (PT arm, randomized phase II) [60]; CLEOPATRA (CIRT boost, randomized phase II) [62]
Grade ≥3 radionecrosis (up to 29%), tumor heterogeneity, no mOS improvement [60,79]
Legend: bid: Twice daily; CIRT: Carbon ion radiotherapy; ddTMZ: Dense dose temozolomide; FSRT: Fractionated stereotactic radiotherapy; GyE: Gray equivalent; HR: Hazard ratio.
Table 8. Reirradiation.
Table 8. Reirradiation.
Modality Description Indications MOS/
PFS
Evidence Trials Limitations
HFRT/.
CFRT
35 Gy/10 fx or 36 Gy/18 fx ± BEV (CTV: GTV + ≤5 mm, adjusted to anatomical barriers; PTV: CTV + ≤3 mm) [80]
KPS >60, recurrence >6 months, volume <35 cm³ (ESTRO/EANO); KPS ≥70, volume ≤6 cm³ (ASTRO), multidisciplinary discussion [11,80]
mOS 7–12 months, PFS 3–6 months [80]
NRG Oncology/RTOG 1205 (phase II, HFRT + BEV, mOS 10.1 months) [80]
LEGATO (phase III, lomustine ± HFRT)
[82]
Radionecrosis (~5%), lack of phase III trials [80]
SRS/
HSRT
SRS: 12–15 Gy/1 fx (CTV: GTV, usually without margin; PTV: CTV + 0–1 mm); HSRT: 25 Gy/5 fx (CTV: GTV, without margin; PTV: CTV + 3 mm) [80,81,83]
SRS: volume <10 cm³; HSRT: volume ≤150 cm³ (median 55 cm³) [80,81,83] mOS 9–11 months, PFS 5–6 months [80,81,83]
Retrospective trials (SRS, volume <12.5 cm³) [80]; Phase II, HSRT 25 Gy/5 fx, mOS 9.2 months, PFS 4.9 months; 35 Gy/5 fx shows no improvement in PFS (4.9 vs. 5.2 months) or OS (9.2 vs. 10 months) [83]
Radionecrosis (<3.5% if volume <12.5 cm³ [80]; ~25% in HSRT [83]), phase II escalation from 25 Gy/5 fx to 35 Gy/5 fx does not improve PFS (4.9 vs. 5.2 months) or OS (9.2 vs. 10 months) [83]
CIRT/PT
CIRT: 45 Gy RBE/15 fx; PT: 33–46.2 Gy variable (CTV: GTV + ≤3 mm, adjusted to anatomical barriers; PTV: CTV + ≤3 mm) [61,62,81]
Selected patients [61,62,81]
mOS 7.8–19.4 months, PFS 5.5–13.9 months [61,62,81]
Retrospective studies (CIRT, PT) [81]; CIRT 45 Gy RBE/15 fx, mOS 8.0 months vs. photons [62]; PT 33–46.2 Gy, mOS 7.8–19.4 months, low toxicity [61]
CINDERELLA (phase I/II, CIRT vs. FSRT) (61)
Cost, accessibility, limited prospective data, toxicity not reported
Legend: BEV: Bevacizumab; CIRT: Carbon ion radiotherapy; fx: Fraction; HSRT: Hypofractionated stereotactic radiotherapy; PT: Proton therapy; RBE: Relative biological effectiveness; SRS: Stereotactic radiosurgery.
Table 9. Neoadjuvant Therapy Studies in GBM.
Table 9. Neoadjuvant Therapy Studies in GBM.
Preoperative Neoadjuvant Therapy for GBM
Modality Description
mOS/PFS
Trial/
Evidence
Limitations
Preoperative RT SRS (6–14 Gy/1 fx)
Not reported POBIG (phase I) [86]
No phase III trials
RT + Preoperative TMZ
RT + Preoperative TMZ Not reported PARADIGMA (phase II, NCT03480867) [84]
Pending results
BEV
BEV (10 mg/kg) preoperative
mOS: 15.7 months, PFS: 10.1 months
Miyake et al. (phase II, n=12) [85]
Small sample size; limited data on toxicity
Pembrolizumab
Pembrolizumab (ICI, 200 mg every 3 weeks) pre-surgery
mOS: 13.7 months
(phase II, rGBM) [90]
Small sample size, immunological toxicity, dose heterogeneity, potential influence of steroids and bevacizumab
Triple Immunotherapy
Nivolumab + ipilimumab + relatlimab pre-surgery
No recurrence at 17 months (n=1) GIANT (phase I, nGBM, NCT06816927) [91]
Single case; preliminary data
Postoperative Neoadjuvant Systemic Therapy Prior to Standard Chemoradiotherapy for Unresectable or Inoperable GBM
Modality Description
mOS/PFS
Trial
/Evidence
Limitations
TMZ + BEV
TMZ (75 mg/m²) + BEV (10 mg/kg) pre-RT
mOS: 12.5 months, PFS: 7.4–8.6 months
Bihan et al. (retrospective, n=8)(87)
Balana et al. (phase II, n=102) [88]
Intracranial hemorrhages*; increased toxicity
Postoperative Neoadjuvant Systemic Therapy Prior to Chemoradiotherapy for Resectable GBM
Modality Description
mOS/PFS
Trial/Evidence Limitations
TMZ
TMZ (75 mg/m² daily) <7 days post-surgery and extended adjuvant (150–200 mg/m² until progression), before CRT (60 Gy/20 fx in MAGMA)
mOS: 23 months, PFS: 11.5 months
Jiang et al. (retrospective, n=375); MAGMA (phase III) [89]** Hematological toxicity, MAGMA pending
Legend: BEV: Bevacizumab; fx: Fraction; ICIs: Immune checkpoint inhibitors; SRS: Stereotactic radiosurgery. *Note: Intracranial hemorrhages primarily associated with BEV (4.2% in Balana et al.) [88]. **Note: Greater benefit in MGMT-methylated cases (HR 0.60, Jiang et al.) [89].
Table 10. Immunotherapy, Targeted Therapies, and Chemotherapy.
Table 10. Immunotherapy, Targeted Therapies, and Chemotherapy.
Category Modality mOS/PFS Evidence Notes
Chemotherapy
(nGBM)
Standard TMZ mOS 14.6 months, mPFS 6.9 months
EORTC/NCIC CE.3 [12]
Standard treatment
Intensive TMZ No improvement in mOS or PFS
RTOG 0525 [92]
Not recommended
Lomustine + TMZ
mOS 48.1 months
CeTeG/NOA-09 [96]
Methylated MGMT
Chemotherapy
(rGBM)
Metronomic TMZ PFS-6 24% (1st recurrence); PFS-6 4.4% (post-BEV) Phase II, [93]
Limited efficacy, especially after bevacizumab
Lomustine
mPFS 1.5 months
EORTC 26101 [94,95]
Limited efficacy; alone or with bevacizumab
Targeted Therapies (nGBM) BVZ
mOS 16.8 months, mPFS 10.6 months
AVAglio, RTOG 0825 [95,97,98]
Not recommended as initial treatment; see Table 9 for neoadjuvant use
Cilengitide + TMZ
No improvement SG/PFS CENTRIC, CORE [95,99]
Not recommended
PARP inhibitors (e.g., veliparib)
6-month PFS 46% (95% CI: 36%–57%) vs. 31% (95% CI: 18%–46%) in nGBM with unmethylated MGMT; no mOS benefit (12.7 vs. 12.8 months)
Phase II VERTU, preclinical synergy with RT/TMZ 36
Promising for 6-month PFS in nGBM with unmethylated MGMT, requires phase III confirmation, limited by tumor heterogeneity
Targeted Therapies (rGBM)
BVZ
mOS 9.2 months, mPFS 4.2 months
BRAIN, EORTC 26101, BELOB [94,95,98]
Recommended in symptomatic relapse; see Table 9 for neoadjuvant use.
Regorafenib
mOS 7.4 months, mPFS 2.0 months
REGOMA [95]
Limited efficacy in rGBM
BRAF/MEK inhibitors Partial answers Basket trials [95]
Compassionate use or use in clinical trials
IDH inhibitors (vorasidenib) No data in GBM Phase I [95]
In research for IDH-mutant gliomas
Erlotinib, Everolimus
Ineffective Phase II [38,95]
Not recommended
IT
(rGBM)
ICI: Nivolumab
mOS 9.8 months
CheckMate 143 [3,90]
No advantage over BEV
ICI: Pembrolizumab
mOS 13.8 months, mPFS 3.3 months, PFS-6 19.5%
Phase II (NCT02852655) [90,102]
Phase II, neoadjuvant to surgery; benefit in subgroups; see Table 9.
ACT: CAR-T, TILs, LAK
mOS 20.5 months, 1 RC
Phase I [90]
Phase I, preliminary data
Vaccines: DCVax-L
mOS 13.2 months
Phase III [90]
Phase III, without RT; benefit in mOS, non-standard
OV: DNX-2401, G47Δ, PVSRIPO
mOS 12.5-20.2 months
Phase I/II [90,101]
Preliminary results from CAPTIVE (DNX-2401 + pembrolizumab, ongoing)
Cytokines: L19TNF + lomustine
mPFS 43.3 weeks
[90]
Phase I, preliminary data.
IT
(nGBM)
ICI: Nivolumab + RT
mOS 13.4 months
CheckMate 498 [100]
No advantage over TMZ + RT; MGMT not methylated
ICI: Nivolumab + TMZ + RT
mOS 28.9 months
CheckMate 548 [100]
No advantage over TMZ + RT; methylated MGMT
Vaccines: DCVax-L
mOS 19.3 months
Phase III [90]
Phase III, with RT + TMZ; benefit in mOS, non-standard
Vaccines: Rindopepimut + TMZ
mOS 20.0 months
ACT IV [90,103]
Phase III, no improvement in OS; not recommended for EGFRvIII+
Cytokines: IFN-α + TMZ
mOS 26.7 months
Phase III [90]
Phase III, adjuvant after RT; benefit in mOS, non-standard
Triple IT No recurrence at 17 months GIANT, ongoing [91]
Neoadjuvant to surgery; single case; ongoing trials
Legend: ACT: Adoptive cellular therapies; BEV: Bevacizumab; CR: Complete response; ICI: Immune checkpoint inhibitors; IT: Immunotherapy; OV: Oncolytic viruses; PFS-6: 6-month progression-free survival.
Table 11. Advanced Imaging and Theranostics.
Table 11. Advanced Imaging and Theranostics.
Modality Application Performance Limitations
Multiparametric MRI Diagnosis, recurrence, pseudoprogression
High sensitivity, RANO 2.0; DSC (90% sensitivity, 88% specificity), DWI (ADC >1200 × 10⁻⁶ mm²/s), MRS (low Cho/Cr and Cho/NAA) for pseudoprogression [43,104,105]
Cost, need for specialized interpretation
PET 18F-FET
Theranostics (general)
High specificity (~80-90%), PET RANO 1.0
[106,107]
Cost, accessibility
PET [11C]-MET
Diagnosis, recurrence/
pseudoprogression
~95% sensitivity/specificity for grading; high accuracy for recurrence [107,108]
Short half-life, accessibility
PET [18F]F-DOPA
Diagnosis, recurrence/
pseudoprogression
92% sensitivity, 75% specificity for recurrence
[106]
Cost, need for additional studies
PET [18F]FACBC
Diagnosis, recurrence/
pseudoprogression
90% sensitivity, 83% specificity for recurrence
[107]
Need for further studies, accessibility
PET [68Ga]-PSMA-11
Diagnosis, recurrence/
pseudoprogression
High uptake in high-grade gliomas [109] Need for further studies
Multiparametric MRI/PET-guided RT
Personalized RT with dose escalation
mOS 23 months in a phase I trial using multiparametric MRI and [18F]-FDOPA PET; no OS benefit in phase III trials [44]
Cost, accessibility, need for phase III validation
Theranostics [131I]-IPA
Treatment, evaluation
mOS 16 months in rGBM [107,109]
Limited BBB penetration, need for validation
Theranostics (general)
Treatment, evaluation Ongoing trials (e.g., [177Lu]-PSMA, [177Lu]-6A10, [177Lu]-NeoB) [108,109]
Limited BBB penetration, need for validation
Legend: ADC: Apparent diffusion coefficient; BBB: Blood–brain barrier; Cho: Choline; Cr: Creatine; DSC: Dynamic susceptibility contrast perfusion; DWI: Diffusion-weighted imaging; MRS: Magnetic resonance spectroscopy; NAA: N-acetyl aspartate; RANO 2.0: 2023 criteria for glioma evaluation; PET RANO 1.0: Criteria for amino acid PET.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated