Submitted:
07 July 2025
Posted:
08 July 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Molecular Biology of the CB2 Receptor
3. Epigenetic and Transcriptional Regulation of the CB₂ Receptor
3.1. DNA Methylation and Transcriptional Silencing
3.2. Histone Modifications and Chromatin Accessibility
3.3. Non-Coding RNAs: MicroRNAs and Long Non-Coding RNAs
3.4. Pharmacological Modulation of the CB₂ receptor: Biased Agonism, Allosteric Control, and Post-Translational Regulation
4. The Role of CB2 Receptor in Immune Regulation
5. CB2 Receptor and Microglia in Neuroinflammation
6. CB2 Receptor in Depression and Psychiatric Disorders
6.1. Neuroimmune Pathology and CB2 Receptor Expression
6.2. Modulation of the HPA Axis and Inflammatory Feedback
6.3. Epigenetic Regulation and Transcriptional Modulation
6.4. Behavioral Evidence from Animal Models
6.5. Therapeutic Implications and Drug Development
7. CB2 Receptor in Chronic Pain and Neuropathy
7.1. Immune and Glial Contributions to Chronic Pain
7.2. CB2 Receptor Activation in Pain Modulation
7.3. Endocannabinoid Tone and Peripheral Mechanisms
7.4. Cannabinoid Synergy and CB1 Receptor/ CB2 Receptor-Independent Pathways
7.5. Immunological Insights and Translational Promise
8. CB2 Receptor in Schizophrenia and Dopaminergic Circuits
8.1. CB2 Receptor Expression in Schizophrenia-Relevant Brain Circuits
8.2. CB2 Receptor Modulation of Dopamine Signaling
8.3. Genetic and Epigenetic Links to Schizophrenia
8.4. CB2 Receptor in Neuroinflammation and Glial Dysfunction
8.5. Endocannabinoid Tone and CB2 Receptor Signaling Bias
8.6. Translational Implications
9. CB2 Receptor in Autoimmune and Inflammatory Diseases
9.1. CB₂ Receptors in Asthma and Related Diseases: Immune Regulation, Innate Cell Crosstalk, and Therapeutic Paradox
9.2. CB2 Receptor in Multiple Sclerosis (MS)
9.3. CB2 Receptor in Rheumatoid Arthritis
9.4. CB2 Receptor in Systemic Lupus Erythematosus
9.5. CB2 Receptor in Inflammatory Bowel Disease
9.6. Therapeutic Perspectives
10. CB2 Receptor in Cancer and Immune Checkpoint Modulation
10.1. CB2 Receptor Expression in the Tumor Microenvironment and Immune Checkpoints
11. Crosstalk Within the eCBome
Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| CB1 | Cannabinoid Receptor Type 1 |
| CB₂ / CB₂R | Cannabinoid Receptor Type 2 |
| ECS | Endocannabinoid System |
| eCBome | Endocannabinoidome |
| GPCR | G protein-coupled receptor |
| TRPV1 | Transient Receptor Potential Vanilloid 1 |
| PPARs | Peroxisome Proliferator-Activated Receptors |
| GPR55 / GPR18 | G protein-coupled receptors 55 and 18 |
| AEA | Anandamide (N-arachidonoyl-ethanolamine) |
| 2-AG | 2-arachidonoyl-glycerol |
| PEA | Palmitoylethanolamide |
| OEA | Oleoylethanolamide |
| BCP | Beta-caryophyllene |
| CBD | Cannabidiol |
| CBG | Cannabigerol |
| THC | Δ9-tetrahydrocannabinol |
| NAM | Negative Allosteric Modulator |
| PAM | Positive Allosteric Modulator |
| cAMP | Cyclic Adenosine Monophosphate |
| PKA | Protein Kinase A |
| NF-κB | Nuclear Factor kappa-light-chain-enhancer of activated B cells |
| MAPK | Mitogen-Activated Protein Kinase |
| ERK1/2 | Extracellular Signal-Regulated Kinases 1 and 2 |
| PI3K/Akt | Phosphoinositide 3-kinase / Protein Kinase B |
| STAT6 | Signal Transducer and Activator of Transcription 6 |
| NRF-2 | Nuclear Erythroid 2-Related Factor 2 |
| AP-1 | Activator Protein-1 |
| RNS | Reactive Nitrogen Species |
| ROS | Reactive Oxygen Species |
| TLR | Toll-Like Receptor |
| CNS | Central Nervous System |
| DCs | Dendritic Cells |
| Tregs | Regulatory T Cells |
| Th1 | Type 1 T helper cell |
| Th2 | Type 2 T helper cell |
| Th17 | Type 17 T helper cell |
| M1 / M2 | Macrophage polarization states |
| IL | Interleukin (e.g., IL-4, IL-10) |
| IFN-γ | Interferon gamma |
| TNF-α | Tumor Necrosis Factor alpha |
| TGF-β | Transforming Growth Factor beta |
| CCR7 | C-C Chemokine Receptor Type 7 |
| CD80 / CD86 / MHC-II | Costimulatory molecules |
| NK cells | Natural Killer Cells |
| ILC2 | Group 2 Innate Lymphoid Cells |
| MDSCs | Myeloid-Derived Suppressor Cells |
| TAMs | Tumor-Associated Macrophages |
| FLS | Fibroblast-like Synoviocytes |
| DNMTs | DNA Methyltransferases |
| TET enzymes | Ten-Eleven Translocation enzymes |
| AID | Activation-Induced Cytidine Deaminase |
| APOBEC | Apolipoprotein B mRNA Editing Enzyme |
| MeCP2 | Methyl-CpG Binding Protein 2 |
| BER | Base Excision Repair |
| miRNA | MicroRNA (e.g., miR-139, miR-665) |
| SNPs | Single Nucleotide Polymorphisms |
| CpG | Cytosine-phosphate-Guanine |
| FAAH | Fatty Acid Amide Hydrolase |
| MAGL | Monoacylglycerol Lipase |
| NAPE-PLD | N-acyl Phosphatidylethanolamine Phospholipase D |
| DAGL | Diacylglycerol Lipase |
| COX-2 | Cyclooxygenase-2 |
| MMPs | Matrix Metalloproteinases (e.g., MMP-3, MMP-9) |
| Arg-1 | Arginase-1 |
| iNOS | Inducible Nitric Oxide Synthase |
| EAE | Experimental Autoimmune Encephalomyelitis |
| IBD | Inflammatory Bowel Disease |
| SLE | Systemic Lupus Erythematosus |
| MS | Multiple Sclerosis |
| RA | Rheumatoid Arthritis |
| MDD | Major Depressive Disorder |
| DRG | Dorsal Root Ganglion |
| OVA | Ovalbumin (used in asthma models) |
| TME | Tumor Microenvironment |
| VEGF | Vascular Endothelial Growth Factor |
| GI | Gastrointestinal |
| HPA | Hypothalamic-Pituitary-Adrenal (axis) |
| CNR2 | Gene encoding CB₂R |
| CRP | C-Reactive Protein |
| SSRIs | Selective Serotonin Reuptake Inhibitors |
| SNRIs | Serotonin-Norepinephrine Reuptake Inhibitors |
| TRPs | Transient Receptor Potential channels |
| TRPM8 | Transient Receptor Potential Melastatin 8 |
| PPARγ | Peroxisome Proliferator-Activated Receptor Gamma |
| PPARα | Peroxisome Proliferator-Activated Receptor Alpha |
| PPARδ | Peroxisome Proliferator-Activated Receptor Delta |
| EP2 | Prostaglandin E2 Receptor 2 |
| EP4 | Prostaglandin E2 Receptor 4 |
| NO | Nitric Oxide |
| ZO-1 | Zonula Occludens-1 |
| CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats |
| mTOR | Mechanistic Target of Rapamycin |
| BDNF | Brain-Derived Neurotrophic Factor |
| GABA | Gamma-Aminobutyric Acid |
| GR | Glucocorticoid Receptor |
References
- B. Rezende, A. K. N. Alencar, G. F. de Bem, F. L. Fontes-Dantas, and G. C. Montes, “Endocannabinoid System: Chemical Characteristics and Biological Activity,” Pharmaceuticals, vol. 16, no. 2, Art. no. 2, Feb. 2023. [CrossRef]
- M.-A. Crocq, “History of cannabis and the endocannabinoid system,” Dialogues Clin. Neurosci., vol. 22, no. 3, pp. 223–228, Sep. 2020. [CrossRef]
- C. Turcotte, F. Chouinard, J. S. Lefebvre, and N. Flamand, “Regulation of inflammation by cannabinoids, the endocannabinoids 2-arachidonoyl-glycerol and arachidonoyl-ethanolamide, and their metabolites,” J. Leukoc. Biol., vol. 97, no. 6, pp. 1049–1070, Jun. 2015. [CrossRef]
- L. Cristino, T. Bisogno, and V. Di Marzo, “Cannabinoids and the expanded endocannabinoid system in neurological disorders,” Nat. Rev. Neurol., vol. 16, no. 1, pp. 9–29, Jan. 2020. [CrossRef]
- D. A. Kendall and G. A. Yudowski, “Cannabinoid Receptors in the Central Nervous System: Their Signaling and Roles in Disease,” Front. Cell. Neurosci., vol. 10, p. 294, Jan. 2017. [CrossRef]
- G. A. Cabral and L. Griffin-Thomas, “Emerging Role of the CB2 Cannabinoid Receptor in Immune Regulation and Therapeutic Prospects,” Expert Rev. Mol. Med., vol. 11, p. e3, Jan. 2009. [CrossRef]
- Morcuende, M. S. García-Gutiérrez, S. Tambaro, E. Nieto, J. Manzanares, and T. Femenia, “Immunomodulatory Role of CB2 Receptors in Emotional and Cognitive Disorders,” Front. Psychiatry, vol. 13, Apr. 2022. [CrossRef]
- M. Simard, V. Rakotoarivelo, V. Di Marzo, and N. Flamand, “Expression and Functions of the CB2 Receptor in Human Leukocytes,” Front. Pharmacol., vol. 13, p. 826400, Feb. 2022. [CrossRef]
- R. Meanti et al., “Cannabinoid Receptor 2 (CB2R) as potential target for the pharmacological treatment of neurodegenerative diseases,” Biomed. Pharmacother., vol. 186, p. 118044, May 2025. [CrossRef]
- B. Bie, J. Wu, J. F. Foss, and M. Naguib, “An overview of the cannabinoid type 2 (CB2) receptor system and its therapeutic potential,” Curr. Opin. Anaesthesiol., vol. 31, no. 4, pp. 407–414, Aug. 2018. [CrossRef]
- T. P. Malan, M. M. Ibrahim, J. Lai, T. W. Vanderah, A. Makriyannis, and F. Porreca, “CB2 cannabinoid receptor agonists: pain relief without psychoactive effects?,” Curr. Opin. Pharmacol., vol. 3, no. 1, pp. 62–67, Feb. 2003. [CrossRef]
- C. Turcotte, M.-R. Blanchet, M. Laviolette, and N. Flamand, “The CB2 receptor and its role as a regulator of inflammation,” Cell. Mol. Life Sci. CMLS, vol. 73, no. 23, pp. 4449–4470, Jul. 2016. [CrossRef]
- V. Rakotoarivelo, T. Z. Mayer, M. Simard, N. Flamand, and V. Di Marzo, “The Impact of the CB2 Cannabinoid Receptor in Inflammatory Diseases: An Update,” Molecules, vol. 29, no. 14, Art. no. 14, Jan. 2024. [CrossRef]
- R. M. Concannon, B. N. Okine, D. P. Finn, and E. Dowd, “Upregulation of the cannabinoid CB2 receptor in environmental and viral inflammation-driven rat models of Parkinson’s disease,” Exp. Neurol., vol. 283, pp. 204–212, Sep. 2016. [CrossRef]
- C. Laezza et al., “The Endocannabinoid System: A Target for Cancer Treatment,” Int. J. Mol. Sci., vol. 21, no. 3, p. 747, Jan. 2020. [CrossRef]
- P. Sharma et al., “Microglial cannabinoid receptor 2 and epigenetic regulation: Implications for the treatment of depression,” Eur. J. Pharmacol., vol. 995, p. 177422, May 2025. [CrossRef]
- G. A. Cabral and L. Griffin-Thomas, “Emerging Role of the CB2 Cannabinoid Receptor in Immune Regulation and Therapeutic Prospects,” Expert Rev. Mol. Med., vol. 11, p. e3, Jan. 2009. [CrossRef]
- S. Huang, P. Xiao, and J. Sun, “Structural basis of signaling of cannabinoids receptors: paving a way for rational drug design in controling mutiple neurological and immune diseases,” Signal Transduct. Target. Ther., vol. 5, p. 127, Jul. 2020. [CrossRef]
- J. L. Shoemaker, K. A. Seely, R. L. Reed, J. P. Crow, and P. L. Prather, “The CB2 cannabinoid agonist AM-1241 prolongs survival in a transgenic mouse model of amyotrophic lateral sclerosis when initiated at symptom onset,” J. Neurochem., vol. 101, no. 1, p. 87, Apr. 2007. [CrossRef]
- M. S. Ibsen, M. Connor, and M. Glass, “Cannabinoid CB1 and CB2 Receptor Signaling and Bias,” Cannabis Cannabinoid Res., vol. 2, no. 1, pp. 48–60, Dec. 2017. [CrossRef]
- K. Ghosh, G.-F. Zhang, H. Chen, S.-R. Chen, and H.-L. Pan, “Cannabinoid CB2 receptors are upregulated via bivalent histone modifications and control primary afferent input to the spinal cord in neuropathic pain,” J. Biol. Chem., vol. 298, no. 6, Jun. 2022. [CrossRef]
- F. A. Iannotti and R. M. Vitale, “The Endocannabinoid System and PPARs: Focus on Their Signalling Crosstalk, Action and Transcriptional Regulation,” Cells, vol. 10, no. 3, p. 586, Mar. 2021. [CrossRef]
- S. S. Duffy, J. P. Hayes, N. T. Fiore, and G. Moalem-Taylor, “The cannabinoid system and microglia in health and disease,” Neuropharmacology, vol. 190, p. 108555, Jun. 2021. [CrossRef]
- M. Schley et al., “Predominant CB2 receptor expression in endothelial cells of glioblastoma in humans,” Brain Res. Bull., vol. 79, no. 5, pp. 333–337, Jun. 2009. [CrossRef]
- Scutt and E., M. Williamson, “Cannabinoids stimulate fibroblastic colony formation by bone marrow cells indirectly via CB2 receptors,” Calcif. Tissue Int., vol. 80, no. 1, pp. 50–59, Jan. 2007. [CrossRef]
- D. Chen, M. Gao, F. Gao, Q. Su, and J. Wu, “Brain cannabinoid receptor 2: expression, function and modulation,” Acta Pharmacol. Sin., vol. 38, no. 3, pp. 312–316, Mar. 2017. [CrossRef]
- B. L. Holloman, M. Nagarkatti, and P. Nagarkatti, “Epigenetic Regulation of Cannabinoid-Mediated Attenuation of Inflammation and Its Impact on the Use of Cannabinoids to Treat Autoimmune Diseases,” Int. J. Mol. Sci., vol. 22, no. 14, p. 7302, Jul. 2021. [CrossRef]
- K. Ghosh, G.-F. Zhang, H. Chen, S.-R. Chen, and H.-L. Pan, “Cannabinoid CB2 receptors are upregulated via bivalent histone modifications and control primary afferent input to the spinal cord in neuropathic pain,” J. Biol. Chem., vol. 298, no. 6, Jun. 2022. [CrossRef]
- R. C. Smith et al., “Changes in Expression of DNA-Methyltransferase and Cannabinoid Receptor mRNAs in Blood Lymphocytes After Acute Cannabis Smoking,” Front. Psychiatry, vol. 13, p. 887700, Jul. 2022. [CrossRef]
- R. Meccariello et al., “The Epigenetics of the Endocannabinoid System,” Int. J. Mol. Sci., vol. 21, no. 3, p. 1113, Feb. 2020. [CrossRef]
- K. Pulk, K. Somelar-Duracz, M. Rooden, K. Anier, and A. Kalda, “Concentration-dependent effect of delta-9-tetrahydrocannabinol on epigenetic DNA modifiers in human peripheral blood mononuclear cells,” Transl. Psychiatry, vol. 15, no. 1, p. 198, Jun. 2025. [CrossRef]
- P. A. Jones, “Functions of DNA methylation: islands, start sites, gene bodies and beyond,” Nat. Rev. Genet., vol. 13, no. 7, pp. 484–492, Jul. 2012. [CrossRef]
- X. Nan et al., “Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex,” Nature, vol. 393, no. 6683, pp. 386–389, May 1998. [CrossRef]
- E. Zamberletti et al., “Cannabidivarin completely rescues cognitive deficits and delays neurological and motor defects in male Mecp2 mutant mice,” J. Psychopharmacol. Oxf. Engl., vol. 33, no. 7, pp. 894–907, Jul. 2019. [CrossRef]
- F. Fuks, P. J. Hurd, D. Wolf, X. Nan, A. P. Bird, and T. Kouzarides, “The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation,” J. Biol. Chem., vol. 278, no. 6, pp. 4035–4040, Feb. 2003. [CrossRef]
- R. Meccariello et al., “The Epigenetics of the Endocannabinoid System,” Int. J. Mol. Sci., vol. 21, no. 3, p. 1113, Feb. 2020. [CrossRef]
- E. Innocenzi et al., “Paternal activation of CB2 cannabinoid receptor impairs placental and embryonic growth via an epigenetic mechanism,” Sci. Rep., vol. 9, no. 1, p. 17034, Nov. 2019. [CrossRef]
- C. Sun, Y. Zhao, L. Guo, J. Qiu, and Q. Peng, “The interplay between histone modifications and nuclear lamina in genome regulation,” J. Genet. Genomics, vol. 52, no. 1, pp. 24–38, Jan. 2025. [CrossRef]
- H. Wang and K. Helin, “Roles of H3K4 methylation in biology and disease,” Trends Cell Biol., vol. 35, no. 2, pp. 115–128, Feb. 2025. [CrossRef]
- M. Kikuchi et al., “Epigenetic mechanisms to propagate histone acetylation by p300/CBP,” Nat. Commun., vol. 14, no. 1, p. 4103, Jul. 2023. [CrossRef]
- T. Zhang, S. Cooper, and N. Brockdorff, “The interplay of histone modifications – writers that read,” EMBO Rep., vol. 16, no. 11, pp. 1467–1481, Nov. 2015. [CrossRef]
- C. Yan and D. D. Boyd, “Histone H3 Acetylation and H3 K4 Methylation Define Distinct Chromatin Regions Permissive for Transgene Expression,” Mol. Cell. Biol., vol. 26, no. 17, pp. 6357–6371, Sep. 2006. [CrossRef]
- S. S. Ghare et al., “Coordinated histone H3 methylation and acetylation regulates physiologic and pathologic Fas Ligand gene expression in human CD4+ T cells,” J. Immunol. Baltim. Md 1950, vol. 193, no. 1, pp. 412–421, Jul. 2014. [CrossRef]
- Y. Dou et al., “Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF,” Cell, vol. 121, no. 6, pp. 873–885, Jun. 2005. [CrossRef]
- C. Mozzetta et al., “The Histone H3 Lysine 9 Methyltransferases G9a and GLP Regulate Polycomb Repressive Complex 2-Mediated Gene Silencing,” Mol. Cell, vol. 53, no. 2, pp. 277–289, Jan. 2014. [CrossRef]
- C. Mozzetta, J. Pontis, and S. Ait-Si-Ali, “Functional Crosstalk Between Lysine Methyltransferases on Histone Substrates: The Case of G9A/GLP and Polycomb Repressive Complex 2,” Antioxid. Redox Signal., vol. 22, no. 16, pp. 1365–1381, Jun. 2015. [CrossRef]
- X. Yang, V. L. Hegde, R. Rao, J. Zhang, P. S. Nagarkatti, and M. Nagarkatti, “Histone Modifications Are Associated with Δ9-Tetrahydrocannabinol-mediated Alterations in Antigen-specific T Cell Responses *,” J. Biol. Chem., vol. 289, no. 27, pp. 18707–18718, Jul. 2014. [CrossRef]
- T. Zhang, S. Cooper, and N. Brockdorff, “The interplay of histone modifications – writers that read,” EMBO Rep., vol. 16, no. 11, pp. 1467–1481, Nov. 2015. [CrossRef]
- J. Yu et al., “Involvement of miR-665 in protection effect of dexmedetomidine against Oxidative Stress Injury in myocardial cells via CB2 and CK1,” Biomed. Pharmacother. Biomedecine Pharmacother., vol. 115, p. 108894, Jul. 2019. [CrossRef]
- P. Möhnle et al., “MicroRNA-665 is involved in the regulation of the expression of the cardioprotective cannabinoid receptor CB2 in patients with severe heart failure,” Biochem. Biophys. Res. Commun., vol. 451, no. 4, pp. 516–521, Sep. 2014. [CrossRef]
- Y. Tang, J. S. Bao, J. H. Su, and W. Huang, “MicroRNA-139 modulates Alzheimer’s-associated pathogenesis in SAMP8 mice by targeting cannabinoid receptor type 2,” Genet. Mol. Res., vol. 16, no. 1, 2017. [CrossRef]
- B. S. Basavarajappa and S. Subbanna, “Molecular Insights into Epigenetics and Cannabinoid Receptors,” Biomolecules, vol. 12, no. 11, p. 1560, Oct. 2022. [CrossRef]
- F. Weis et al., “Substantially altered expression pattern of cannabinoid receptor 2 and activated endocannabinoid system in patients with severe heart failure,” J. Mol. Cell. Cardiol., vol. 48, no. 6, pp. 1187–1193, Jun. 2010. [CrossRef]
- P. Möhnle et al., “MicroRNA-665 is involved in the regulation of the expression of the cardioprotective cannabinoid receptor CB2 in patients with severe heart failure,” Biochem. Biophys. Res. Commun., vol. 451, no. 4, pp. 516–521, Sep. 2014. [CrossRef]
- B. Bietar, S. Tanner, and C. Lehmann, “Neuroprotection and Beyond: The Central Role of CB1 and CB2 Receptors in Stroke Recovery,” Int. J. Mol. Sci., vol. 24, no. 23, Art. no. 23, Jan. 2023. [CrossRef]
- B. K. Atwood, J. Wager-Miller, C. Haskins, A. Straiker, and K. Mackie, “Functional Selectivity in CB2 Cannabinoid Receptor Signaling and Regulation: Implications for the Therapeutic Potential of CB2 Ligands,” Mol. Pharmacol., vol. 81, no. 2, pp. 250–263, Feb. 2012. [CrossRef]
- Y. Tao et al., “Cannabinoid receptor-2 stimulation suppresses neuroinflammation by regulating microglial M1/M2 polarization through the cAMP/PKA pathway in an experimental GMH rat model,” Brain. Behav. Immun., vol. 58, pp. 118–129, Nov. 2016. [CrossRef]
- G. Turu et al., “Biased Coupling to β-Arrestin of Two Common Variants of the CB2 Cannabinoid Receptor,” Front. Endocrinol., vol. 12, p. 714561, Aug. 2021. [CrossRef]
- P.-Y. Jean-Charles, S. Kaur, and S. K. Shenoy, “GPCR signaling via β-arrestin-dependent mechanisms,” J. Cardiovasc. Pharmacol., vol. 70, no. 3, pp. 142–158, Sep. 2017. [CrossRef]
- Dhopeshwarkar and, K. Mackie, “Functional Selectivity of CB2 Cannabinoid Receptor Ligands at a Canonical and Noncanonical Pathway,” J. Pharmacol. Exp. Ther., vol. 358, no. 2, pp. 342–351, Aug. 2016. [CrossRef]
- Y.-Y. Liao et al., “Snapshot of the cannabinoid receptor 1-arrestin complex unravels the biased signaling mechanism,” Cell, vol. 186, no. 26, pp. 5784-5797.e17, Dec. 2023. [CrossRef]
- B. Polini et al., “Positive Allosteric Modulation of CB1 and CB2 Cannabinoid Receptors Enhances the Neuroprotective Activity of a Dual CB1R/CB2R Orthosteric Agonist,” Life Basel Switz., vol. 10, no. 12, p. 333, Dec. 2020. [CrossRef]
- D. J. Foster and P. J. Conn, “Allosteric modulation of GPCRs: new insights and potential utility for treatment of schizophrenia and other CNS disorders,” Neuron, vol. 94, no. 3, pp. 431–446, May 2017. [CrossRef]
- B. Polini et al., “Positive Allosteric Modulation of CB1 and CB2 Cannabinoid Receptors Enhances the Neuroprotective Activity of a Dual CB1R/CB2R Orthosteric Agonist,” Life, vol. 10, no. 12, p. 333, Dec. 2020. [CrossRef]
- D. J. Foster and P. J. Conn, “Allosteric modulation of GPCRs: new insights and potential utility for treatment of schizophrenia and other CNS disorders,” Neuron, vol. 94, no. 3, pp. 431–446, May 2017. [CrossRef]
- S. Ferranti and D. J. Foster, “Cannabinoid type-2 receptors: An emerging target for regulating schizophrenia-relevant brain circuits,” Front. Neurosci., vol. 16, Aug. 2022. [CrossRef]
- P. Pandey, K. K. Roy, and R. J. Doerksen, “Negative Allosteric Modulators of Cannabinoid Receptor 2: Protein Modeling, Binding Site Identification and Molecular Dynamics Simulations in the Presence of an Orthosteric Agonist,” J. Biomol. Struct. Dyn., vol. 38, no. 1, pp. 32–47, Jan. 2020. [CrossRef]
- Patwardhan, N. Cheng, and J. Trejo, “Post-Translational Modifications of G Protein–Coupled Receptors Control Cellular Signaling Dynamics in Space and Time,” Pharmacol. Rev., vol. 73, no. 1, pp. 120–151, Jan. 2021. [CrossRef]
- G. A. Cabral and L. Griffin-Thomas, “Emerging Role of the CB2 Cannabinoid Receptor in Immune Regulation and Therapeutic Prospects,” Expert Rev. Mol. Med., vol. 11, p. e3, Jan. 2009. [CrossRef]
- E. R. Carruthers and N. L. Grimsey, “Cannabinoid CB2 receptor orthologues; in vitro function and perspectives for preclinical to clinical translation,” Br. J. Pharmacol., vol. 181, no. 14, pp. 2247–2269, 2024. [CrossRef]
- V. V. Gurevich and E. V. Gurevich, “How and why do GPCRs dimerize?,” Trends Pharmacol. Sci., vol. 29, no. 5, pp. 234–240, May 2008. [CrossRef]
- G. Turu et al., “Biased Coupling to β-Arrestin of Two Common Variants of the CB2 Cannabinoid Receptor,” Front. Endocrinol., vol. 12, p. 714561, Aug. 2021. [CrossRef]
- C. Turcotte, M.-R. Blanchet, M. Laviolette, and N. Flamand, “The CB2 receptor and its role as a regulator of inflammation,” Cell. Mol. Life Sci. CMLS, vol. 73, no. 23, pp. 4449–4470, Jul. 2016. [CrossRef]
- G. A. Cabral and L. Griffin-Thomas, “Emerging Role of the CB2 Cannabinoid Receptor in Immune Regulation and Therapeutic Prospects,” Expert Rev. Mol. Med., vol. 11, p. e3, Jan. 2009. [CrossRef]
- E. D. Gonçalves and R. C. Dutra, “Cannabinoid receptors as therapeutic targets for autoimmune diseases: where do we stand?,” Drug Discov. Today, vol. 24, no. 9, pp. 1845–1853, Sep. 2019. [CrossRef]
- M. S. García-Gutiérrez, A. B. Torregrosa, F. Navarrete, D. Navarro, and J. Manzanares, “A comprehensive review of the multifaceted role of cannabinoid receptor type 2 in neurodegenerative and neuropsychiatric disorders,” Pharmacol. Res., vol. 213, p. 107657, Mar. 2025. [CrossRef]
- Morcuende, M. S. García-Gutiérrez, S. Tambaro, E. Nieto, J. Manzanares, and T. Femenia, “Immunomodulatory Role of CB2 Receptors in Emotional and Cognitive Disorders,” Front. Psychiatry, vol. 13, p. 866052, Apr. 2022. [CrossRef]
- J. C. Ashton and M. Glass, “The Cannabinoid CB2 Receptor as a Target for Inflammation-Dependent Neurodegeneration,” Curr. Neuropharmacol., vol. 5, no. 2, pp. 73–80, Jun. 2007.
- F. R. Henshaw, L. S. Dewsbury, C. K. Lim, and G. Z. Steiner, “The Effects of Cannabinoids on Pro- and Anti-Inflammatory Cytokines: A Systematic Review of In Vivo Studies,” Cannabis Cannabinoid Res., vol. 6, no. 3, pp. 177–195, Jun. 2021. [CrossRef]
- G. A. Cabral and L. Griffin-Thomas, “Emerging Role of the CB2 Cannabinoid Receptor in Immune Regulation and Therapeutic Prospects,” Expert Rev. Mol. Med., vol. 11, p. e3, Jan. 2009. [CrossRef]
- K. H. Han et al., “CB1 and CB2 cannabinoid receptors differentially regulate the production of reactive oxygen species by macrophages,” Cardiovasc. Res., vol. 84, no. 3, pp. 378–386, Dec. 2009. [CrossRef]
- P. Rzeczycki et al., “Cannabinoid receptor type 2 is upregulated in synovium following joint injury and mediates anti-inflammatory effects in synovial fibroblasts and macrophages,” Osteoarthritis Cartilage, vol. 29, no. 12, pp. 1720–1731, Dec. 2021. [CrossRef]
- M. Creoli et al., “Effects of CB2 Receptor Modulation on Macrophage Polarization in Pediatric Inflammatory Bowel Disease,” Int. J. Mol. Sci., vol. 26, no. 8, p. 3720, Apr. 2025. [CrossRef]
- Lago-Fernandez, S. Zarzo-Arias, N. Jagerovic, and P. Morales, “Relevance of Peroxisome Proliferator Activated Receptors in Multitarget Paradigm Associated with the Endocannabinoid System,” Int. J. Mol. Sci., vol. 22, no. 3, p. 1001, Jan. 2021. [CrossRef]
- A. Tarique et al., “Anti-inflammatory effects of lenabasum, a cannabinoid receptor type 2 agonist, on macrophages from cystic fibrosis,” J. Cyst. Fibros., vol. 19, no. 5, pp. 823–829, Sep. 2020. [CrossRef]
- Tortora, *!!! REPLACE !!!*; et al. , “Effects of CB2 Receptor Modulation on Macrophage Polarization in Pediatric Celiac Disease,” Biomedicines, vol. 10, no. 4, p. 874, Apr. 2022. [CrossRef]
- E. Gaffal et al., “Cannabinoid Receptor 2 Modulates Maturation of Dendritic Cells and Their Capacity to Induce Hapten-Induced Contact Hypersensitivity,” Int. J. Mol. Sci., vol. 21, no. 2, p. 475, Jan. 2020. [CrossRef]
- W. Becker et al., “Activation of Cannabinoid Receptor 2 Prevents Colitis-Associated Colon Cancer through Myeloid Cell De-activation Upstream of IL-22 Production,” iScience, vol. 23, no. 9, Sep. 2020. [CrossRef]
- Angelina, *!!! REPLACE !!!*; et al. , “Cannabinoids induce functional Tregs by promoting tolerogenic DCs via autophagy and metabolic reprograming,” Mucosal Immunol., vol. 15, no. 1, pp. 96–108, Jan. 2022. [CrossRef]
- J. Liu et al., “CCR7 Chemokine Receptor-Inducible lnc-Dpf3 Restrains Dendritic Cell Migration by Inhibiting HIF-1α-Mediated Glycolysis,” Immunity, vol. 50, no. 3, pp. 600-615.e15, Mar. 2019. [CrossRef]
- S. Adhikary, V. P. Kocieda, J.-H. Yen, R. F. Tuma, and D. Ganea, “Signaling through cannabinoid receptor 2 suppresses murine dendritic cell migration by inhibiting matrix metalloproteinase 9 expression,” Blood, vol. 120, no. 18, pp. 3741–3749, Nov. 2012. [CrossRef]
- S. Adhikary, V. P. Kocieda, J.-H. Yen, R. F. Tuma, and D. Ganea, “Signaling through cannabinoid receptor 2 suppresses murine dendritic cell migration by inhibiting matrix metalloproteinase 9 expression,” Blood, vol. 120, no. 18, pp. 3741–3749, Nov. 2012. [CrossRef]
- M. Gentili et al., “Selective CB2 inverse agonist JTE907 drives T cell differentiation towards a Treg cell phenotype and ameliorates inflammation in a mouse model of inflammatory bowel disease,” Pharmacol. Res., vol. 141, pp. 21–31, Mar. 2019. [CrossRef]
- R. H. Robinson, J. J. Meissler, J. M. Breslow-Deckman, J. Gaughan, M. W. Adler, and T. K. Eisenstein, “Cannabinoids inhibit T-cells via cannabinoid receptor 2 in an in vitro assay for graft rejection, the mixed lymphocyte reaction,” J. Neuroimmune Pharmacol. Off. J. Soc. NeuroImmune Pharmacol., vol. 8, no. 5, pp. 1239–1250, Dec. 2013. [CrossRef]
- J. M. Sido, P. S. Nagarkatti, and M. Nagarkatti, “Production of endocannabinoids by activated T cells and B cells modulates inflammation associated with delayed type hypersensitivity,” Eur. J. Immunol., vol. 46, no. 6, pp. 1472–1479, Jun. 2016. [CrossRef]
- Ricardi, S. Barachini, G. Consoli, D. Marazziti, B. Polini, and G. Chiellini, “Beta-Caryophyllene, a Cannabinoid Receptor Type 2 Selective Agonist, in Emotional and Cognitive Disorders,” Int. J. Mol. Sci., vol. 25, no. 6, Art. no. 6, Jan. 2024. [CrossRef]
- W. Kong, H. Li, R. F. Tuma, and D. Ganea, “Selective CB2 receptor activation ameliorates EAE by reducing Th17 differentiation and immune cell accumulation in the CNS,” Cell. Immunol., vol. 287, no. 1, pp. 1–17, Jan. 2014. [CrossRef]
- Almogi-Hazan and, R. Or, “Cannabis, the Endocannabinoid System and Immunity-the Journey from the Bedside to the Bench and Back,” Int. J. Mol. Sci., vol. 21, no. 12, p. 4448, Jun. 2020. [CrossRef]
- Kozela, A. Juknat, N. Kaushansky, N. Rimmerman, A. Ben-Nun, and Z. Vogel, “Cannabinoids Decrease the Th17 Inflammatory Autoimmune Phenotype,” J. Neuroimmune Pharmacol., vol. 8, no. 5, pp. 1265–1276, Dec. 2013. [CrossRef]
- T.-R. Jan and N. E. Kaminski, “Role of mitogen-activated protein kinases in the differential regulation of interleukin-2 by cannabinol,” J. Leukoc. Biol., vol. 69, no. 5, pp. 841–849, May 2001. [CrossRef]
- W. Chen et al., “Magnitude of stimulation dictates the cannabinoid-mediated differential T cell response to HIVgp120,” J. Leukoc. Biol., vol. 92, no. 5, pp. 1093–1102, Nov. 2012. [CrossRef]
- Devinsky, *!!! REPLACE !!!*; et al. , “Randomized, dose-ranging safety trial of cannabidiol in Dravet syndrome,” Neurology, vol. 90, no. 14, pp. e1204–e1211, Apr. 2018. [CrossRef]
- M. Elliott, N. Singh, M. Nagarkatti, and P. S. Nagarkatti, “Cannabidiol Attenuates Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis Through Induction of Myeloid-Derived Suppressor Cells,” Front. Immunol., vol. 9, p. 1782, 2018. [CrossRef]
- Selvi, *!!! REPLACE !!!*; et al. , “Inhibitory effect of synthetic cannabinoids on cytokine production in rheumatoid fibroblast-like synoviocytes,” Clin. Exp. Rheumatol., vol. 26, no. 4, pp. 574–581, 2008.
- S. G. Kinsey, P. S. Naidu, B. F. Cravatt, D. T. Dudley, and A. H. Lichtman, “Fatty acid amide hydrolase blockade attenuates the development of collagen-induced arthritis and related thermal hyperalgesia in mice,” Pharmacol. Biochem. Behav., vol. 99, no. 4, pp. 718–725, Oct. 2011. [CrossRef]
- Angelina, *!!! REPLACE !!!*; et al. , “Cannabinoids induce functional Tregs by promoting tolerogenic DCs via autophagy and metabolic reprograming,” Mucosal Immunol., vol. 15, no. 1, pp. 96–108, Jan. 2022. [CrossRef]
- M. Gentili et al., “Selective CB2 inverse agonist JTE907 drives T cell differentiation towards a Treg cell phenotype and ameliorates inflammation in a mouse model of inflammatory bowel disease,” Pharmacol. Res., vol. 141, pp. 21–31, Mar. 2019. [CrossRef]
- Khuja, Z. Yekhtin, R. Or, and O. Almogi-Hazan, “Cannabinoids Reduce Inflammation but Inhibit Lymphocyte Recovery in Murine Models of Bone Marrow Transplantation,” Int. J. Mol. Sci., vol. 20, no. 3, p. 668, Feb. 2019. [CrossRef]
- M. Gentili et al., “Selective CB2 inverse agonist JTE907 drives T cell differentiation towards a Treg cell phenotype and ameliorates inflammation in a mouse model of inflammatory bowel disease,” Pharmacol. Res., vol. 141, pp. 21–31, Mar. 2019. [CrossRef]
- E. Kozela et al., “Cannabidiol inhibits pathogenic T cells, decreases spinal microglial activation and ameliorates multiple sclerosis-like disease in C57BL/6 mice,” Br. J. Pharmacol., vol. 163, no. 7, pp. 1507–1519, Aug. 2011. [CrossRef]
- M. Gentili et al., “Selective CB2 inverse agonist JTE907 drives T cell differentiation towards a Treg cell phenotype and ameliorates inflammation in a mouse model of inflammatory bowel disease,” Pharmacol. Res., vol. 141, pp. 21–31, Mar. 2019. [CrossRef]
- M. Malfait et al., “The nonpsychoactive cannabis constituent cannabidiol is an oral anti-arthritic therapeutic in murine collagen-induced arthritis,” Proc. Natl. Acad. Sci. U. S. A., vol. 97, no. 17, pp. 9561–9566, Aug. 2000. [CrossRef]
- L. B. A. Fontes, D. D. S. Dias, B. J. V. Aarestrup, F. M. Aarestrup, A. A. Da Silva Filho, and J. O. do A. Corrêa, “β-Caryophyllene ameliorates the development of experimental autoimmune encephalomyelitis in C57BL/6 mice,” Biomed. Pharmacother. Biomedecine Pharmacother., vol. 91, pp. 257–264, Jul. 2017. [CrossRef]
- C. Wei, L. Huang, Y. Zheng, and X. Cai, “Selective activation of cannabinoid receptor 2 regulates Treg/Th17 balance to ameliorate neutrophilic asthma in mice,” Ann. Transl. Med., vol. 9, no. 12, p. 1015, Jun. 2021. [CrossRef]
- Rahaman and, D. Ganguly, “Endocannabinoids in immune regulation and immunopathologies,” Immunology, vol. 164, no. 2, pp. 242–252, 2021. [CrossRef]
- A. Cabral and L. Griffin-Thomas, “Emerging Role of the CB2 Cannabinoid Receptor in Immune Regulation and Therapeutic Prospects,” Expert Rev. Mol. Med., vol. 11, p. e3, Jan. 2009. [CrossRef]
- Palazuelos, T. Aguado, A. Egia, R. Mechoulam, M. Guzmán, and I. Galve-Roperh, “Non-psychoactive CB2 cannabinoid agonists stimulate neural progenitor proliferation,” FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol., vol. 20, no. 13, pp. 2405–2407, Nov. 2006. [CrossRef]
- S. Basu, A. Ray, and B. N. Dittel, “Cannabinoid Receptor 2 (CB2) is Critical for the Homing and Retention of Marginal Zone B Lineage Cells and for Efficient T-independent Immune Responses,” J. Immunol. Baltim. Md 1950, vol. 187, no. 11, pp. 5720–5732, Dec. 2011. [CrossRef]
- T. Castaneda, A. Harui, and M. D. Roth, “Regulation of Cell Surface CB2 Receptor during Human B Cell Activation and Differentiation,” J. Neuroimmune Pharmacol. Off. J. Soc. NeuroImmune Pharmacol., vol. 12, no. 3, pp. 544–554, Sep. 2017. [CrossRef]
- S. E. O’Sullivan, “An update on PPAR activation by cannabinoids,” Br. J. Pharmacol., vol. 173, no. 12, pp. 1899–1910, Jun. 2016. [CrossRef]
- Cristino, T. Bisogno, and V. Di Marzo, “Cannabinoids and the expanded endocannabinoid system in neurological disorders,” Nat. Rev. Neurol., vol. 16, no. 1, pp. 9–29, Jan. 2020. [CrossRef]
- E. Ryberg et al., “The orphan receptor GPR55 is a novel cannabinoid receptor,” Br. J. Pharmacol., vol. 152, no. 7, pp. 1092–1101, Dec. 2007. [CrossRef]
- J. Brown, “Novel cannabinoid receptors,” Br. J. Pharmacol., vol. 152, no. 5, pp. 567–575, Nov. 2007. [CrossRef]
- Moreno-Lanceta, M. Medrano-Bosch, B. Simón-Codina, M. Barber-González, W. Jiménez, and P. Melgar-Lesmes, “PPAR-γ Agonist GW1929 Targeted to Macrophages with Dendrimer–Graphene Nanostars Reduces Liver Fibrosis and Inflammation,” Pharmaceutics, vol. 15, no. 5, Art. no. 5, May 2023. [CrossRef]
- R. Fernandez-Boyanapalli, S. C. Frasch, D. W. H. Riches, R. W. Vandivier, P. M. Henson, and D. L. Bratton, “PPARγ activation normalizes resolution of acute sterile inflammation in murine chronic granulomatous disease,” Blood, vol. 116, no. 22, pp. 4512–4522, Nov. 2010. [CrossRef]
- K. F. MacKenzie et al., “PGE2 Induces Macrophage IL-10 Production and a Regulatory-like Phenotype via a Protein Kinase A–SIK–CRTC3 Pathway,” J. Immunol. Author Choice, vol. 190, no. 2, pp. 565–577, Jan. 2013. [CrossRef]
- Khalil, *!!! REPLACE !!!*; et al. , “Functional Role of Transient Receptor Potential Channels in Immune Cells and Epithelia,” Front. Immunol., vol. 9, p. 174, Feb. 2018. [CrossRef]
- V. Ramkumar, S. Sheth, A. Dhukhwa, R. Al Aameri, L. Rybak, and D. Mukherjea, “Transient Receptor Potential Channels and Auditory Functions,” Antioxid. Redox Signal., vol. 36, no. 16–18, pp. 1158–1170, Jun. 2022. [CrossRef]
- V. H. Perry and J. Teeling, “Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration,” Semin. Immunopathol., vol. 35, no. 5, pp. 601–612, 2013. [CrossRef]
- Vidal-Itriago, *!!! REPLACE !!!*; et al. , “Microglia morphophysiological diversity and its implications for the CNS,” Front. Immunol., vol. 13, p. 997786, Oct. 2022. [CrossRef]
- Colonna and, O. Butovsky, “Microglia Function in the Central Nervous System During Health and Neurodegeneration,” Annu. Rev. Immunol., vol. 35, pp. 441–468, Apr. 2017. [CrossRef]
- Y. Tang and W. Le, “Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases,” Mol. Neurobiol., vol. 53, no. 2, pp. 1181–1194, Mar. 2016. [CrossRef]
- W. Grabon et al., “CB2 expression in mouse brain: from mapping to regulation in microglia under inflammatory conditions,” J. Neuroinflammation, vol. 21, no. 1, p. 206, Aug. 2024. [CrossRef]
- R. Meanti et al., “Cannabinoid Receptor 2 (CB2R) as potential target for the pharmacological treatment of neurodegenerative diseases,” Biomed. Pharmacother., vol. 186, p. 118044, May 2025. [CrossRef]
- Y. Tang, B. Wolk, and D. A. Kendall, “Effects of a CB2 Subtype Selective Agonist ABK5-1 on Cytokine Production in Microglia,” J. Cell. Signal., vol. Volume 2, no. Issue 2, Art. no. Issue 2, Apr. 2021. [CrossRef]
- J.-M. Derocq, O. Jbilo, M. Bouaboula, M. Ségui, C. Clère, and P. Casellas, “Genomic and Functional Changes Induced by the Activation of the Peripheral Cannabinoid Receptor CB2 in the Promyelocytic Cells HL-60: POSSIBLE INVOLVEMENT OF THE CB2 RECEPTOR IN CELL DIFFERENTIATION*,” J. Biol. Chem., vol. 275, no. 21, pp. 15621–15628, May 2000. [CrossRef]
- I.-Y. Choi, C. Ju, A. M. A. Anthony Jalin, D. I. Lee, P. L. Prather, and W.-K. Kim, “Activation of Cannabinoid CB2 Receptor–Mediated AMPK/CREB Pathway Reduces Cerebral Ischemic Injury,” Am. J. Pathol., vol. 182, no. 3, pp. 928–939, Mar. 2013. [CrossRef]
- A. Gallelli et al., “Modulation of the Oxidative Stress and Lipid Peroxidation by Endocannabinoids and Their Lipid Analogues,” Antioxidants, vol. 7, no. 7, p. 93, Jul. 2018. [CrossRef]
- M. Tanaka, S. Sackett, and Y. Zhang, “Endocannabinoid Modulation of Microglial Phenotypes in Neuropathology,” Front. Neurol., vol. 11, p. 87, 2020. [CrossRef]
- M. Hashiesh, C. Sharma, S. N. Goyal, N. K. Jha, and S. Ojha, “Pharmacological Properties, Therapeutic Potential and Molecular Mechanisms of JWH133, a CB2 Receptor-Selective Agonist,” Front. Pharmacol., vol. 12, p. 702675, Jul. 2021. [CrossRef]
- Vuic, *!!! REPLACE !!!*; et al. , “Cannabinoid CB2 Receptors in Neurodegenerative Proteinopathies: New Insights and Therapeutic Potential,” Biomedicines, vol. 10, no. 12, p. 3000, Nov. 2022. [CrossRef]
- Á. Arévalo-Martín et al., “CB2 cannabinoid receptors as an emerging target for demyelinating diseases: from neuroimmune interactions to cell replacement strategies,” Br. J. Pharmacol., vol. 153, no. 2, pp. 216–225, Jan. 2008. [CrossRef]
- Sharma et al., “Microglial cannabinoid receptor 2 and epigenetic regulation: Implications for the treatment of depression,” Eur. J. Pharmacol., vol. 995, p. 177422, May 2025. [CrossRef]
- K. Ghosh, G.-F. Zhang, H. Chen, S.-R. Chen, and H.-L. Pan, “Cannabinoid CB2 receptors are upregulated via bivalent histone modifications and control primary afferent input to the spinal cord in neuropathic pain,” J. Biol. Chem., vol. 298, no. 6, p. 101999, Jun. 2022. [CrossRef]
- Sharma et al., “Microglial cannabinoid receptor 2 and epigenetic regulation: Implications for the treatment of depression,” Eur. J. Pharmacol., vol. 995, p. 177422, May 2025. [CrossRef]
- A. Komorowska-Müller and A.-C. Schmöle, “CB2 Receptor in Microglia: The Guardian of Self-Control,” Int. J. Mol. Sci., vol. 22, no. 1, p. 19, Dec. 2020. [CrossRef]
- Chen, M. Gao, F. Gao, Q. Su, and J. Wu, “Brain cannabinoid receptor 2: expression, function and modulation,” Acta Pharmacol. Sin., vol. 38, no. 3, pp. 312–316, Mar. 2017. [CrossRef]
- L. Cortez, N. Rodrigues da Silva, F. S. Guimarães, and F. V. Gomes, “Are CB2 Receptors a New Target for Schizophrenia Treatment?,” Front. Psychiatry, vol. 11, p. 587154, 2020. [CrossRef]
- García-Baos, A. Castro-Zavala, and O. Valverde, “Reviewing the Role of the Endocannabinoid System in the Pathophysiology of Depression,” Front. Pharmacol., vol. 12, Dec. 2021. [CrossRef]
- C. Felger and F. E. Lotrich, “Inflammatory Cytokines in Depression: Neurobiological Mechanisms and Therapeutic Implications,” Neuroscience, vol. 246, pp. 199–229, Aug. 2013. [CrossRef]
- Iob, C. Kirschbaum, and A. Steptoe, “Persistent depressive symptoms, HPA-axis hyperactivity, and inflammation: the role of cognitive-affective and somatic symptoms,” Mol. Psychiatry, vol. 25, no. 5, pp. 1130–1140, 2020. [CrossRef]
- W. Jiao et al., “The immunological perspective of major depressive disorder: unveiling the interactions between central and peripheral immune mechanisms,” J. Neuroinflammation, vol. 22, no. 1, p. 10, Jan. 2025. [CrossRef]
- D. Rial et al., “Depression as a Glial-Based Synaptic Dysfunction,” Front. Cell. Neurosci., vol. 9, p. 521, Jan. 2016. [CrossRef]
- S. Duman, G. K. Aghajanian, G. Sanacora, and J. H. Krystal, “Synaptic plasticity and depression: New insights from stress and rapid-acting antidepressants,” Nat. Med., vol. 22, no. 3, pp. 238–249, Mar. 2016. [CrossRef]
- M. Adkins, E. M. Colby, W.-K. Kim, L. L. Wellman, and L. D. Sanford, “Stressor control and regional inflammatory responses in the brain: regulation by the basolateral amygdala,” J. Neuroinflammation, vol. 20, no. 1, p. 128, May 2023. [CrossRef]
- Zoppi, *!!! REPLACE !!!*; et al. , “Regulatory role of the cannabinoid CB2 receptor in stress-induced neuroinflammation in mice,” Br. J. Pharmacol., vol. 171, no. 11, pp. 2814–2826, 2014. [CrossRef]
- H. Ishiguro, B. G. Kibret, Y. Horiuchi, and E. S. Onaivi, “Potential Role of Cannabinoid Type 2 Receptors in Neuropsychiatric and Neurodegenerative Disorders,” Front. Psychiatry, vol. 13, p. 828895, Jun. 2022. [CrossRef]
- C. E. Martinez Ramirez, G. Ruiz-Pérez, T. M. Stollenwerk, C. Behlke, A. Doherty, and C. J. Hillard, “Endocannabinoid Signaling in the Central Nervous System,” Glia, vol. 71, no. 1, pp. 5–35, Jan. 2023. [CrossRef]
- K. Farooq, K. Asghar, S. Kanwal, and A. Zulqernain, “Role of inflammatory cytokines in depression: Focus on interleukin-1β,” Biomed. Rep., vol. 6, no. 1, pp. 15–20, Jan. 2017. [CrossRef]
- Beurel, M. Toups, and C. B. Nemeroff, “The Bidirectional Relationship of Depression and Inflammation: Double Trouble,” Neuron, vol. 107, no. 2, pp. 234–256, Jul. 2020. [CrossRef]
- Sălcudean, *!!! REPLACE !!!*; et al. , “Neuroinflammation—A Crucial Factor in the Pathophysiology of Depression—A Comprehensive Review,” Biomolecules, vol. 15, no. 4, Art. no. 4, Apr. 2025. [CrossRef]
- M. Maes, M. Rachayon, K. Jirakran, A. Sughondhabirom, A. F. Almulla, and P. Sodsai, “Role of T and B lymphocyte cannabinoid type 1 and 2 receptors in major depression and suicidal behaviours,” Acta Neuropsychiatr., vol. 36, no. 5, pp. 287–298, Oct. 2024. [CrossRef]
- M. S. García-Gutiérrez, A. B. Torregrosa, F. Navarrete, D. Navarro, and J. Manzanares, “A comprehensive review of the multifaceted role of cannabinoid receptor type 2 in neurodegenerative and neuropsychiatric disorders,” Pharmacol. Res., vol. 213, p. 107657, Mar. 2025. [CrossRef]
- M. S. García-Gutiérrez and J. Manzanares, “Overexpression of CB2 cannabinoid receptors decreased vulnerability to anxiety and impaired anxiolytic action of alprazolam in mice,” J. Psychopharmacol. Oxf. Engl., vol. 25, no. 1, pp. 111–120, Jan. 2011. [CrossRef]
- V. Stempel et al., “Cannabinoid Type 2 Receptors Mediate a Cell Type-Specific Plasticity in the Hippocampus,” Neuron, vol. 90, no. 4, pp. 795–809, May 2016. [CrossRef]
- R. Meanti et al., “Cannabinoid Receptor 2 (CB2R) as potential target for the pharmacological treatment of neurodegenerative diseases,” Biomed. Pharmacother., vol. 186, p. 118044, May 2025. [CrossRef]
- E.-S. Hwang et al., “Antidepressant-like effects of β-caryophyllene on restraint plus stress-induced depression,” Behav. Brain Res., vol. 380, p. 112439, Feb. 2020. [CrossRef]
- Bahi, S. Al Mansouri, E. Al Memari, M. Al Ameri, S. M. Nurulain, and S. Ojha, “β-Caryophyllene, a CB2 receptor agonist produces multiple behavioral changes relevant to anxiety and depression in mice,” Physiol. Behav., vol. 135, pp. 119–124, Aug. 2014. [CrossRef]
- E. S. Onaivi, H. Ishiguro, S. Gu, and Q.-R. Liu, “CNS effects of CB2 cannabinoid receptors: beyond neuro-immuno-cannabinoid activity,” J. Psychopharmacol. Oxf. Engl., vol. 26, no. 1, pp. 92–103, Jan. 2012. [CrossRef]
- M. Galán-Ganga, R. del Río, N. Jiménez-Moreno, M. Díaz-Guerra, and I. Lastres-Becker, “Cannabinoid CB2 Receptor Modulation by the Transcription Factor NRF2 is Specific in Microglial Cells,” Cell. Mol. Neurobiol., vol. 40, no. 1, pp. 167–177, Aug. 2019. [CrossRef]
- M. Galán-Ganga, R. del Río, N. Jiménez-Moreno, M. Díaz-Guerra, and I. Lastres-Becker, “Cannabinoid CB2 Receptor Modulation by the Transcription Factor NRF2 is Specific in Microglial Cells,” Cell. Mol. Neurobiol., vol. 40, no. 1, pp. 167–177, Aug. 2019. [CrossRef]
- P. Sharma et al., “Microglial cannabinoid receptor 2 and epigenetic regulation: Implications for the treatment of depression,” Eur. J. Pharmacol., vol. 995, p. 177422, May 2025. [CrossRef]
- Bayraktar and M., R. Kreutz, “The Role of Activity-Dependent DNA Demethylation in the Adult Brain and in Neurological Disorders,” Front. Mol. Neurosci., vol. 11, May 2018. [CrossRef]
- Yu, *!!! REPLACE !!!*; et al. , “The Neuroprotective Effects of the CB2 Agonist GW842166x in the 6-OHDA Mouse Model of Parkinson’s Disease,” Cells, vol. 10, no. 12, p. 3548, Dec. 2021. [CrossRef]
- Manzanares, M. Julian, and A. Carrascosa, “Role of the Cannabinoid System in Pain Control and Therapeutic Implications for the Management of Acute and Chronic Pain Episodes,” Curr. Neuropharmacol., vol. 4, no. 3, pp. 239–257, Jul. 2006. [CrossRef]
- T. Anthony, S. Rahmat, P. Sangle, O. Sandhu, and S. Khan, “Cannabinoid Receptors and Their Relationship With Chronic Pain: A Narrative Review,” Cureus, vol. 12, no. 9, p. e10436. [CrossRef]
- Y. Shang and Y. Tang, “The central cannabinoid receptor type-2 (CB2) and chronic pain,” Int. J. Neurosci., vol. 127, no. 9, pp. 812–823, Sep. 2017. [CrossRef]
- N. J. van den Hoogen, E. K. Harding, C. E. D. Davidson, and T. Trang, “Cannabinoids in Chronic Pain: Therapeutic Potential Through Microglia Modulation,” Front. Neural Circuits, vol. 15, Jan. 2022. [CrossRef]
- N. Barrie and N. Manolios, “The endocannabinoid system in pain and inflammation: Its relevance to rheumatic disease,” Eur. J. Rheumatol., vol. 4, no. 3, pp. 210–218, Sep. 2017. [CrossRef]
- Guindon and A., G. Hohmann, “Cannabinoid CB2 receptors: a therapeutic target for the treatment of inflammatory and neuropathic pain,” Br. J. Pharmacol., vol. 153, no. 2, pp. 319–334, Jan. 2008. [CrossRef]
- J. R. Elmes et al., “Activation of CB1 and CB2 receptors attenuates the induction and maintenance of inflammatory pain in the rat,” Pain, vol. 118, no. 3, pp. 327–335, Dec. 2005. [CrossRef]
- M. M. Ibrahim et al., “Activation of CB2 cannabinoid receptors by AM1241 inhibits experimental neuropathic pain: Pain inhibition by receptors not present in the CNS,” Proc. Natl. Acad. Sci., vol. 100, no. 18, pp. 10529–10533, Sep. 2003. [CrossRef]
- Z. Járai et al., “Cannabinoid-induced mesenteric vasodilation through an endothelial site distinct from CB1 or CB2 receptors,” Proc. Natl. Acad. Sci., vol. 96, no. 24, pp. 14136–14141, Nov. 1999. [CrossRef]
- S. S. Duffy, J. P. Hayes, N. T. Fiore, and G. Moalem-Taylor, “The cannabinoid system and microglia in health and disease,” Neuropharmacology, vol. 190, p. 108555, Jun. 2021. [CrossRef]
- S. Li et al., “Cannabigerol (CBG): A Comprehensive Review of Its Molecular Mechanisms and Therapeutic Potential,” Molecules, vol. 29, no. 22, p. 5471, Nov. 2024. [CrossRef]
- B. Rezende et al., “Cannabigerol Reduces Acute and Chronic Hypernociception in Animals Exposed to Prenatal Hypoxia-Ischemia,” Sci. Pharm., vol. 92, no. 3, Art. no. 3, Sep. 2024. [CrossRef]
- M. Russo et al., “Sativex in the Management of Multiple Sclerosis-Related Spasticity: Role of the Corticospinal Modulation,” Neural Plast., vol. 2015, p. 656582, 2015. [CrossRef]
- Deng, J. Guindon, B. L. Cornett, A. Makriyannis, K. Mackie, and A. G. Hohmann, “Chronic cannabinoid CB2 activation reverses paclitaxel neuropathy without tolerance or CB1-dependent withdrawal,” Biol. Psychiatry, vol. 77, no. 5, pp. 475–487, Mar. 2015. [CrossRef]
- Y. Li and J. Kim, “Neuronal Expression of CB2 Cannabinoid Receptor mRNAs in the Mouse Hippocampus,” Neuroscience, vol. 311, pp. 253–267, Dec. 2015. [CrossRef]
- S. Ferranti and D. J. Foster, “Cannabinoid type-2 receptors: An emerging target for regulating schizophrenia-relevant brain circuits,” Front. Neurosci., vol. 16, p. 925792, 2022. [CrossRef]
- E. S. Onaivi et al., “Brain neuronal CB2 cannabinoid receptors in drug abuse and depression: from mice to human subjects,” PloS One, vol. 3, no. 2, p. e1640, Feb. 2008. [CrossRef]
- O. Trépanier, K. E. Hopperton, R. Mizrahi, N. Mechawar, and R. P. Bazinet, “Postmortem evidence of cerebral inflammation in schizophrenia: a systematic review,” Mol. Psychiatry, vol. 21, no. 8, pp. 1009–1026, Aug. 2016. [CrossRef]
- D. W. Volk, B. I. Siegel, C. D. Verrico, and D. A. Lewis, “Endocannabinoid metabolism in the prefrontal cortex in schizophrenia,” Schizophr. Res., vol. 147, no. 1, pp. 53–57, Jun. 2013. [CrossRef]
- Hussain and, G. Liu, “Eosinophilic Asthma: Pathophysiology and Therapeutic Horizons,” Cells, vol. 13, no. 5, p. 384, Feb. 2024. [CrossRef]
- R. Murdoch and C. M. Lloyd, “Chronic inflammation and asthma,” Mutat. Res. Mol. Mech. Mutagen., vol. 690, no. 1, pp. 24–39, Aug. 2010. [CrossRef]
- C. Xie et al., “Immunologic aspects of asthma: from molecular mechanisms to disease pathophysiology and clinical translation,” Front. Immunol., vol. 15, Oct. 2024. [CrossRef]
- E. Ferrini et al., “CB2 receptors regulate natural killer cells that limit allergic airway inflammation in a murine model of asthma,” Allergy, vol. 72, no. 6, pp. 937–947, Jun. 2017. [CrossRef]
- R. B. Frei et al., “Cannabinoid receptor 2 augments eosinophil responsiveness and aggravates allergen-induced pulmonary inflammation in mice,” Allergy, vol. 71, no. 7, pp. 944–956, Jul. 2016. [CrossRef]
- Moro, *!!! REPLACE !!!*; et al. , “Interferon and IL-27 antagonize the function of group 2 innate lymphoid cells and type 2 innate immune responses,” Nat. Immunol., vol. 17, no. 1, pp. 76–86, Jan. 2016. [CrossRef]
- S. Kishimoto, M. Muramatsu, M. Gokoh, S. Oka, K. Waku, and T. Sugiura, “Endogenous cannabinoid receptor ligand induces the migration of human natural killer cells,” J. Biochem. (Tokyo), vol. 137, no. 2, pp. 217–223, Feb. 2005. [CrossRef]
- Gu, S. Tseng, R. M. Horner, C. Tam, M. Loda, and B. J. Rollins, “Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1,” Nature, vol. 404, no. 6776, pp. 407–411, Mar. 2000. [CrossRef]
- Mimura, S. Oka, H. Koshimoto, Y. Ueda, Y. Watanabe, and T. Sugiura, “Involvement of the endogenous cannabinoid 2 ligand 2-arachidonyl glycerol in allergic inflammation,” Int. Arch. Allergy Immunol., vol. 159, no. 2, pp. 149–156, 2012. [CrossRef]
- A.-S. Archambault et al., “Human and Mouse Eosinophils Differ in Their Ability to Biosynthesize Eicosanoids, Docosanoids, the Endocannabinoid 2-Arachidonoyl-glycerol and Its Congeners,” Cells, vol. 11, no. 1, p. 141, Jan. 2022. [CrossRef]
- S. Oka et al., “2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, induces the migration of EoL-1 human eosinophilic leukemia cells and human peripheral blood eosinophils,” J. Leukoc. Biol., vol. 76, no. 5, pp. 1002–1009, Nov. 2004. [CrossRef]
- S. Kishimoto, S. Oka, M. Gokoh, and T. Sugiura, “Chemotaxis of human peripheral blood eosinophils to 2-arachidonoylglycerol: comparison with other eosinophil chemoattractants,” Int. Arch. Allergy Immunol., vol. 140 Suppl 1, pp. 3–7, 2006. [CrossRef]
- M.-C. Larose et al., “Mechanisms of human eosinophil migration induced by the combination of IL-5 and the endocannabinoid 2-arachidonoyl-glycerol,” J. Allergy Clin. Immunol., vol. 133, no. 5, pp. 1480–1482, 1482.e1–3, May 2014. [CrossRef]
- T. Vyshkina and B. Kalman, “Autoantibodies and neurodegeneration in multiple sclerosis,” Lab. Invest., vol. 88, no. 8, pp. 796–807, Aug. 2008. [CrossRef]
- K. Maresz, E. J. Carrier, E. D. Ponomarev, C. J. Hillard, and B. N. Dittel, “Modulation of the cannabinoid CB2 receptor in microglial cells in response to inflammatory stimuli,” J. Neurochem., vol. 95, no. 2, pp. 437–445, Oct. 2005. [CrossRef]
- J. Gertsch et al., “Beta-caryophyllene is a dietary cannabinoid,” Proc. Natl. Acad. Sci. U. S. A., vol. 105, no. 26, pp. 9099–9104, Jul. 2008. [CrossRef]
- H. Gui, X. Liu, L.-R. Liu, D.-F. Su, and S.-M. Dai, “Activation of cannabinoid receptor 2 attenuates synovitis and joint distruction in collagen-induced arthritis,” Immunobiology, vol. 220, no. 6, pp. 817–822, Jun. 2015. [CrossRef]
- S. Fukuda et al., “Cannabinoid receptor 2 as a potential therapeutic target in rheumatoid arthritis,” BMC Musculoskelet. Disord., vol. 15, p. 275, Aug. 2014. [CrossRef]
- Ismail and, G. Khawaja, “Study of cannabinoid receptor 2 Q63R gene polymorphism in Lebanese patients with rheumatoid arthritis,” Clin. Rheumatol., vol. 37, no. 11, pp. 2933–2938, Nov. 2018. [CrossRef]
- P. Werth et al., “Safety and Efficacy of Lenabasum, a Cannabinoid Receptor Type 2 Agonist, in Patients with Dermatomyositis with Refractory Skin Disease: A Randomized Clinical Trial,” J. Invest. Dermatol., vol. 142, no. 10, pp. 2651-2659.e1, Oct. 2022. [CrossRef]
- S. Yung and T. M. Chan, “Mechanisms of Kidney Injury in Lupus Nephritis – the Role of Anti-dsDNA Antibodies,” Front. Immunol., vol. 6, p. 475, Sep. 2015. [CrossRef]
- K. Sakata et al., “Up-Regulation of TLR7-Mediated IFN-α Production by Plasmacytoid Dendritic Cells in Patients With Systemic Lupus Erythematosus,” Front. Immunol., vol. 9, p. 1957, 2018. [CrossRef]
- D. C. Rubin, A. Shaker, and M. S. Levin, “Chronic intestinal inflammation: inflammatory bowel disease and colitis-associated colon cancer,” Front. Immunol., vol. 3, p. 107, May 2012. [CrossRef]
- F. Massa et al., “The endogenous cannabinoid system protects against colonic inflammation,” J. Clin. Invest., vol. 113, no. 8, pp. 1202–1209, Apr. 2004. [CrossRef]
- E. Schmuhl, R. Ramer, A. Salamon, K. Peters, and B. Hinz, “Increase of mesenchymal stem cell migration by cannabidiol via activation of p42/44 MAPK,” Biochem. Pharmacol., vol. 87, no. 3, pp. 489–501, Feb. 2014. [CrossRef]
- S. Koyama et al., “Beta-caryophyllene enhances wound healing through multiple routes,” PLOS ONE, vol. 14, no. 12, p. e0216104, Dec. 2019. [CrossRef]
- S. E. O’Sullivan, “An update on PPAR activation by cannabinoids,” Br. J. Pharmacol., vol. 173, no. 12, pp. 1899–1910, Jun. 2016. [CrossRef]
- K. Jha et al., “β-Caryophyllene, A Natural Dietary CB2 Receptor Selective Cannabinoid can be a Candidate to Target the Trinity of Infection, Immunity, and Inflammation in COVID-19,” Front. Pharmacol., vol. 12, May 2021. [CrossRef]
- U. Anand et al., “Cannabinoid receptor CB2 localisation and agonist-mediated inhibition of capsaicin responses in human sensory neurons,” PAIN, vol. 138, no. 3, pp. 667–680, Sep. 2008. [CrossRef]
- E. Martínez-Pinilla et al., “Binding and Signaling Studies Disclose a Potential Allosteric Site for Cannabidiol in Cannabinoid CB2 Receptors,” Front. Pharmacol., vol. 8, p. 744, Oct. 2017. [CrossRef]
- U. Anand et al., “Cannabinoid receptor CB2 localisation and agonist-mediated inhibition of capsaicin responses in human sensory neurons,” PAIN, vol. 138, no. 3, pp. 667–680, Sep. 2008. [CrossRef]
- A. Engel, C. A. Kellermann, G. Burnat, E. G. Hahn, T. Rau, and P. C. Konturek, “Mice lacking cannabinoid CB1-, CB2-receptors or both receptors show increased susceptibility to trinitrobenzene sulfonic acid (TNBS)-induced colitis,” J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc., vol. 61, no. 1, pp. 89–97, Feb. 2010.
- F. Bento et al., “β-Caryophyllene inhibits dextran sulfate sodium-induced colitis in mice through CB2 receptor activation and PPARγ pathway,” Am. J. Pathol., vol. 178, no. 3, pp. 1153–1166, Mar. 2011. [CrossRef]
- K. L. Leinwand, M. E. Gerich, E. J. Hoffenberg, and C. B. Collins, “Manipulation of the endocannabinoid system in colitis: A comprehensive review,” Inflamm. Bowel Dis., vol. 23, no. 2, pp. 192–199, Feb. 2017. [CrossRef]
- S. E. O’Sullivan, “An update on PPAR activation by cannabinoids,” Br. J. Pharmacol., vol. 173, no. 12, pp. 1899–1910, Jun. 2016. [CrossRef]
- Vigano, L. Wang, A. As’sadiq, S. Samarani, A. Ahmad, and C. T. Costiniuk, “Impact of cannabinoids on cancer outcomes in patients receiving immune checkpoint inhibitor immunotherapy,” Front. Immunol., vol. 16, p. 1497829, Mar. 2025. [CrossRef]
- C. Pagano, G. Navarra, L. Coppola, M. Bifulco, and C. Laezza, “Molecular Mechanism of Cannabinoids in Cancer Progression,” Int. J. Mol. Sci., vol. 22, no. 7, Art. no. 7, Jan. 2021. [CrossRef]
- G. Nahler, “Treatment of malignant diseases with phytocannabinoids: promising observations in animal models and patients,” Explor. Med., vol. 4, no. 6, Art. no. 6, Dec. 2023. [CrossRef]
- J. M. Salamat, K. L. Abbott, P. C. Flannery, E. L. Ledbetter, and S. R. Pondugula, “Interplay between the Cannabinoid System and microRNAs in Cancer,” ACS Omega, vol. 7, no. 12, pp. 9995–10000, Mar. 2022. [CrossRef]
- J. A. Iden, N. Ben-Califa, A. Naim, T. Liron, D. Neumann, and Y. Gabet, “Immunomodulatory function of cannabinoid receptor 2 and its agonist osteogenic growth peptide in health and cancer: a study in mice and humans,” Oncogene, pp. 1–11, Apr. 2025. [CrossRef]
- B. Chaudhary and E. Elkord, “Regulatory T Cells in the Tumor Microenvironment and Cancer Progression: Role and Therapeutic Targeting,” Vaccines, vol. 4, no. 3, p. 28, Aug. 2016. [CrossRef]
- Sarsembayeva, *!!! REPLACE !!!*; et al. , “Cannabinoid receptor 2 plays a pro-tumorigenic role in non-small cell lung cancer by limiting anti-tumor activity of CD8+ T and NK cells,” Front. Immunol., vol. 13, p. 997115, Jan. 2023. [CrossRef]
- Saha, P. Ettel, and T. Weichhart, “Leveraging macrophage metabolism for anticancer therapy: opportunities and pitfalls,” Trends Pharmacol. Sci., vol. 45, no. 4, pp. 335–349, Apr. 2024. [CrossRef]
- J. A. Iden, N. Ben-Califa, A. Naim, T. Liron, D. Neumann, and Y. Gabet, “Immunomodulatory function of cannabinoid receptor 2 and its agonist osteogenic growth peptide in health and cancer: a study in mice and humans,” Oncogene, pp. 1–11, Apr. 2025. [CrossRef]
- Sarsembayeva, *!!! REPLACE !!!*; et al. , “Cannabinoid receptor 2 plays a pro-tumorigenic role in non-small cell lung cancer by limiting anti-tumor activity of CD8+ T and NK cells,” Front. Immunol., vol. 13, Jan. 2023. [CrossRef]
- Sarsembayeva, *!!! REPLACE !!!*; et al. , “Cannabinoid receptor 2 plays a pro-tumorigenic role in non-small cell lung cancer by limiting anti-tumor activity of CD8+ T and NK cells,” Front. Immunol., vol. 13, p. 997115, Jan. 2023. [CrossRef]
- E. Ramel, S. Lillo, B. Daher, M. Fioleau, T. Daubon, and M. Saleh, “The Metabolic Control of Myeloid Cells in the Tumor Microenvironment,” Cells, vol. 10, no. 11, Art. no. 11, Nov. 2021. [CrossRef]
- Y. Du et al., “Cannabinoid 2 receptor attenuates inflammation during skin wound healing by inhibiting M1 macrophages rather than activating M2 macrophages,” J. Inflamm., vol. 15, no. 1, p. 25, Dec. 2018. [CrossRef]
- R. Shi, Y.-Q. Tang, and H. Miao, “Metabolism in tumor microenvironment: Implications for cancer immunotherapy,” MedComm, vol. 1, no. 1, pp. 47–68, 2020. [CrossRef]
- R. H. Robinson, J. J. Meissler, X. Fan, D. Yu, M. W. Adler, and T. K. Eisenstein, “A CB2-Selective Cannabinoid Suppresses T-cell Activities and Increases Tregs and IL-10,” J. Neuroimmune Pharmacol. Off. J. Soc. NeuroImmune Pharmacol., vol. 10, no. 2, pp. 318–332, Jun. 2015. [CrossRef]
- Sarsembayeva, *!!! REPLACE !!!*; et al. , “Cannabinoid receptor 2 plays a pro-tumorigenic role in non-small cell lung cancer by limiting anti-tumor activity of CD8+ T and NK cells,” Front. Immunol., vol. 13, p. 997115, Jan. 2023. [CrossRef]
- S. Basu and B. N. Dittel, “Unraveling the Complexities of Cannabinoid Receptor 2 (CB2) Immune Regulation in Health and Disease,” Immunol. Res., vol. 51, no. 1, pp. 26–38, Oct. 2011. [CrossRef]
- Angelina, *!!! REPLACE !!!*; et al. , “Cannabinoids induce functional Tregs by promoting tolerogenic DCs via autophagy and metabolic reprograming,” Mucosal Immunol., vol. 15, no. 1, pp. 96–108, Jan. 2022. [CrossRef]
- Becker, *!!! REPLACE !!!*; et al. , “Activation of Cannabinoid Receptor 2 Prevents Colitis-Associated Colon Cancer through Myeloid Cell De-activation Upstream of IL-22 Production,” iScience, vol. 23, no. 9, p. 101504, Sep. 2020. [CrossRef]
- Angelina, *!!! REPLACE !!!*; et al. , “Cannabinoids induce functional Tregs by promoting tolerogenic DCs via autophagy and metabolic reprograming,” Mucosal Immunol., vol. 15, no. 1, pp. 96–108, Jan. 2022. [CrossRef]
- Becker, *!!! REPLACE !!!*; et al. , “Activation of Cannabinoid Receptor 2 Prevents Colitis-Associated Colon Cancer through Myeloid Cell De-activation Upstream of IL-22 Production,” iScience, vol. 23, no. 9, p. 101504, Sep. 2020. [CrossRef]
- Sharma et al., “Microglial cannabinoid receptor 2 and epigenetic regulation: Implications for the treatment of depression,” Eur. J. Pharmacol., vol. 995, p. 177422, May 2025. [CrossRef]
- Sarsembayeva, *!!! REPLACE !!!*; et al. , “Cannabinoid receptor 2 plays a pro-tumorigenic role in non-small cell lung cancer by limiting anti-tumor activity of CD8+ T and NK cells,” Front. Immunol., vol. 13, p. 997115, Jan. 2023. [CrossRef]
- Saroz, D. T. Kho, M. Glass, E. S. Graham, and N. L. Grimsey, “Cannabinoid Receptor 2 (CB2) Signals via G-alpha-s and Induces IL-6 and IL-10 Cytokine Secretion in Human Primary Leukocytes,” ACS Pharmacol. Transl. Sci., vol. 2, no. 6, pp. 414–428, Oct. 2019. [CrossRef]
- Sarsembayeva, *!!! REPLACE !!!*; et al. , “Cannabinoid receptor 2 plays a pro-tumorigenic role in non-small cell lung cancer by limiting anti-tumor activity of CD8+ T and NK cells,” Front. Immunol., vol. 13, p. 997115, 2022. [CrossRef]
- K. Dickinson, E. J. Yee, I. Vigil, R. D. Schulick, and Y. Zhu, “GPCRs: emerging targets for novel T cell immune checkpoint therapy,” Cancer Immunol. Immunother., vol. 73, no. 12, p. 253, Oct. 2024. [CrossRef]
- Sarsembayeva, *!!! REPLACE !!!*; et al. , “Cannabinoid receptor 2 plays a pro-tumorigenic role in non-small cell lung cancer by limiting anti-tumor activity of CD8+ T and NK cells,” Front. Immunol., vol. 13, Jan. 2023. [CrossRef]
- S. Lu, X. Chen, Y. Yang, and J. Li, “CB2R activation enhances tumor-associated macrophages-mediated phagocytosis of glioma cell,” Heliyon, vol. 10, no. 23, p. e40806, Dec. 2024. [CrossRef]
- S. Lu, X. Chen, Y. Yang, and J. Li, “CB2R activation enhances tumor-associated macrophages-mediated phagocytosis of glioma cell,” Heliyon, vol. 10, no. 23, p. e40806, Dec. 2024. [CrossRef]
- Wu, *!!! REPLACE !!!*; et al. , “Phagocytosis of Glioma Cells Enhances the Immunosuppressive Phenotype of Bone Marrow–Derived Macrophages,” Cancer Res., vol. 83, no. 5, pp. 771–785, Mar. 2023. [CrossRef]
- W. Wang et al., “Identification of hypoxic macrophages in glioblastoma with therapeutic potential for vasculature normalization,” Cancer Cell, vol. 42, no. 5, pp. 815-832.e12, May 2024. [CrossRef]
- S. Torres et al., “A combined preclinical therapy of cannabinoids and temozolomide against glioma,” Mol. Cancer Ther., vol. 10, no. 1, pp. 90–103, Jan. 2011. [CrossRef]
- Hinz and, R. Ramer, “Cannabinoids as anticancer drugs: current status of preclinical research,” Br. J. Cancer, vol. 127, no. 1, pp. 1–13, Jul. 2022. [CrossRef]
- S. Pisanti et al., “Cannabidiol: State of the art and new challenges for therapeutic applications,” Pharmacol. Ther., vol. 175, pp. 133–150, Jul. 2017. [CrossRef]
- T. Guan, G. Zhao, H. Duan, Y. Liu, and F. Zhao, “Activation of type 2 cannabinoid receptor (CB2R) by selective agonists regulates the deposition and remodelling of the extracellular matrix,” Biomed. Pharmacother. Biomedecine Pharmacother., vol. 95, pp. 1704–1709, Nov. 2017. [CrossRef]
- E. N. Scott, A. M. Gocher, C. J. Workman, and D. A. A. Vignali, “Regulatory T Cells: Barriers of Immune Infiltration Into the Tumor Microenvironment,” Front. Immunol., vol. 12, p. 702726, 2021. [CrossRef]
- M. Elbaz, D. Ahirwar, J. Ravi, M. W. Nasser, and R. K. Ganju, “Novel role of cannabinoid receptor 2 in inhibiting EGF/EGFR and IGF-I/IGF-IR pathways in breast cancer,” Oncotarget, vol. 8, no. 18, pp. 29668–29678, May 2016. [CrossRef]
- M. L. Casanova et al., “Inhibition of skin tumor growth and angiogenesis in vivo by activation of cannabinoid receptors,” J. Clin. Invest., vol. 111, no. 1, pp. 43–50, Jan. 2003. [CrossRef]
- E. J. Carrier, J. A. Auchampach, and C. J. Hillard, “Inhibition of an equilibrative nucleoside transporter by cannabidiol: a mechanism of cannabinoid immunosuppression,” Proc. Natl. Acad. Sci. U. S. A., vol. 103, no. 20, pp. 7895–7900, May 2006. [CrossRef]
- K. Soderstrom, E. Soliman, and R. Van Dross, “Cannabinoids Modulate Neuronal Activity and Cancer by CB1 and CB2 Receptor-Independent Mechanisms,” Front. Pharmacol., vol. 8, p. 720, Oct. 2017. [CrossRef]
- E. Song and S. Ghil, “Crosstalk between cannabinoid receptor 2 and lysophosphatidic acid receptor 5,” Biochem. Biophys. Res. Commun., vol. 666, pp. 154–161, Jul. 2023. [CrossRef]
- Saroz, D. T. Kho, M. Glass, E. S. Graham, and N. L. Grimsey, “Cannabinoid Receptor 2 (CB2) Signals via G-alpha-s and Induces IL-6 and IL-10 Cytokine Secretion in Human Primary Leukocytes,” ACS Pharmacol. Transl. Sci., vol. 2, no. 6, pp. 414–428, Dec. 2019. [CrossRef]
- Y. Saroz, D. T. Kho, M. Glass, E. S. Graham, and N. L. Grimsey, “Cannabinoid Receptor 2 (CB2) Signals via G-alpha-s and Induces IL-6 and IL-10 Cytokine Secretion in Human Primary Leukocytes,” ACS Pharmacol. Transl. Sci., vol. 2, no. 6, pp. 414–428, Dec. 2019. [CrossRef]
- M. R. Alam, M. M. Rahman, and Z. Li, “The link between intracellular calcium signaling and exosomal PD-L1 in cancer progression and immunotherapy,” Genes Dis., vol. 11, no. 1, pp. 321–334, Jan. 2024. [CrossRef]
- E. A. Ahmed, “The Potential Therapeutic Role of Beta-Caryophyllene as a Chemosensitizer and an Inhibitor of Angiogenesis in Cancer,” Molecules, vol. 30, no. 8, Art. no. 8, Jan. 2025. [CrossRef]
- V. Di Marzo, “New approaches and challenges to targeting the endocannabinoid system,” Nat. Rev. Drug Discov., vol. 17, no. 9, pp. 623–639, Sep. 2018. [CrossRef]
- Y. Qu et al., “The role of TRPV1 in RA pathogenesis: worthy of attention,” Front. Immunol., vol. 14, p. 1232013, Sep. 2023. [CrossRef]
- M. Niu, F. Zhao, R. Chen, P. Li, and L. Bi, “The transient receptor potential channels in rheumatoid arthritis: Need to pay more attention,” Front. Immunol., vol. 14, p. 1127277, Mar. 2023. [CrossRef]
- Muller, P. Morales, and P. H. Reggio, “Cannabinoid Ligands Targeting TRP Channels,” Front. Mol. Neurosci., vol. 11, p. 487, Jan. 2019. [CrossRef]
- Morales, C. Muller, N. Jagerovic, and P. H. Reggio, “Targeting CB2 and TRPV1: Computational Approaches for the Identification of Dual Modulators,” Front. Mol. Biosci., vol. 9, Feb. 2022. [CrossRef]
- F. Rossi et al., “CB(2) and TRPV(1) receptors oppositely modulate in vitro human osteoblast activity,” Pharmacol. Res., vol. 99, pp. 194–201, Sep. 2015. [CrossRef]
- G. Bellini et al., “PKCβII-mediated cross-talk of TRPV1/CB2 modulates the glucocorticoid-induced osteoclast overactivity,” Pharmacol. Res., vol. 115, pp. 267–274, Jan. 2017. [CrossRef]
- Wi, Y. C. Chung, and B. K. Jin, “Functional Crosstalk between CB and TRPV1 Receptors Protects Nigrostriatal Dopaminergic Neurons in the MPTP Model of Parkinson’s Disease,” J. Immunol. Res., vol. 2020, p. 5093493, 2020. [CrossRef]
- J. L. Wilkerson, L. B. Alberti, G. A. Thakur, A. Makriyannis, and E. D. Milligan, “Peripherally administered cannabinoid receptor 2 (CB2R) agonists lose anti-allodynic effects in TRPV1 knockout mice, while intrathecal administration leads to anti-allodynia and reduced GFAP, CCL2 and TRPV1 expression in the dorsal spinal cord and DRG,” Brain Res., vol. 1774, p. 147721, Jan. 2022. [CrossRef]
- T. Lowin, G. Pongratz, and R. H. Straub, “The synthetic cannabinoid WIN55,212-2 mesylate decreases the production of inflammatory mediators in rheumatoid arthritis synovial fibroblasts by activating CB2, TRPV1, TRPA1 and yet unidentified receptor targets,” J. Inflamm. Lond. Engl., vol. 13, p. 15, 2016. [CrossRef]
- W. R. Arnold et al., “Anti-inflammatory dopamine- and serotonin-based endocannabinoid epoxides reciprocally regulate cannabinoid receptors and the TRPV1 channel,” Nat. Commun., vol. 12, no. 1, p. 926, Feb. 2021. [CrossRef]
- F. Punzo et al., “Effects of CB2 and TRPV1 receptors’ stimulation in pediatric acute T-lymphoblastic leukemia,” Oncotarget, vol. 9, no. 30, pp. 21244–21258, Apr. 2018. [CrossRef]
- Morales, D. P. Hurst, and P. H. Reggio, “Molecular Targets of the Phytocannabinoids: A Complex Picture,” Prog. Chem. Org. Nat. Prod., vol. 103, pp. 103–131, 2017. [CrossRef]
- Li, *!!! REPLACE !!!*; et al. , “Cannabigerol (CBG): A Comprehensive Review of Its Molecular Mechanisms and Therapeutic Potential,” Molecules, vol. 29, no. 22, p. 5471, Nov. 2024. [CrossRef]
- F. Borrelli et al., “Colon carcinogenesis is inhibited by the TRPM8 antagonist cannabigerol, a Cannabis-derived non-psychotropic cannabinoid,” Carcinogenesis, vol. 35, no. 12, pp. 2787–2797, Dec. 2014. [CrossRef]
- Lago-Fernandez, S. Zarzo-Arias, N. Jagerovic, and P. Morales, “Relevance of Peroxisome Proliferator Activated Receptors in Multitarget Paradigm Associated with the Endocannabinoid System,” Int. J. Mol. Sci., vol. 22, no. 3, p. 1001, Jan. 2021. [CrossRef]
- E. O’Sullivan, “An update on PPAR activation by cannabinoids,” Br. J. Pharmacol., vol. 173, no. 12, pp. 1899–1910, Jun. 2016. [CrossRef]
- M. Vaia et al., “Palmitoylethanolamide reduces inflammation and itch in a mouse model of contact allergic dermatitis,” Eur. J. Pharmacol., vol. 791, pp. 669–674, Nov. 2016. [CrossRef]
- Sharon, L. Yarmolinsky, B. Khalfin, S. Fleisher-Berkovich, and S. Ben-Shabat, “Cannabinoids’ Role in Modulating Central and Peripheral Immunity in Neurodegenerative Diseases,” Int. J. Mol. Sci., vol. 25, no. 12, p. 6402, Jun. 2024. [CrossRef]
- G. A. Cabral and L. Griffin-Thomas, “Emerging Role of the CB2 Cannabinoid Receptor in Immune Regulation and Therapeutic Prospects,” Expert Rev. Mol. Med., vol. 11, p. e3, Jan. 2009. [CrossRef]
- H. M. Hashiesh et al., “A focused review on CB2 receptor-selective pharmacological properties and therapeutic potential of β-caryophyllene, a dietary cannabinoid,” Biomed. Pharmacother., vol. 140, p. 111639, Aug. 2021. [CrossRef]
- Yu. Kytikova et al., “Peroxisome Proliferator-Activated Receptors as a Therapeutic Target in Asthma,” PPAR Res., vol. 2020, no. 1, p. 8906968, 2020. [CrossRef]
- F. A. Iannotti and R. M. Vitale, “The Endocannabinoid System and PPARs: Focus on Their Signalling Crosstalk, Action and Transcriptional Regulation,” Cells, vol. 10, no. 3, p. 586, Mar. 2021. [CrossRef]
- Rinne, *!!! REPLACE !!!*; et al. , “Palmitoylethanolamide Promotes a Proresolving Macrophage Phenotype and Attenuates Atherosclerotic Plaque Formation,” Arterioscler. Thromb. Vasc. Biol., vol. 38, no. 11, pp. 2562–2575, Nov. 2018. [CrossRef]
- L. Orio, F. Alen, F. J. Pavón, A. Serrano, and B. García-Bueno, “Oleoylethanolamide, Neuroinflammation, and Alcohol Abuse,” Front. Mol. Neurosci., vol. 11, p. 490, Jan. 2019. [CrossRef]
- G. Berdyshev, H. V. Kosiakova, O. V. Onopchenko, R. R. Panchuk, R. S. Stoika, and N. M. Hula, “N-Stearoylethanolamine suppresses the pro-inflammatory cytokines production by inhibition of NF-κB translocation,” Prostaglandins Other Lipid Mediat., vol. 121, pp. 91–96, Sep. 2015. [CrossRef]
- R. Sagar et al., “Dynamic regulation of the endocannabinoid system: implications for analgesia,” Mol. Pain, vol. 5, p. 59, Oct. 2009. [CrossRef]
- H.-H. Hsu et al., “Prostaglandin E2-Induced COX-2 Expressions via EP2 and EP4 Signaling Pathways in Human LoVo Colon Cancer Cells,” Int. J. Mol. Sci., vol. 18, no. 6, p. 1132, May 2017. [CrossRef]
- Nicolaou, C. Mauro, P. Urquhart, and F. Marelli-Berg, “Polyunsaturated Fatty Acid-Derived Lipid Mediators and T Cell Function,” Front. Immunol., vol. 5, p. 75, Feb. 2014. [CrossRef]
- K. Jin, C. Qian, J. Lin, and B. Liu, “Cyclooxygenase-2-Prostaglandin E2 pathway: A key player in tumor-associated immune cells,” Front. Oncol., vol. 13, Jan. 2023. [CrossRef]
- J. Cuenca-Escalona, B. Subtil, A. Garcia-Perez, A. Cambi, I. J. M. de Vries, and G. Flórez-Grau, “EP2 and EP4 blockade prevents tumor-induced suppressive features in human monocytic myeloid-derived suppressor cells,” Front. Immunol., vol. 15, p. 1355769, Jan. 2024. [CrossRef]
- K. Jin, C. Qian, J. Lin, and B. Liu, “Cyclooxygenase-2-Prostaglandin E2 pathway: A key player in tumor-associated immune cells,” Front. Oncol., vol. 13, p. 1099811, 2023. [CrossRef]
- Thumkeo, *!!! REPLACE !!!*; et al. , “PGE2-EP2/EP4 signaling elicits immunosuppression by driving the mregDC-Treg axis in inflammatory tumor microenvironment,” Cell Rep., vol. 39, no. 10, p. 110914, Jun. 2022. [CrossRef]
- Y. Take, S. Koizumi, and A. Nagahisa, “Prostaglandin E Receptor 4 Antagonist in Cancer Immunotherapy: Mechanisms of Action,” Front. Immunol., vol. 11, p. 324, Mar. 2020. [CrossRef]
- Irving, G. Abdulrazzaq, S. L. F. Chan, J. Penman, J. Harvey, and S. P. H. Alexander, “Cannabinoid Receptor-Related Orphan G Protein-Coupled Receptors,” Adv. Pharmacol. San Diego Calif, vol. 80, pp. 223–247, 2017. [CrossRef]
- E. Ramírez-Orozco, R. García-Ruiz, P. Morales, C. M. Villalón, J. R. Villafán-Bernal, and B. A. Marichal-Cancino, “Potential Metabolic and Behavioural Roles of the Putative Endo- cannabinoid Receptors GPR18, GPR55 and GPR119 in Feeding,” Curr. Neuropharmacol., vol. 17, no. 10, pp. 947–960, Oct. 2019. [CrossRef]
- J. D. Hill, V. Zuluaga-Ramirez, S. Gajghate, M. Winfield, U. Sriram, and Y. Persidsky, “Activation of GPR55 induces neuroprotection of hippocampal neurogenesis and immune responses of neural stem cells following chronic, systemic inflammation,” Brain. Behav. Immun., vol. 76, pp. 165–181, Feb. 2019. [CrossRef]
- W. Saliba et al., “Anti-neuroinflammatory effects of GPR55 antagonists in LPS-activated primary microglial cells,” J. Neuroinflammation, vol. 15, p. 322, Nov. 2018. [CrossRef]
- Schicho and, M. Storr, “A potential role for GPR55 in gastrointestinal functions,” Curr. Opin. Pharmacol., vol. 12, no. 6, pp. 653–658, Dec. 2012. [CrossRef]
- J. Zhou, I. Burkovskiy, H. Yang, J. Sardinha, and C. Lehmann, “CB2 and GPR55 Receptors as Therapeutic Targets for Systemic Immune Dysregulation,” Front. Pharmacol., vol. 7, p. 264, Aug. 2016. [CrossRef]
- D. Medina-Vera et al., “The Expression of the Endocannabinoid Receptors CB2 and GPR55 Is Highly Increased during the Progression of Alzheimer’s Disease in AppNL-G-F Knock-In Mice,” Biology, vol. 12, no. 6, p. 805, May 2023. [CrossRef]
- Reyes-Resina, *!!! REPLACE !!!*; et al. , “Molecular and functional interaction between GPR18 and cannabinoid CB2 G-protein-coupled receptors. Relevance in neurodegenerative diseases,” Biochem. Pharmacol., vol. 157, pp. 169–179, Nov. 2018. [CrossRef]
- Reyes-Resina, *!!! REPLACE !!!*; et al. , “Molecular and functional interaction between GPR18 and cannabinoid CB2 G-protein-coupled receptors. Relevance in neurodegenerative diseases,” Biochem. Pharmacol., vol. 157, pp. 169–179, Nov. 2018. [CrossRef]
- X. Wang, H. Sumida, and J. G. Cyster, “GPR18 is required for a normal CD8αα intestinal intraepithelial lymphocyte compartment,” J. Exp. Med., vol. 211, no. 12, pp. 2351–2359, Nov. 2014. [CrossRef]
- H. Sumida and J. G. Cyster, “G-Protein Coupled Receptor 18 Contributes to Establishment of the CD8 Effector T Cell Compartment,” Front. Immunol., vol. 9, p. 660, 2018. [CrossRef]
- N. X. Landén, D. Li, and M. Ståhle, “Transition from inflammation to proliferation: a critical step during wound healing,” Cell. Mol. Life Sci. CMLS, vol. 73, no. 20, pp. 3861–3885, May 2016. [CrossRef]
- N. Murataeva et al., “Evidence for a GPR18 role in chemotaxis, proliferation, and the course of wound closure in cornea,” Cornea, vol. 38, no. 7, pp. 905–913, Jul. 2019. [CrossRef]
- Hassanshahi, M. Moradzad, S. Ghalamkari, M. Fadaei, A. J. Cowin, and M. Hassanshahi, “Macrophage-Mediated Inflammation in Skin Wound Healing,” Cells, vol. 11, no. 19, p. 2953, Sep. 2022. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
