Submitted:
30 June 2025
Posted:
01 July 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Polymer Materials for Large-Area Photonic Sensors
| Polymer Material | Typical Refractive Index (at 633–1550 nm) | Transparency Range | Key Features | Role in Photonic Sensors |
|---|---|---|---|---|
| PMMA (Polymethyl methacrylate)[42,67,68] | 1.48 – 1.50 | Visible to NIR | Low cost, good optical clarity, easy patterning (e.g., nanoimprint) | Cladding layers, waveguides, disposable sensor substrates |
| SU-8[45,48] | ~1.57 | Visible to NIR | High mechanical stability, high aspect ratio patterning, epoxy-based | Waveguides, resonators, grating structures, microfluidic-integrated sensors |
| Polyimide[49,50] | 1.65 – 1.70 | Visible to NIR | Excellent thermal and chemical stability, robust mechanical properties | Waveguides for harsh environments, chemically resistant sensors |
| COC (Cyclic Olefin Copolymer)[20,50,52] | ~1.53 | Visible to NIR | Low moisture absorption, low birefringence, biocompatibility | Large-area substrates, low-loss waveguides, bio-integrated sensors |
| PDMS (Polydimethylsiloxane)[53,54,55] | ~1.41 | Visible to NIR | High flexibility, biocompatibility, transparent elastomer | Flexible sensors, microfluidic-integrated photonics, tunable structures |
3. Fabrication Techniques Enabling Low Cost & Large Area
3.1. Nanoimprint Lithography (NIL)
3.2. Soft Lithography
3.3. Roll-to-roll (R2R) Processing
3.4. Inkjet Printing and 3D Printing
| Technique | Resolution | Throughput / Scalability | Cost | Material Compatibility | Design Flexibility | Typical Use in Polymer Sensors |
|---|---|---|---|---|---|---|
| Nanoimprint Lithography (NIL)[98] | High (sub-10 nm possible) | Moderate (batch or step-and-repeat; scalable via R2R NIL) | Moderate (expensive tooling but low per-unit cost) | Broad (polymers, composites, functional layers) | Low (pattern fixed by mold) | High-resolution features for nanoscale sensing structures |
| Soft Lithography[99] | High (100 nm – 1 µm typical) | Low to moderate (lab scale, small batch production) | Low to moderate (low tooling cost, manual steps) | Wide (elastomers, hydrogels, various polymers) | Moderate (mold defines pattern, but flexible fabrication) | Microfluidics, flexible sensor substrates, surface patterns |
| Roll-to-Roll (R2R)[100] | Moderate (10 µm – 100 µm typical) | Very high (continuous, large-area production) | Low (low cost per unit at scale) | Mostly flexible substrates (PET, PEN, flexible polymers) | Low to moderate (depends on integrated patterning tech) | Large-area flexible and wearable sensors |
| Inkjet Printing[101] | Moderate (20 µm – 50 µm typical) | Moderate (depends on printer speed) | Low (digital, no masks required) | Solution-processable polymers, functional inks | High (digital patterning, easy to modify designs) | Patterned electrodes, sensing layers, functional coatings |
| 3D Printing (e.g., extrusion, photopolymerization)[102] | Low to moderate (10 µm – 100 µm, depending on method) | Low to moderate (slow compared to R2R) | Low to moderate (depends on printer type) | Limited (depends on printable polymer and ink formulation) | Very high (complex 3D geometries possible) | Prototyping, custom sensor housings, integrated structures |
4. Polymer Photonic Structures for Sensing
4.1. Waveguides (planar, rib, slot)
4.2. Bragg Gratings
4.3. Photonic Crystal Slabs
4.4. Ring/Disk Resonators
4.5. Interferometric Configurations (e.g., Mach–Zehnder)
5. Applications
5.1. Environmental Monitoring
5.2. Point-of-Care Medical Diagnostics
5.3. Structural Health Monitoring
6. Challenges and Opportunities
7. Future outlook
7.1. Smart Packaging with Embedded Polymer Photonic Sensors
7.2. Flexible/Wearable Large-Area Photonic Sensor Arrays
7.3. Advances in Printable Photonics and Additive Manufacturing
8. Conclusion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Butt, M.A.; Mateos, X.; Piramidowicz, R. Photonics Sensors: A Perspective on Current Advancements, Emerging Challenges, and Potential Solutions (Invited). Physics Letters A 2024, 516, 129633. [Google Scholar] [CrossRef]
- Butt, M.A.; Mateos, X. Strategic Insights into Integrated Photonics: Core Concepts, Practical Deployments, and Future Outlook. Applied Sciences 2024, 14, 6365. [Google Scholar] [CrossRef]
- Zeng, F.; Pang, C.; Tang, H. Sensors on Internet of Things Systems for the Sustainable Development of Smart Cities: A Systematic Literature Review. Sensors 2024, 24, 2074. [Google Scholar] [CrossRef]
- Meriç, M.K. Implementation of a Wireless Sensor Network for Irrigation Management in Drip Irrigation Systems. Sci Rep 2025, 15, 14157. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R.; Gonzalez, E.S. Understanding the Adoption of Industry 4.0 Technologies in Improving Environmental Sustainability. Sustainable Operations and Computers 2022, 3, 203–217. [Google Scholar] [CrossRef]
- Golovastikov, N.V.; Kazanskiy, N.L.; Khonina, S.N. Optical Fiber-Based Structural Health Monitoring: Advancements, Applications, and Integration with Artificial Intelligence for Civil and Urban Infrastructure. Photonics 2025, 12, 615. [Google Scholar] [CrossRef]
- Fallahi, V.; Kordrostami, Z.; Hosseini, M. Sensitivity and Quality Factor Improvement of Photonic Crystal Sensors by Geometrical Optimization of Waveguides and Micro-Ring Resonators Combination. Sci Rep 2024, 14, 2001. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. A Review of Photonic Sensors Based on Ring Resonator Structures: Three Widely Used Platforms and Implications of Sensing Applications. Micromachines 2023, 14, 1080. [Google Scholar] [CrossRef]
- Xu, H.; Hafezi, M.; Fan, J.; Taylor, J.M.; Strouse, G.F.; Ahmed, Z. Ultra-Sensitive Chip-Based Photonic Temperature Sensor Using Ring Resonator Structures. Opt. Express, OE 2014, 22, 3098–3104. [Google Scholar] [CrossRef]
- Butt, M.A.; Imran Akca, B.; Mateos, X. Integrated Photonic Biosensors: Enabling Next-Generation Lab-on-a-Chip Platforms. Nanomaterials 2025, 15, 731. [Google Scholar] [CrossRef]
- Butt, M.A. Silicon-on-Insulator Coupled Waveguide-Resonator Sensor: Trade-off between Sensitivity and Other Performance Parameters. Optics Communications 2025, 591, 132115. [Google Scholar] [CrossRef]
- Badoni, D.; Gunnella, R.; Salamon, A.; Bonaiuto, V.; Liberali, V.; Salina, G.; De Matteis, F.; Mai, A.; Salvato, M.; Colavecchi, L.; et al. Design and Test of Silicon Photonic Mach-Zehnder Interferometers for Data Transmission Applications. In Proceedings of the 2020 Italian Conference on Optics and Photonics (ICOP); September 2020; pp. 1–3. [Google Scholar]
- Fehlen, P.; Thomas, G.; Posada, F.G.; Guise, J.; Rusconi, F.; Cerutti, L.; Taliercio, T.; Spitzer, D. III-V Semiconductor Plasmonics for Gas Sensing of Organophosphorous Compounds. In Proceedings of the Quantum Sensing and Nano Electronics and Photonics XIX.; SPIE, March 17 2023; Vol. PC12430; p. 1243017. [Google Scholar]
- Lijing, Z.; Zakoldaev, R.A.; Sergeev, M.M.; Veiko, V.P. Fluorescent Bulk Waveguide Sensor in Porous Glass: Concept, Fabrication, and Testing. Nanomaterials 2020, 10, 2169. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.M.; Chui, C.O. CMOS Junctionless Field-Effect Transistors Manufacturing Cost Evaluation. IEEE Transactions on Semiconductor Manufacturing 2013, 26, 162–168. [Google Scholar] [CrossRef]
- Lopez, P.; Mabe, J.; Miró, G.; Etxeberria, L. Low Cost Photonic Sensor for In-Line Oil Quality Monitoring: Methodological Development Process towards Uncertainty Mitigation. Sensors 2018, 18, 2015. [Google Scholar] [CrossRef]
- Castelló, J.G.; Toccafondo, V.; Pérez-Millán, P.; Losilla, N.S.; Cruz, J.L.; Andrés, M.V.; García-Rupérez, J. Real-Time and Low-Cost Sensing Technique Based on Photonic Bandgap Structures. Opt. Lett., OL 2011, 36, 2707–2709. [Google Scholar] [CrossRef]
- Dias, L.; Shoman, H.; Luan, E.; Jayatilleka, H.; Shekhar, S.; Chrostowski, L.; Jaeger, N.A.F. Cost-Effective Silicon-Photonic Biosensors Using Doped Silicon Detectors and a Broadband Source. Opt. Express, OE 2023, 31, 9135–9145. [Google Scholar] [CrossRef]
- Butt, M.A.; Tyszkiewicz, C.; Karasiński, P.; Zięba, M.; Hlushchenko, D.; Baraniecki, T.; Kaźmierczak, A.; Piramidowicz, R.; Guzik, M.; Bachmatiuk, A. Development of a Low-Cost Silica-Titania Optical Platform for Integrated Photonics Applications. Opt. Express, OE 2022, 30, 23678–23694. [Google Scholar] [CrossRef]
- Khonina, S.N.; Voronkov, G.S.; Grakhova, E.P.; Kazanskiy, N.L.; Kutluyarov, R.V.; Butt, M.A. Polymer Waveguide-Based Optical Sensors—Interest in Bio, Gas, Temperature, and Mechanical Sensing Applications. Coatings 2023, 13, 549. [Google Scholar] [CrossRef]
- Prasanna Kumaar, S.; Sivasubramanian, A. Design of a High-Sensitivity Polymer Double-Slot Waveguide Sensor for Point-of-Care Biomedical Applications. Sensors International 2024, 5, 100255. [Google Scholar] [CrossRef]
- Nagar, M.A.; Janner, D. Polymer-Based Optical Guided-Wave Biomedical Sensing: From Principles to Applications. Photonics 2024, 11, 972. [Google Scholar] [CrossRef]
- Shao, Z.; Liu, J.; Zhou, K.; Zhang, Z.; Liang, R.; Qiao, X. Advanced Fabrication of Polymer Waveguide Interferometric Sensor Utilizing Interconnected Holey Fibers. Opt. Express, OE 2024, 32, 18858–18870. [Google Scholar] [CrossRef]
- Prajzler, V.; Chlupaty, V.; Kulha, P.; Neruda, M.; Kopp, S.; Mühlberger, M. Optical Polymer Waveguides Fabricated by Roll-to-Plate Nanoimprinting Technique. Nanomaterials 2021, 11, 724. [Google Scholar] [CrossRef] [PubMed]
- Bruck, R.; Muellner, P.; Kataeva, N.; Koeck, A.; Trassl, S.; Rinnerbauer, V.; Schmidegg, K.; Hainberger, R. Flexible Thin-Film Polymer Waveguides Fabricated in an Industrial Roll-to-Roll Process. Appl. Opt., AO 2013, 52, 4510–4514. [Google Scholar] [CrossRef]
- Hiltunen, M.; Hiltunen, J.; Stenberg, P.; Petäjä, J.; Heinonen, E.; Vahimaa, P.; Karioja, P. Polymeric Slot Waveguide at Visible Wavelength. Opt. Lett., OL 2012, 37, 4449–4451. [Google Scholar] [CrossRef] [PubMed]
- Kocabas, A.; Aydinli, A. Polymeric Waveguide Bragg Grating Filter Using Soft Lithography. Opt. Express, OE 2006, 14, 10228–10232. [Google Scholar] [CrossRef]
- Ngo, G.L.; Nguyen, L.; Hermier, J.-P.; Lai, N.D. On-Chip 3D Printing of Polymer Waveguide-Coupled Single-Photon Emitter Based on Colloidal Quantum Dots. Polymers 2023, 15, 2201. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhao, Y.S. Flexible Photonic Materials and Devices: Synthetic Strategies, Sensing Properties, and Wearable Applications. Advanced Materials n/a. [CrossRef]
- Paz, L.F.; Caño-García, M.; Geday, M.A.; Otón, J.M.; Quintana, X. Identification of Dyes and Matrices for Dye Doped Polymer Waveguide Emitters Covering the Visible Spectrum. Sci Rep 2022, 12, 6142. [Google Scholar] [CrossRef]
- Li, H.; Meng, W.; Cao, L.; Zhang, L.; Liu, Y.; Lin, Z.; Zhao, R.; Song, Z.; Ren, F.; Zhang, S.; et al. Fabrication and Characterization of Polymer Optical Waveguide Bragg Grating for Pulse Signal Sensing. Opt. Express, OE 2023, 31, 32458–32467. [Google Scholar] [CrossRef]
- Lee, E.-S.; Chun, K.-W.; Jin, J.; Lee, S.-S.; Oh, M.-C. Monolithic Integration of Polymer Waveguide Phase Modulators with Silicon Nitride Waveguides Using Adiabatic Transition Tapers. Opt. Express, OE 2023, 31, 4760–4769. [Google Scholar] [CrossRef]
- Park, T.-H.; Kim, S.-M.; Oh, M.-C. Polymer-Waveguide Bragg-Grating Devices Fabricated Using Phase-Mask Lithography. Curr. Opt. Photon., COPP 2019, 3, 401–407. [Google Scholar]
- Roth, G.-L.; Kefer, S.; Hessler, S.; Esen, C.; Hellmann, R. Polymer Photonic Crystal Waveguides Generated by Femtosecond Laser. Laser & Photonics Reviews 2021, 15, 2100215. [Google Scholar] [CrossRef]
- La, T.L.; Bui, B.N.; Nguyen, T.T.N.; Pham, T.L.; Tran, Q.T.; Tong, Q.C.; Mikulich, A.; Nguyen, T.P.; Nguyen, T.T.T.; Lai, N.D. Design and Realization of Polymeric Waveguide/Microring Structures for Telecommunication Domain. Micromachines 2023, 14, 1068. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Wu, J.; Chen, K.; Zheng, Y.; Deng, G.; Zhang, X.; Li, Z.; Chiang, K.S. Polymer Waveguide Mach-Zehnder Interferometer Coated with Dipolar Polycarbonate for on-Chip Nitroaromatics Detection. Sensors and Actuators B: Chemical 2020, 305, 127406. [Google Scholar] [CrossRef]
- Guo, J.; Yang, C.; Dai, Q.; Kong, L. Soft and Stretchable Polymeric Optical Waveguide-Based Sensors for Wearable and Biomedical Applications. Sensors 2019, 19, 3771. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.; Ali, M.; Elsherif, M.; Butt, H. UV Polymerization Fabrication Method for Polymer Composite Based Optical Fiber Sensors. Sci Rep 2023, 13, 10823. [Google Scholar] [CrossRef]
- Desidery, L.; Lanotte, M. 1 - Polymers and Plastics: Types, Properties, and Manufacturing. In Plastic Waste for Sustainable Asphalt Roads; Giustozzi, F., Nizamuddin, S., Eds.; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing, 2022; pp. 3–28 ISBN 978-0-323-85789-5.
- Potaufeux, J.-E.; Odent, J.; Notta-Cuvier, D.; Lauro, F.; Raquez, J.-M. A Comprehensive Review of the Structures and Properties of Ionic Polymeric Materials. Polym. Chem. 2020, 11, 5914–5936. [Google Scholar] [CrossRef]
- Puszka, A.; Podkościelna, B. Special Issue: Synthesis, Processing, Structure and Properties of Polymer Materials. Polymers 2022, 14, 4550. [Google Scholar] [CrossRef]
- Sowa, S.; Watanabe, W.; Tamaki, T.; Nishii, J.; Itoh, K. Symmetric Waveguides in Poly(Methyl Methacrylate) Fabricated by Femtosecond Laser Pulses. Opt. Express, OE 2006, 14, 291–297. [Google Scholar] [CrossRef]
- Zheng, L.; Keppler, N.; Zhang, H.; Behrens, P.; Roth, B. Planar Polymer Optical Waveguide with Metal-Organic Framework Coating for Carbon Dioxide Sensing. Advanced Materials Technologies 2022, 7, 2200395. [Google Scholar] [CrossRef]
- Prasanna Kumaar, S.; Sivasubramanian, A. Design of a High-Sensitivity Polymer Double-Slot Waveguide Sensor for Point-of-Care Biomedical Applications. Sensors International 2024, 5, 100255. [Google Scholar] [CrossRef]
- Nitiss, E.; Tokmakovs, A.; Pudzs, K.; Busenbergs, J.; Rutkis, M. All-Organic Electro-Optic Waveguide Modulator Comprising SU-8 and Nonlinear Optical Polymer. Opt. Express, OE 2017, 25, 31036–31044. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Sun, Y.; Zhang, S.; An, Z.; Zhang, S.; Zhang, C.; Zhang, Z.; Mao, Q.; García, J.D.P. Design and Fabrication of SU-8 Polymer Arrayed Waveguide Gratings Based on Flexible PDMS Substrates. Appl. Opt., AO 2022, 61, 2213–2218. [Google Scholar] [CrossRef] [PubMed]
- Buzzin, A.; Asquini, R.; Caputo, D.; de Cesare, G. On-Glass Integrated SU-8 Waveguide and Amorphous Silicon Photosensor for On-Chip Detection of Biomolecules: Feasibility Study on Hemoglobin Sensing. Sensors 2021, 21, 415. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Pandraud, G.; Zhang, Y.; French, P. Single-Mode Tapered Vertical SU-8 Waveguide Fabricated by E-Beam Lithography for Analyte Sensing. Sensors 2019, 19, 3383. [Google Scholar] [CrossRef]
- Maruno, T.; Sakata, T.; Ishii, T.; Maruo, Y.Y.; Sasaki, S.; Tamamura, T. Polyimide Optical Waveguides Fabricated by Direct Electron Beam Writing. In Proceedings of the Organic Thin Films for Photonic Applications (1995), September 11 1995; p. MA.3., paper MA.3; Optica Publishing Group.
- Wessa, T.; Barié, N.; Rapp, M.; Ache, H.J. Polyimide, a New Shielding Layer for Sensor Applications. Sensors and Actuators B: Chemical 1998, 53, 63–68. [Google Scholar] [CrossRef]
- Mavrona, E.; Graf, J.; Hack, E.; Zolliker, P. Optimized 3D Printing of THz Waveguides with Cyclic Olefin Copolymer. Opt. Mater. Express, OME 2021, 11, 2495–2504. [Google Scholar] [CrossRef]
- Okagbare, P.I.; Emory, J.M.; Datta, P.; Goettert, J.; Soper, S.A. Fabrication of a Cyclic Olefin Copolymer Planar Waveguide Embedded in a Multi-Channel Poly(Methyl Methacrylate) Fluidic Chip for Evanescence Excitation. Lab Chip 2010, 10, 66–73. [Google Scholar] [CrossRef]
- Wiesmayr, B.; Höglinger, M.; Krieger, M.; Lindner, P.; Baumgartner, W.; Stadler, A.T. A Polydimethylsiloxane (PDMS) Waveguide Sensor That Mimics a Neuromast to Measure Fluid Flow Velocity. Sensors 2019, 19, 925. [Google Scholar] [CrossRef]
- Zimmermann, C.A.; Amouzou, K.N.; Ung, B. Recent Advances in PDMS Optical Waveguides: Properties, Fabrication, and Applications. Advanced Optical Materials 2025, 13, 2401975. [Google Scholar] [CrossRef]
- Sarkar, S.; Poulose, S.; Sahoo, P.K.; Joseph, J. Flexible and Stretchable Guided-Mode Resonant Optical Sensor: Single-Step Fabrication on a Surface Engineered Polydimethylsiloxane Substrate. OSA Continuum, OSAC 2018, 1, 1277–1286. [Google Scholar] [CrossRef]
- Janeiro, R.; Flores, R.; Viegas, J. Silicon Photonics Waveguide Array Sensor for Selective Detection of VOCs at Room Temperature. Sci Rep 2019, 9, 17099. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.K.; Muheddin, D.Q.; Mohammed, P.A.; Ezat, G.S.; Murad, A.R.; Ahmed, B.Y.; Hussen, S.A.; Ahmed, T.Y.; Hamad, S.M.; Abdullah, O.Gh.; et al. A Brief Review on Optical Properties of Polymer Composites: Insights into Light-Matter Interaction from Classical to Quantum Transport Point of View. Results in Physics 2024, 56, 107239. [Google Scholar] [CrossRef]
- Lim, J.W. Polymer Materials for Optoelectronics and Energy Applications. Materials 2024, 17, 3698. [Google Scholar] [CrossRef]
- Pitois, C.; Hult, A.; Wiesmann, D. Absorption and Scattering in Low-Loss Polymer Optical Waveguides. J. Opt. Soc. Am. B, JOSAB 2001, 18, 908–912. [Google Scholar] [CrossRef]
- Rudge, A.; Davey, J.; Raistrick, I.; Gottesfeld, S.; Ferraris, J.P. Conducting Polymers as Active Materials in Electrochemical Capacitors. Journal of Power Sources 1994, 47, 89–107. [Google Scholar] [CrossRef]
- Khaleque, Md.A.; Aly Saad Aly, M.; Khan, Md.Z.H. Chemical and Electrochemical Synthesis of Doped Conducting Polymers and Their Application in Supercapacitors: An Overview. Chemical Engineering Journal 2025, 507, 160444. [Google Scholar] [CrossRef]
- Khdary, N.H.; Almuarqab, B.T.; El Enany, G. Nanoparticle-Embedded Polymers and Their Applications: A Review. Membranes 2023, 13, 537. [Google Scholar] [CrossRef]
- Mostafa, A.M.; Salem, A.; Al-Ahmadi, A.N.; Mwafy, E.A.; Elsharkawy, W.B.; Nafee, S.S.; Alshammary, A.J.; Toghan, A.; Motawea, M.M. Nickel Oxide Nanoparticles Embedded in Polymer-Matrix Nanocomposite Prepared by Nanosecond Laser Ablation Method for Optoelectronic Applications. Radiation Physics and Chemistry 2025, 226, 112262. [Google Scholar] [CrossRef]
- Rezaei, F.; Dinari, M. Cu Nanoparticles Embedded in the Porous Organic Polymer as Highly Effective Catalysts for Nitroaromatics Reduction. Microporous and Mesoporous Materials 2021, 325, 111339. [Google Scholar] [CrossRef]
- Imato, K.; Ooyama, Y. Stimuli-Responsive Smart Polymers Based on Functional Dyes. Polym J 2024, 56, 1093–1109. [Google Scholar] [CrossRef]
- Milvich, J.; Kohler, D.; Freude, W.; Koos, C. Surface Sensing with Integrated Optical Waveguides: A Design Guideline. Opt. Express, OE 2018, 26, 19885–19906. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, Y.; Zheng, L.; Steinbach, L.; Günther, A.; Schneider, A.; Roth, B. Low-Cost Scalable Fabrication of Functionalized Optical Waveguide Arrays for Gas Sensing Application. Int J Adv Manuf Technol 2025, 138, 617–633. [Google Scholar] [CrossRef]
- Sharma, K.; Mohammed, W.S.; Bora, T. Development of Methacrylate-Based Polymer Waveguides as an Optical Sensing Element. In Proceedings of the Optical Waveguide and Laser Sensors IV.; SPIE, May 29 2025; Vol. 13467; p. 134670. [Google Scholar]
- Butt, M.A. Integrated Optics: Platforms and Fabrication Methods. Encyclopedia 2023, 3, 824–838. [Google Scholar] [CrossRef]
- Park, J.; Lee, K.-T.; Yeon, G.; Choi, J.; Kim, M.; Han, B.; Baac, H.W.; Guo, L.J.; Ok, J.G. Demonstration of the One-Step Continuous Fabrication of Flexible Polymer Ridge Waveguides via Nanochannel-Guided Lithography. Journal of Industrial and Engineering Chemistry 2021, 95, 286–291. [Google Scholar] [CrossRef]
- Diez, M.; Raimbault, V.; Joly, S.; Oyhenart, L.; Doucet, J.B.; Obieta, I.; Dejous, C.; Bechou, L. Direct Patterning of Polymer Optical Periodic Nanostructures on CYTOP for Visible Light Waveguiding. Optical Materials 2018, 82, 21–29. [Google Scholar] [CrossRef]
- Han, X.-Y.; Wu, Z.-L.; Yang, S.-C.; Shen, F.-F.; Liang, Y.-X.; Wang, L.-H.; Wang, J.-Y.; Ren, J.; Jia, L.-Y.; Zhang, H.; et al. Recent Progress of Imprinted Polymer Photonic Waveguide Devices and Applications. Polymers 2018, 10, 603. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Yoon, G.; Kim, J.; Jeong, H.; Kim, Y.; Choi, H.; Badloe, T.; Rho, J.; Lee, H. Thermally-Curable Nanocomposite Printing for the Scalable Manufacturing of Dielectric Metasurfaces. Microsyst Nanoeng 2022, 8, 73. [Google Scholar] [CrossRef]
- Yu, G.; Mao, X.; Ding, H.; Yang, F.; Wang, X. Inverse-Designed Polarization-Insensitive Metasurface Holography Fabricated by Nanoimprint Lithography. Opt. Lett., OL 2024, 49, 6845–6848. [Google Scholar] [CrossRef]
- Choi, C.-G.; Han, Y.-T.; Kim, J.T. Application of UV Nanoimprint Lithography in Polymer Photonic Nano-Systems. In Proceedings of the 2006 IEEE Nanotechnology Materials and Devices Conference; October 2006; Vol. 1; pp. 536–537. [Google Scholar]
- Park, J.; Lee, K.-T.; Yeon, G.; Choi, J.; Kim, M.; Han, B.; Baac, H.W.; Guo, L.J.; Ok, J.G. Demonstration of the One-Step Continuous Fabrication of Flexible Polymer Ridge Waveguides via Nanochannel-Guided Lithography. Journal of Industrial and Engineering Chemistry 2021, 95, 286–291. [Google Scholar] [CrossRef]
- Khan, M.U.; Justice, J.; Petäjä, J.; Korhonen, T.; Boersma, A.; Wiegersma, S.; Karppinen, M.; Corbett, B. Multi-Level Single Mode 2D Polymer Waveguide Optical Interconnects Using Nano-Imprint Lithography. Opt. Express, OE 2015, 23, 14630–14639. [Google Scholar] [CrossRef]
- Chuang, W.-C.; Ho, C.-T.; Chang, W.-C. Fabrication of Polymer Waveguides by a Replication Method. Appl. Opt., AO 2006, 45, 8304–8307. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Paloczi, G.T.; Scheuer, J.; Yariv, A. Soft Lithography Replication of Polymeric Microring Optical Resonators. Opt. Express, OE 2003, 11, 2452–2458. [Google Scholar] [CrossRef]
- Rolland, J.P.; Hagberg, E.C.; Denison, G.M.; Carter, K.R.; De Simone, J.M. High-Resolution Soft Lithography: Enabling Materials for Nanotechnologies. Angewandte Chemie International Edition 2004, 43, 5796–5799. [Google Scholar] [CrossRef] [PubMed]
- Moran, I.W.; Cheng, D.F.; Jhaveri, S.B.; Carter, K.R. High-Resolution Soft Lithography of Thin Film Resists Enabling Nanoscopic Pattern Transfer. Soft Matter 2007, 4, 168–176. [Google Scholar] [CrossRef]
- Kocabas, A.; Aydinli, A. Polymeric Waveguide Bragg Grating Filter Using Soft Lithography. Opt. Express, OE 2006, 14, 10228–10232. [Google Scholar] [CrossRef]
- Poon, J.K.S.; Huang, Y.; Paloczi, G.T.; Yariv, A. Soft Lithography Replica Molding of Critically Coupled Polymer Microring Resonators. IEEE Photonics Technology Letters 2004, 16, 2496–2498. [Google Scholar] [CrossRef]
- Kocabas, A.; Aydinli, A. Polymeric Waveguide Bragg Grating Filter Using Soft Lithography. Opt. Express, OE 2006, 14, 10228–10232. [Google Scholar] [CrossRef]
- Bruck, R.; Muellner, P.; Kataeva, N.; Koeck, A.; Hainberger, R.; Trassl, S.; Rinnerbauer, V.; Schmidegg, K. Roll-to-Roll Fabrication of Thin Foil-Based Optical Waveguides with Grating Couplers. In Proceedings of the 2012 17th Opto-Electronics and Communications Conference; July 2012; pp. 249–250. [Google Scholar]
- Bruck, R.; Muellner, P.; Kataeva, N.; Koeck, A.; Trassl, S.; Rinnerbauer, V.; Schmidegg, K.; Hainberger, R. Flexible Thin-Film Polymer Waveguides Fabricated in an Industrial Roll-to-Roll Process. Appl. Opt., AO 2013, 52, 4510–4514. [Google Scholar] [CrossRef]
- Yu, S.; Zuo, H.; Gu, T.; Hu, J. A Flexible Polymer Waveguide Platform with Low-Loss Optical Interfaces. In Proceedings of the 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC); June 2021; pp. 1–1. [Google Scholar]
- Kronenfeld, J.M.; Rother, L.; Saccone, M.A.; Dulay, M.T.; DeSimone, J.M. Roll-to-Roll, High-Resolution 3D Printing of Shape-Specific Particles. Nature 2024, 627, 306–312. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.Y.; Choi, J.H.; Ok, J.G.; Kwak, M.K. Scalable Fabrication of Flexible Microstencils by Using Sequentially Induced Dewetting Phenomenon. ACS Omega 2017, 2, 1097–1103. [Google Scholar] [CrossRef]
- Wolfer, T.; Bollgruen, P.; Mager, D.; Overmeyer, L.; Korvink, J.G. Flexographic and Inkjet Printing of Polymer Optical Waveguides for Fully Integrated Sensor Systems. Procedia Technology 2014, 15, 521–529. [Google Scholar] [CrossRef]
- Lin, C.; Jia, X.; Chen, C.; Yang, C.; Li, X.; Shao, M.; Yu, Y.; Zhang, Z. Direct Ink Writing 3D-Printed Optical Waveguides for Multi-Layer Interconnect. Opt. Express, OE 2023, 31, 11913–11922. [Google Scholar] [CrossRef] [PubMed]
- Butt, M.A. Thin-Film Coating Methods: A Successful Marriage of High-Quality and Cost-Effectiveness—A Brief Exploration. Coatings 2022, 12, 1115. [Google Scholar] [CrossRef]
- Sreenivasan, S.V. Nanoimprint Lithography Steppers for Volume Fabrication of Leading-Edge Semiconductor Integrated Circuits. Microsyst Nanoeng 2017, 3, 17075. [Google Scholar] [CrossRef]
- Moran, I.W.; Cheng, D.F.; Jhaveri, S.B.; Carter, K.R. High-Resolution Soft Lithography of Thin Film Resists Enabling Nanoscopic Pattern Transfer. Soft Matter 2007, 4, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Moon, C.H.; Han, K.-S.; Kim, M.; Oh, D.K.; Yi, S.; Kim, T.; Kim, H.; Hwang, J.; Nam, J.G.; Lee, D.-E.; et al. Scaling up the Sub-50 Nm-Resolution Roll-to-Roll Nanoimprint Lithography Process via Large-Area Tiling of Flexible Molds and Uniform Linear UV Curing. J Mech Sci Technol 2023, 37, 271–278. [Google Scholar] [CrossRef]
- Klestova, A.; Cheplagin, N.; Keller, K.; Slabov, V.; Zaretskaya, G.; Vinogradov, A.V. Inkjet Printing of Optical Waveguides for Single-Mode Operation. Advanced Optical Materials 2019, 7, 1801113. [Google Scholar] [CrossRef]
- Theiler, P.M.; Lütolf, F.; Ferrini, R. Non-Contact Printing of Optical Waveguides Using Capillary Bridges. Opt. Express, OE 2018, 26, 11934–11939. [Google Scholar] [CrossRef]
- Guo, L.J. Nanoimprint Lithography: Methods and Material Requirements. Advanced Materials 2007, 19, 495–513. [Google Scholar] [CrossRef]
- Xia, Y.; Whitesides, G.M. Soft Lithography. Angewandte Chemie International Edition 1998, 37, 550–575. [Google Scholar] [CrossRef]
- Yi, P.; Wu, H.; Zhang, C.; Peng, L.; Lai, X. Roll-to-Roll UV Imprinting Lithography for Micro/Nanostructures. Journal of Vacuum Science & Technology B 2015, 33, 060801. [Google Scholar] [CrossRef]
- Kamyshny, A.; Magdassi, S. Conductive Nanomaterials for Printed Electronics. Small 2014, 10, 3515–3535. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Composites Part B: Engineering 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Malheiros-Silveira, G.N.; Finardi, C.A.; Van Etten, E.A.M.A.; Bürger, T.S.; da Silva, R.C.G.; Daltrini, A.M.; Panepucci, R.R. Foundry Polymer-Based Inverted-Rib Waveguides. In Proceedings of the 2018 SBFoton International Optics and Photonics Conference (SBFoton IOPC); October 2018; pp. 1–3. [Google Scholar]
- Prajzler, V.; Nekvindova, P.; Hyps, P.; Brychta, J.; Jerabek, V. Polymer Planar Optical Waveguides for Optical Interconnections. In Proceedings of the 2015 Conference on Lasers and Electro-Optics Pacific Rim (2015), August 24 2015, paper 27P_43; Optica Publishing Group; p. 27.
- Butt, M.A. Emerging Trends in Thermo-Optic and Electro-Optic Materials for Tunable Photonic Devices. Materials 2025, 18, 2782. [Google Scholar] [CrossRef]
- Prasanna Kumaar, S.; Sivasubramanian, A. Analysis of BCB and SU 8 Photonic Waveguide in MZI Architecture for Point-of-Care Devices. Sensors International 2023, 4, 100207. [Google Scholar] [CrossRef]
- Han, J.; Wu, X.; Ge, X.; Xie, Y.; Song, G.; Liu, L.; Yi, Y. Highly Sensitive Liquid M-Z Waveguide Sensor Based on Polymer Suspended Slot Waveguide Structure. Polymers 2022, 14, 3967. [Google Scholar] [CrossRef]
- Bettotti, P.; Pitanti, A.; Rigo, E.; De Leonardis, F.; Passaro, V.M.N.; Pavesi, L. Modeling of Slot Waveguide Sensors Based on Polymeric Materials. Sensors 2011, 11, 7327–7340. [Google Scholar] [CrossRef]
- Zheng, L.; Keppler, N.; Zhang, H.; Behrens, P.; Roth, B. Planar Polymer Optical Waveguide with Metal-Organic Framework Coating for Carbon Dioxide Sensing. Advanced Materials Technologies 2022, 7, 2200395. [Google Scholar] [CrossRef]
- Hiltunen, M.; Hiltunen, J.; Stenberg, P.; Aikio, S.; Kurki, L.; Vahimaa, P.; Karioja, P. Polymeric Slot Waveguide Interferometer for Sensor Applications. Opt. Express, OE 2014, 22, 7229–7237. [Google Scholar] [CrossRef]
- Broadway, C.; Min, R.; Leal-Junior, A.G.; Marques, C.; Caucheteur, C. Toward Commercial Polymer Fiber Bragg Grating Sensors: Review and Applications. J. Lightwave Technol., JLT 2019, 37, 2605–2615. [Google Scholar] [CrossRef]
- Ngiejungbwen, L.A.; Hamdaoui, H.; Chen, M.-Y. Polymer Optical Fiber and Fiber Bragg Grating Sensors for Biomedical Engineering Applications: A Comprehensive Review. Optics & Laser Technology 2024, 170, 110187. [Google Scholar] [CrossRef]
- Goraus, M.; Pudis, D.; Urbancova, P.; Martincek, I.; Gaso, P. Surface-Relief Bragg Grating Waveguides Based on IP-Dip Polymer for Photonic Applications. Applied Surface Science 2018, 461, 113–116. [Google Scholar] [CrossRef]
- Smirnova, O.; Sajzew, R.; Finkelmeyer, S.J.; Asadov, T.; Chattopadhyay, S.; Wieduwilt, T.; Reupert, A.; Presselt, M.; Knebel, A.; Wondraczek, L. Micro-Optical Elements from Optical-Quality ZIF-62 Hybrid Glasses by Hot Imprinting. Nat Commun 2024, 15, 5079. [Google Scholar] [CrossRef]
- Nambiar, S.; P, V.; Singh, R.; Rawat, P.; Selvaraja, S.K. High-Efficiency Broadband out-of-Plane Fiber-to-Polymer Waveguide Grating Coupler. Opt. Lett., OL 2024, 49, 6972–6975. [Google Scholar] [CrossRef]
- Wang, W.; Wu, J.; Chen, K.; Jin, W.; Chiang, K.S. Ultra-Broadband Mode Conversion with Length-Apodized Long-Period Grating on Polymer Waveguide. In Proceedings of the Frontiers in Optics 2017 (2017), September 18 2017, paper FW6A.2; Optica Publishing Group; p. 6.
- Lin, H.; Xing, Y.; Chen, X.; Zhang, S.; Forsberg, E.; He, S. Polymer-Based Planar Waveguide Chirped Bragg Grating for High-Resolution Tactile Sensing. Opt. Express, OE 2022, 30, 20871–20882. [Google Scholar] [CrossRef]
- Li, H.; Meng, W.; Cao, L.; Zhang, L.; Liu, Y.; Lin, Z.; Zhao, R.; Song, Z.; Ren, F.; Zhang, S.; et al. Fabrication and Characterization of Polymer Optical Waveguide Bragg Grating for Pulse Signal Sensing. Opt. Express, OE 2023, 31, 32458–32467. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Abdalwareth, A.; Flachenecker, G.; Angelmahr, M.; Schade, W. Polymer Waveguide Sensor Based on Evanescent Bragg Grating for Lab-on-a-Chip Applications. Sensors 2024, 24, 1234. [Google Scholar] [CrossRef]
- Ameen, A.A.; Panda, A.; Mehaney, A.; Almawgani, A.H.M.; Pradhan, D.D.; Ali, G.A.; Ali, Y.A.A.; Elsayed, H.A. An Investigation of High-Performance Pressure Sensor Employing a Polymer-Defect-Based 1D Annular Photonic Crystal. Photonics 2023, 10, 731. [Google Scholar] [CrossRef]
- Hermannsson, P.G.; Sørensen, K.T.; Vannahme, C.; Smith, C.L.C.; Klein, J.J.; Russew, M.-M.; Grützner, G.; Kristensen, A. All-Polymer Photonic Crystal Slab Sensor. Opt. Express, OE 2015, 23, 16529–16539. [Google Scholar] [CrossRef]
- Sun, J.; Maeno, K.; Aki, S.; Sueyoshi, K.; Hisamoto, H.; Endo, T. Design and Fabrication of a Visible-Light-Compatible, Polymer-Based Photonic Crystal Resonator and Waveguide for Sensing Applications. Micromachines 2018, 9, 410. [Google Scholar] [CrossRef]
- Golvari, P.; Kuebler, S.M. Fabrication of Functional Microdevices in SU-8 by Multi-Photon Lithography. Micromachines 2021, 12, 472. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, M.; Goddard, J.M.; Erickson, D. Nanoporous Polymer Ring Resonators for Biosensing. Opt. Express, OE 2012, 20, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Madani, A.; Azarinia, H.; Latifi, H. Design and Fabrication of a Polymer Micro Ring Resonator with Novel Optical Material at Add/Drop Geometry Using Laser Beam Direct Write Lithography Technique. Optik 2013, 124, 1746–1748. [Google Scholar] [CrossRef]
- Girault, P.; Lorrain, N.; Poffo, L.; Guendouz, M.; Lemaitre, J.; Carré, C.; Gadonna, M.; Bosc, D.; Vignaud, G. Integrated Polymer Micro-Ring Resonators for Optical Sensing Applications. Journal of Applied Physics 2015, 117, 104504. [Google Scholar] [CrossRef]
- Zhang, C.; Ling, T.; Chen, S.-L.; Guo, L.J. Ultrabroad Bandwidth and Highly Sensitive Optical Ultrasonic Detector for Photoacoustic Imaging. ACS Photonics 2014, 1, 1093–1098. [Google Scholar] [CrossRef]
- Tu, X.; Chen, S.-L.; Song, C.; Huang, T.; Guo, L.J. Ultrahigh Q Polymer Microring Resonators for Biosensing Applications. IEEE Photonics Journal 2019, 11, 1–10. [Google Scholar] [CrossRef]
- Xiao, Y.; Hofmann, M.; Wang, Z.; Sherman, S.; Zappe, H. Design of All-Polymer Asymmetric Mach–Zehnder Interferometer Sensors. Appl. Opt., AO 2016, 55, 3566–3573. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhang, X.; Wang, T.; Huang, G. Development and Characterization of an Asymmetric MZI Temperature Sensor Using Polymer Waveguides for Extended Temperature Measurement Scopes. Photonics 2025, 12, 491. [Google Scholar] [CrossRef]
- Ma, X.X.; Chen, K.X.; Wu, J.Y. Cost-Effective Mach-Zehnder Interferometer Liquid Refractive Index Sensor Based on Conventional Polymer Strip Waveguide. IEEE Photonics Journal 2021, 13, 1–9. [Google Scholar] [CrossRef]
- Chen, M.-Q.; Lin, Z.-Y.; Zhao, Y. Femtosecond Laser Direct-Writing On-Chip MZI Temperature Sensor Based on Polymer Waveguides. IEEE Transactions on Instrumentation and Measurement 2023, 72, 1–8. [Google Scholar] [CrossRef]
- Hofmann, M.; Xiao, Y.; Sherman, S.; Gleissner, U.; Schmidt, T.; Zappe, H. Asymmetric Mach–Zehnder Interferometers without an Interaction Window in Polymer Foils for Refractive Index Sensing. Appl. Opt., AO 2016, 55, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Mu, X.; Liu, S.; Guo, L.; Liu, Z.; Feng, S.; Xu, J.; Tong, Z.; Qi, Z.-M. A New Strategy for Real-Time Humidity Detection: Polymer-Coated Optical Waveguide Sensor. Chemosensors 2022, 10, 63. [Google Scholar] [CrossRef]
- Wang, J.; Yang, X.; Kou, Y.; Tong, D.; Wang, A.; Niu, C.; Meng, H.; Li, S.; Geng, T.; Sun, W. Highly-Sensitive Temperature Sensor Based on Photopolymerized-Waveguide Embedded Mach-Zehnder Interferometer. Opt. Express, OE 2023, 31, 27332–27344. [Google Scholar] [CrossRef] [PubMed]
- Prasanna Kumaar, S.; Sivasubramanian, A. Design of a High-Sensitivity Polymer Double-Slot Waveguide Sensor for Point-of-Care Biomedical Applications. Sensors International 2024, 5, 100255. [Google Scholar] [CrossRef]
- Khonina, S.N.; Voronkov, G.S.; Grakhova, E.P.; Kazanskiy, N.L.; Kutluyarov, R.V.; Butt, M.A. Polymer Waveguide-Based Optical Sensors—Interest in Bio, Gas, Temperature, and Mechanical Sensing Applications. Coatings 2023, 13, 549. [Google Scholar] [CrossRef]
- Bamiedakis, N.; Hutter, T.; Penty, R.V.; White, I.H.; Elliott, S.R. PCB-Integrated Optical Waveguide Sensors: An Ammonia Gas Sensor. Journal of Lightwave Technology 2013, 31, 1628–1635. [Google Scholar] [CrossRef]
- Lee, S.; Lee, E.-H.; Lee, S.-W. A Flexible and Attachable Colorimetric Film Sensor for the Detection of Gaseous Ammonia. Biosensors 2022, 12, 664. [Google Scholar] [CrossRef]
- Yeo, J.-E.; Ko, J.H.; Lee, S.H.; Song, Y.M. Wearable Image-Based Colorimetric Sensor for Real-Time Gas Detection with High Chromaticity. Advanced Electronic Materials n/a. [CrossRef]
- Chou, P.-C.; Chen, S.-H.; Chang, C.-J.; Lu, C.-H.; Chen, J.-K. Detection of Heavy Metal Ion Using Photonic Crystals of Polymer Brushes with Reflective Laser Beam System. Applied Surface Science 2022, 585, 152718. [Google Scholar] [CrossRef]
- Fenzl, C.; Kirchinger, M.; Hirsch, T.; Wolfbeis, O.S. Photonic Crystal-Based Sensing and Imaging of Potassium Ions. Chemosensors 2014, 2, 207–218. [Google Scholar] [CrossRef]
- Das, A.; Babu, A.; Chakraborty, S.; Van Guyse, J.F.R.; Hoogenboom, R.; Maji, S. Poly(N-Isopropylacrylamide) and Its Copolymers: A Review on Recent Advances in the Areas of Sensing and Biosensing. Advanced Functional Materials 2024, 34, 2402432. [Google Scholar] [CrossRef]
- Zhang, Z.; Abdalwareth, A.; Flachenecker, G.; Angelmahr, M.; Schade, W. Polymer Waveguide Sensor Based on Evanescent Bragg Grating for Lab-on-a-Chip Applications. Sensors 2024, 24, 1234. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Keppler, N.; Zhang, H.; Behrens, P.; Roth, B. Planar Polymer Optical Waveguide with Metal-Organic Framework Coating for Carbon Dioxide Sensing. Advanced Materials Technologies 2022, 7, 2200395. [Google Scholar] [CrossRef]
- Guo, J.; Yang, C.; Dai, Q.; Kong, L. Soft and Stretchable Polymeric Optical Waveguide-Based Sensors for Wearable and Biomedical Applications. Sensors 2019, 19, 3771. [Google Scholar] [CrossRef]
- Irawan, R.; Cheng, Y.H.; Ng, W.M.; Aung, M.M.; Lao, I.K.; Thaveeprungsriporn, V. Polymer Waveguide Sensor for Early Diagnostic and Wellness Monitoring. Biosensors and Bioelectronics 2011, 26, 3666–3669. [Google Scholar] [CrossRef]
- Yi, P.F.; Shen, P.; Zheng, Y.; Chen, C.M.; Liang, L.G.; Wang, J.H.; Guan, L.C.S.; Zhang, D.M. Metal-Printing Directly Defined Polymer Optical Waveguide Sensors for Detecting Effective Anti-Inflammatory Concentrations of Peimine as Fritillaria Alkaloid Drugs. Opt. Mater. Express, OME 2017, 7, 2230–2241. [Google Scholar] [CrossRef]
- Cicala, G.; Arcadio, F.; Zeni, L.; Saitta, L.; Tosto, C.; Fragalà, M.E.; Del Prete, D.; Cennamo, N. Plasmonic Sensors Based on 3D-Printed Polymer Waveguides Covered by a Metals Bilayer. In Proceedings of the 2022 IEEE Sensors Applications Symposium (SAS); August 2022; pp. 1–4. [Google Scholar]
- Zhou, Y.; Xu, Y.; Xu, G.; Sugihara, O.; Cai, B. Molecularly Imprinted Polymer-Coated Optical Waveguide for Attogram Sensing. ACS Appl. Mater. Interfaces 2022, 14, 16727–16734. [Google Scholar] [CrossRef]
- Walter, J.-G.; Alwis, L.S.M.; Roth, B.; Bremer, K. All-Optical Planar Polymer Waveguide-Based Biosensor Chip Designed for Smartphone-Assisted Detection of Vitamin D. Sensors 2020, 20, 6771. [Google Scholar] [CrossRef]
- Pozo, F.; Tibaduiza, D.A.; Vidal, Y. Sensors for Structural Health Monitoring and Condition Monitoring. Sensors 2021, 21, 1558. [Google Scholar] [CrossRef]
- Tanusha, D.; Badhulika, S. Comparative Analysis of Micro Patterned PDMS-Based Piezoresistive Pressure Sensors with Multifunctional Strain and Health Monitoring Applications. Sensors and Actuators A: Physical 2024, 369, 115139. [Google Scholar] [CrossRef]
- Velázquez-Carreón, F.; Pérez-Alonzo, A.; Sandoval-Romero, G.E.; Sánchez-Pérez, C. Enhanced PDMS-Embedded FBG Devices for Displacement Sensing. Optics & Laser Technology 2024, 179, 111269. [Google Scholar] [CrossRef]
- Zimmermann, C.A.; Amouzou, K.N.; Ung, B. Recent Advances in PDMS Optical Waveguides: Properties, Fabrication, and Applications. Advanced Optical Materials 2025, 13, 2401975. [Google Scholar] [CrossRef]
- Zubia, J.; García, I.; Villatoro, J.; Illarramendi, M.A.; Mateo, J.; Vázquez, C. Polymer Optical Fiber Sensors for Aircraft Structural and Engine Health Monitoring. In Proceedings of the 2017 19th International Conference on Transparent Optical Networks (ICTON); July 2017; pp. 1–1. [Google Scholar]
- López-Higuera, J.M.; Cobo, L.R.; Incera, A.Q.; Cobo, A. Fiber Optic Sensors in Structural Health Monitoring. J. Lightwave Technol., JLT 2011, 29, 587–608. [Google Scholar] [CrossRef]
- Soman, R.; Wee, J.; Peters, K. Optical Fiber Sensors for Ultrasonic Structural Health Monitoring: A Review. Sensors 2021, 21, 7345. [Google Scholar] [CrossRef]
- Mizuno, Y.; Theodosiou, A.; Kalli, K.; Liehr, S.; Lee, H.; Nakamura, K. Distributed Polymer Optical Fiber Sensors: A Review and Outlook. Photon. Res., PRJ 2021, 9, 1719–1733. [Google Scholar] [CrossRef]
- Liehr, S. Polymer Optical Fiber Sensors in Structural Health Monitoring. In New Developments in Sensing Technology for Structural Health Monitoring. In New Developments in Sensing Technology for Structural Health Monitoring; Mukhopadhyay, S.C., Ed.; Springer: Berlin, Heidelberg, 2011; ISBN 978-3-642-21099-0. [Google Scholar]
- Taymaz, B.H.; Kamış, H.; Dziendzikowski, M.; Kowalczyk, K.; Dragan, K.; Eskizeybek, V. Enhancing Structural Health Monitoring of Fiber-Reinforced Polymer Composites Using Piezoresistive Ti3C2Tx MXene Fibers. Sci Rep 2025, 15, 2456. [Google Scholar] [CrossRef]
- Taymaz, B.H.; Kamış, H.; Dziendzikowski, M.; Kowalczyk, K.; Dragan, K.; Eskizeybek, V. Enhancing Structural Health Monitoring of Fiber-Reinforced Polymer Composites Using Piezoresistive Ti3C2Tx MXene Fibers. Sci Rep 2025, 15, 2456. [Google Scholar] [CrossRef]
- Zhang, Z.; Abdalwareth, A.; Flachenecker, G.; Angelmahr, M.; Schade, W. Polymer Waveguide Sensor Based on Evanescent Bragg Grating for Lab-on-a-Chip Applications. Sensors 2024, 24, 1234. [Google Scholar] [CrossRef]
- Upadhyay, A.; Yadav, C.S.; Maurya, R.; Sharma, G.; Singh, T.S.; Kumar, S.; Singh, V. Experimental Detection of Chlorpyrifos by MoS2 Coated Planar Polymer Waveguide Sensor Utilizing Common Path Interferometric Principle. Optik 2023, 276, 170668. [Google Scholar] [CrossRef]
- Jiang, L.; Wu, J.; Chen, K.; Zheng, Y.; Deng, G.; Zhang, X.; Li, Z.; Chiang, K.S. Polymer Waveguide Mach-Zehnder Interferometer Coated with Dipolar Polycarbonate for on-Chip Nitroaromatics Detection. Sensors and Actuators B: Chemical 2020, 305, 127406. [Google Scholar] [CrossRef]
- Chen, H.; Quan, W.; Zou, P.; Fu, H.; Lin, Z.; Liu, X.; Xue, J.; Fan, W.; Zhang, D. Polymer Waveguide Sensor Based on Localized Surface Plasmon Resonance for NaCl Solution Detection. In Proceedings of the 2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID); October 2019; pp. 220–223. [Google Scholar]
- Liu, F.; Guidotti, D.; Sundaram, V.; Mahajan, S.; Huang, Z.; Chang, Y.-J.; Chang, G.K.; Tummala, R.R. Material and Process Challenges in Embedding Polymeric Waveguides and Detectors in System on Package (SOP). In Proceedings of the 9th International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces. 2004 Proceedings.; March 2004; pp. 89–94. [Google Scholar]
- Liu, F.; Zhang, X.; Wang, T.; Huang, G. Development and Characterization of an Asymmetric MZI Temperature Sensor Using Polymer Waveguides for Extended Temperature Measurement Scopes. Photonics 2025, 12, 491. [Google Scholar] [CrossRef]
- Grandes, J.; Illarramendi, M.A.; Arrospide, E.; Bikandi, I.; Aramburu, I.; Guarrotxena, N.; García, O.; Zubia, J. Temperature Effects on the Emission of Polymer Optical Fibers Doped with Lumogen Dyes. Optical Fiber Technology 2022, 72, 102980. [Google Scholar] [CrossRef]
- Lindsay, G.A.; Guenthner, A.J.; Wright, M.E.; Sanghadasa, M.; Ashley, P.R. Multi-Month Thermal Aging of Electro-Optic Polymer Waveguides: Synthesis, Fabrication, and Relaxation Modeling. Polymer 2007, 48, 6605–6616. [Google Scholar] [CrossRef]
- Imamura, S. Polymeric Optical Waveguides [Materials, Packaging and Applications]. In Proceedings of the 1998 IEEE/LEOS Summer Topical Meeting. Digest. Broadband Optical Networks and Technologies: An Emerging Reality. Optical MEMS. Smart Pixels. Organic Optics and Optoelectronics (Cat. No.98TH8369); July 1998; p. III/35-III/36. [Google Scholar]
- Asch, J.V.; Missinne, J.; He, J.; Podpod, A.; Lepage, G.; Golshani, N.; Magdziak, R.; Sar, H.; Kobbi, H.; Bipul, S.; et al. Low-Loss Integration of High-Density Polymer Waveguides with Silicon Photonics for Co-Packaged Optics. Optica, OPTICA 2025, 12, 821–830. [Google Scholar] [CrossRef]
- Suda, S.; Noriki, A.; Kuwatsuka, H.; Nakamura, F.; Atsumi, Y.; Kurosu, T.; Murao, T.; Amano, T. High-Power Stability and Reliability of Polymer Optical Waveguide for Co-Packaged Optics. Journal of Lightwave Technology 2025, 43, 4903–4912. [Google Scholar] [CrossRef]
- Perevoznik, D.; Tajalli, A.; Zuber, D.; Pätzold, WelmM. ; Demircan, A.; Morgner, U. Writing 3D Waveguides With Femtosecond Pulses in Polymers. Journal of Lightwave Technology 2021, 39, 4390–4394. [Google Scholar] [CrossRef]
- Liu, J.; Ding, Z.; Zhang, Z. Ge-Polymer Bridge Waveguide for Mode-Locked Laser Pulse Generation. Opt. Lett., OL 2024, 49, 582–585. [Google Scholar] [CrossRef]
- Zhang, Z.; Felipe, D.; Katopodis, V.; Groumas, P.; Kouloumentas, C.; Avramopoulos, H.; Dupuy, J.-Y.; Konczykowska, A.; Dede, A.; Beretta, A.; et al. Hybrid Photonic Integration on a Polymer Platform. Photonics 2015, 2, 1005–1026. [Google Scholar] [CrossRef]
- ShangGuan, L.; Zhang, D.; Zhang, T.; Cheng, R.; Wang, J.; Wang, C.; Wang, F.; Ho, S.-T.; Chen, C.; Fei, T. Functionalized Polymer Waveguide Optical Switching Devices Integrated with Visible Optical Amplifiers Based on an Organic Gain Material. Dyes and Pigments 2020, 176, 108210. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z. Polymer-Embedding Germanium Nanostrip Waveguide of High Polarization Extinction. Polymers 2023, 15, 4093. [Google Scholar] [CrossRef]
- Escher, A.; Megahd, H.; Tavella, C.; Comoretto, D.; Lova, P. Colorimetric Polymer Sensors for Smart Packaging. Macromolecular Chemistry and Physics 2023, 224, 2300022. [Google Scholar] [CrossRef]
- Rodrigues, C.; Souza, V.G.L.; Coelhoso, I.; Fernando, A.L. Bio-Based Sensors for Smart Food Packaging—Current Applications and Future Trends. Sensors 2021, 21, 2148. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.; Fahmy, H.; Elkhawas, K.; Labeeb, A. Smart Packaging Materials Based Nanoencapsulated Bromothymol as Monitoring Sensors for Spoilage of Chilled Fillet. J Food Sci Technol 2025. [Google Scholar] [CrossRef]
- Imamura, S. Polymeric Optical Waveguides [Materials, Packaging and Applications]. In Proceedings of the 1998 IEEE/LEOS Summer Topical Meeting. Digest. Broadband Optical Networks and Technologies: An Emerging Reality. Optical MEMS. Smart Pixels. Organic Optics and Optoelectronics (Cat. No.98TH8369); July 1998; p. III/35-III/36. [Google Scholar]
- Hoffmann, G.-A.; Wienke, A.; Reitberger, T.; Franke, J.; Kaierle, S.; Overmeyer, L. Thermoforming of Planar Polymer Optical Waveguides for Integrated Optics in Smart Packaging Materials. Journal of Materials Processing Technology 2020, 285, 116763. [Google Scholar] [CrossRef]
- Lytel, R.; Lipscomb, G.F. Packaging and Applications of Active Polymer Optical Switching Arrays. In Proceedings of the Optoelectronic Interconnects and Packaging: A Critical Review; SPIE, January 30 1996; Vol. 10284; pp. 407–417. [Google Scholar]
- Flöry, N.; Halter, M.; Strässle, V.; Betschon, F.; Alexoudi, T.; Charalampos, Z.; Lamprecht, T. Highly Reliable Polymer Waveguide Platform for Multi-Port Photonic Chip-Packaging. In Proceedings of the 2021 IEEE 71st Electronic Components and Technology Conference (ECTC); June 2021; pp. 1689–1694. [Google Scholar]
- Evertz, A.; Pleuß, J.; Reitz, B.; Overmeyer, L. Flexo-Printed Polymer Waveguides for Integration in Electro-Optical Circuit Boards. Flex. Print. Electron. 2024, 9, 035001. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. A Review on Flexible Wearables – Recent Developments in Non-Invasive Continuous Health Monitoring. Sensors and Actuators A: Physical 2024, 366, 114993. [Google Scholar] [CrossRef]
- Zha, B.; Wang, Z.; Ma, L.; Chen, J.; Wang, H.; Li, X.; Kumar, S.; Min, R. Intelligent Wearable Photonic Sensing System for Remote Healthcare Monitoring Using Stretchable Elastomer Optical Fiber. IEEE Internet of Things Journal 2024, 11, 17317–17329. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Yang, Y.; Xie, F.; Han, M.; Lin, Z.; Wang, Y.; Zhang, J.; Zhang, S.; Zhang, C.; et al. Photonic Skin for Photonic-Integration-Based Wearable Sensors. Optica, OPTICA 2025, 12, 190–202. [Google Scholar] [CrossRef]
- Song, R.; Cho, S.; Khan, S.; Park, I.; Gao, W. Lighting the Path to Precision Healthcare: Advances and Applications of Wearable Photonic Sensors. Advanced Materials n/a. [CrossRef]
- Nagar, M.A.; Janner, D. Polymer-Based Optical Guided-Wave Biomedical Sensing: From Principles to Applications. Photonics 2024, 11, 972. [Google Scholar] [CrossRef]
- Guo, J.; Tuo, J.; Sun, J.; Li, Z.; Guo, X.; Chen, Y.; Cai, R.; Zhong, J.; Xu, L. Stretchable Multimodal Photonic Sensor for Wearable Multiparameter Health Monitoring. Advanced Materials 2025, 37, 2412322. [Google Scholar] [CrossRef]
- Khonina, S.N.; Kazanskiy, N.L. Trends and Advances in Wearable Plasmonic Sensors Utilizing Surface-Enhanced Raman Spectroscopy (SERS): A Comprehensive Review. Sensors 2025, 25, 1367. [Google Scholar] [CrossRef]
- Ajeev, A.; Warfle, T.; Maslaczynska-Salome, S.; Alipoori, S.; Duprey, C.; K. Wujcik, E. From the Synthesis of Wearable Polymer Sensors to Their Potential for Reuse and Ultimate Fate. Chemical Science 2025, 16, 9056–9075. [Google Scholar] [CrossRef] [PubMed]
- Hamjah, M.-K.; Zeitler, J.; Eiche, Y.; Lorenz, L.; Backhaus, C.; Hoffmann, G.-A.; Wienke, A.; Kaierle, S.; Overmeyer, L.; Lindlein, N.; et al. Manufacturing of Polymer Optical Waveguides for 3D-Opto-MID: Review of the OPTAVER Process. In Proceedings of the 2021 14th International Congress Molded Interconnect Devices (MID); February 2021; pp. 1–11. [Google Scholar]
- Backhaus, C.; Hoffmann, G.A.; Reitberger, T.; Eiche, Y.; Overmeyer, L.; Franke, J.; Lindlein, N. Analysis of Additive Manufactured Polymer Optical Waveguides: Measurement and Simulation of Their Waviness. In Proceedings of the Integrated Optics: Devices, Materials, and Technologies XXIV.; SPIE, February 25 2020; Vol. 11283; pp. 193–202. [Google Scholar]
- Ding, Z.; Wang, H.; Li, T.; Ouyang, X.; Shi, Y.; Zhang, A.P. Fabrication of Polymer Optical Waveguides by Digital Ultraviolet Lithography. Journal of Lightwave Technology 2022, 40, 163–169. [Google Scholar] [CrossRef]
- Jradi, S.; Soppera, O.; Lougnot, D.J. Fabrication of Polymer Waveguides between Two Optical Fibers Using Spatially Controlled Light-Induced Polymerization. Appl. Opt., AO 2008, 47, 3987–3993. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Dong, K.; Li, F.; Jia, Q.; Tian, J.; Yu, M.; Xiong, Y. Additive Manufacturing of Polymer Composite Millimeter-Wave Components: Recent Progress, Novel Applications, and Challenges. Polymer Composites 2025, 46, 14–37. [Google Scholar] [CrossRef]
- Han, X.-Y.; Wu, Z.-L.; Yang, S.-C.; Shen, F.-F.; Liang, Y.-X.; Wang, L.-H.; Wang, J.-Y.; Ren, J.; Jia, L.-Y.; Zhang, H.; et al. Recent Progress of Imprinted Polymer Photonic Waveguide Devices and Applications. Polymers 2018, 10, 603. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Jia, X.; Chen, C.; Yang, C.; Li, X.; Shao, M.; Yu, Y.; Zhang, Z. Direct Ink Writing 3D-Printed Optical Waveguides for Multi-Layer Interconnect. Opt. Express, OE 2023, 31, 11913–11922. [Google Scholar] [CrossRef]
- Evertz, A.; Pleuß, J.; Reitz, B.; Overmeyer, L. Flexo-Printed Polymer Waveguides for Integration in Electro-Optical Circuit Boards. Flex. Print. Electron. 2024, 9, 035001. [Google Scholar] [CrossRef]
- Prajzler, V.; Chlupaty, V.; Neruda, M. Circular Large Core Optical Elastomer Waveguides Fabricated by Using Direct Microdispense Fabrication Method. Optik 2022, 250, 168348. [Google Scholar] [CrossRef]
- Baghdasaryan, T.; Vanmol, K.; Berghmans, F.; Thienpont, H.; Van Erps, J. 3D Printing of Fiber and Waveguide Coupling Components in Polymer. In Proceedings of the 2023 International Workshop on Fiber Optics on Access Networks (FOAN); October 2023; pp. 20–20. [Google Scholar]
- Trunin, P.; Cafiso, D.; Beccai, L. Design and 3D Printing of Soft Optical Waveguides towards Monolithic Perceptive Systems. Additive Manufacturing 2025, 100, 104687. [Google Scholar] [CrossRef]
- Ngo, G.L.; Nguyen, L.; Hermier, J.-P.; Lai, N.D. On-Chip 3D Printing of Polymer Waveguide-Coupled Single-Photon Emitter Based on Colloidal Quantum Dots. Polymers 2023, 15, 2201. [Google Scholar] [CrossRef]
- Hamjah, M.-K.; Thielen, N.; Hagelloch, J.E.; Franke, J. Machine Learning Approach towards Quality Control of Aerosol-Jet Printed Polymer Optical Waveguides Material. In Proceedings of the 2021 IEEE Region 10 Symposium (TENSYMP); August 2021; pp. 1–5. [Google Scholar]
- Najeeb, J.; Shah, S.S.A.; Tahir, M.H.; Hanafy, A.; M. El-Bahy, S.; M. El-Bahy, Z. Machine Learning Assisted Designing of Polymers and Refractive Index Prediction: Easy and Fast Screening of Polymers from Chemical Space. Materials Chemistry and Physics 2024, 324, 129685. [Google Scholar] [CrossRef]












Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).