Submitted:
29 June 2025
Posted:
30 June 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
3.1. Cutured Meat
3.2. Seaweed
3.3. Single-Cell Proteins
3.4. Plant-Based Proteins
3.4.1. Plant-Derived Food Allergen Components
3.5. Insects
3.6. Regulation of Alternative Protein Consumption
3.7. Allergenicity Assessment of Alternative Proteins
- ○
- Proteomics is the large-scale study of the complete set of proteins (proteome) expressed by a cell or tissue. Techniques include:
- Mass Spectrometry (MS): for identifying and quantifying proteins.
- 2D-Gel Electrophoresis (2D-GEL): for separating proteins by charge and mass.
- LC-MS/MS (Liquid Chromatography with Tandem Mass Spectrometry): for in-depth protein analysis.
- ○
- Transcriptomics: the investigation of RNA transcripts to comprehend gene expression.
3.8. Outlook on Alternative Proteins to 2050
3.9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- United Nations Department of Economic and Social Affairs, Population Division (2022). World Population Prospects 2022: Summary of Results. UN DESA/POP/2022/TR/NO. 3. Available online: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf (accessed on 22.06.2025).
- FAO The State of Food Security and Nutrition in the World 2022. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/67b1e9c7-1a7f-4dc6-a19e-f6472a4ea83a/content (accessed on 22.06.2025).
- Turner, N.D.; Lloyd, S.K. Association between red meat consumption and colon cancer: A systematic review of experimental results. ExpBiol Med (Maywood). 2017, 242, 813–839. [CrossRef]
- Witte, B.; Obloj, P.; Koktenturk, S.; Morach, B.; Brigl, M.; Rogg, J.; Schulze, U.; Walker, D.; Von Koeller, E.; Dehnert, N.; et al. Food for Thought: The protein transformation, Boston Consulting Group and Blue Horizon Corporation, Industrial Biotechnology 2021, 17, 3. [CrossRef]
- Calvani, M.; Anania, C.; Cuomo, B.; D’Auria, E.; Decimo, F.; Indirli, G.C.; Marseglia, G.; Mastrorilli,V.; Sartorio, M.U.A.; Santoro, A.; et al. Non-IgE- or Mixed IgE/Non-IgE-Mediated Gastrointestinal Food Allergies in the First Years of Life: Old and New Tools for Diagnosis. Nutrients. 2021, 13, 226. [CrossRef]
- Boyce, J.; Assa’ad, A.; Burks, A.W.; Jones, S.M.; Sampson, H.A.; Wood, R.A.; Plaut, M.; Cooper, S.F.; Fento, M.J.; Arshad, S.H.; et al. Guidelines for the diagnosis and management of food allergy in the United States: Report of the NIAID- sponsored expert panel. J. Allergy Clin. Immunol. 2010, 126, 1–58. [CrossRef]
- Cianferoni, A. Non-IgE Mediated Food Allergy. Curr Pediatr Rev. 2020, 16, 95–105. [CrossRef]
- Mennini, M.; Fiocchi, A.G.; Cafarotti, A.; Montesano, M.; Mauro, A.; Villa, M.P.; Di Nardo, G. Food protein-induced allergic proctocolitis in infants: Literature review and proposal of a management protocol. World Allergy Organ J. 2020, 13, 100471. [CrossRef]
- Fox, V.L. Gastrointestinal bleeding in infancy and childhood. Gastroenterol. Clin. N. Am. 2000, 29, 37–66; [CrossRef]
- Kaya, A.; Toyran, M.; Civelek, E.; Misirlioglu, E.; Kirsaclioglu, C.; Kocabas, C. Characteristics and prognosis of allergic proctocolitis in infants. J.Pediatr Gastroenterol. Nutr. 2015, 61, 69–73. [CrossRef]
- Leonard, S.A.; Nowak-Wegryn, A. Food Protein–Induced Enterocolitis Syndrome. Pediatr. Clin. N. Am. 2015, 62, 1463–1477. [CrossRef]
- Nowak-Wegrzyn, A.; Berin, M.C.; Mehr, S. Food Protein-Induced Enterocolitis Syndrome. J. Allergy Clin.I mmunol. Pr. 2020, 8, 24–35. [CrossRef]
- Santos, A.F.; Riggioni, C.; Agache, I.; Akdis, C.A,: Akdis, M.; Alvarez-Perea, A.; Alvaro-Lozano, M.; Ballmer-Weber, B.; Barni, S.; Beyer, K.; et al. EAACI guidelines on the diagnosis of IgE-mediated food allergy. Allergy. 2023, 78, 3057–3076. [CrossRef]
- Dearman, R.J.; Kimber, I. Animal models of protein allergenicity: potential benefits, pitfalls and challenges. Clin Exp Allergy. 2009, 39, 458–68. [CrossRef]
- Liguori, B.; Sancho, A.I.; Poulsen M.; Lindholm Bøgh, K. Novel foods: allergenicity assessment of insect proteins. EFSA J. 2022, 14, 20,e200910. [CrossRef]
- Remington, B.; Broekman, H.C.H.; Blom, W.M.; Capt, A.; Crevel, R.W.R.; Dimitrov, I.; Faeste, C.K.; Fernandez-Canton, R.; Giavi, S.; Houben, G.F.; et al. Approaches to assess IgE mediated allergy risks (sensitization and cross-reactivity) from new or modified dietary proteins. Food Chem Toxicol. 2018, 112, 97–107. [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergy. 2016. Guidance on the preparation and presentation of an application for authorization of a novel food in the context of Regulation (EU) 2015/2283. EFSA Journal.2016, 14, 4594. [CrossRef]
- EFSA Panel on Genetically Modified Organisms (GMO); Naegeli, H.; Birch, A.N.; Casacuberta, J.; De Schrijver, A.; Gralak, M.A.; Guerche, P.; Jones, H.; Manachini, B.; Messean, A.; Nielsen, E.E.; et al. Guidance on allergenicity assessment of genetically modified plants. EFSA J. 2017, 15,e04862. [CrossRef]
- Kopko, C.; Garthoff, J.A.; Zhou, K.; Meunier, L.; O’Sullivan, A.J.; Fattori, V. Are alternative proteins increasing food allergies? Trends, drivers and future perspectives. Trends in Food Science & Technology.2022, 129, 126-133. [CrossRef]
- Ribeiro, J.C.B.; Sousa-Pinto, J.; Fonseca, S.; Caldas Fonseca, S.; Cunha, L.M. Edible insects and food safety: allergy. Journal of Insects as Food and Feed. 2021, 7, 833–847. [CrossRef]
- Post, M.J.; Levenberg, S.; Kaplan, D.L.; Genovese, N.; Fu, J.; Bryant, C.J.; Negowetti, N.; Verzijden, K.; Moutsatsou, P. Scientific, sustainability and regulatory challenges of cultured meat. Nat Food. 2020, 1, 403–415. [CrossRef]
- Salter, A.M.; Lopez-Viso, C. Role of novel protein sources in sustainably meeting future global requirements. Proc Nutr Soc. 2021, 80, 186–194. [CrossRef]
- Post, M.J. Cultured beef: medical technology to produce food. J Sci Food Agric. 2014, 94, 1039–41. [CrossRef]
- Post, M.J. Cultured Meat from Stem Cells: Challenges and Prospects. Meat Sci. 2012, 92, 297–301. [CrossRef]
- Hadi, J.; Brightwell, G. Safety of Alternative Proteins: Technological, Environmental and Regulatory Aspects of Cultured Meat, Plant-Based Meat, Insect Protein and Single-Cell Protein. Foods. 2021, 10, 1226. [CrossRef]
- Ong, K.J.; Johnston, J.; Datar, I.; Sewalt, V.; Holmes, D.; Shatkin, J.A. Food safety considerations and research priorities for the cultured meat and seafood industry. Compr Rev Food Sci Food Saf. 2021, 20, 5421– 5448. [CrossRef]
- Shapiro, P. Clean meat: how growing meat without animals will revolutionize dinner and the world. Science. 2018, 359, 399. [CrossRef]
- Hawkes, P.W. Fetal Bovine Serum: Geographic Origin and Regulatory Relevance of Viral Contamination. Bioresour. Bioprocess. 2015, 2, 1–5. [CrossRef]
- Hocquette, J-F. Is in vitro meat the solution for the future? Meat Sci. 2016, 120, 167–76. [CrossRef]
- Chriki, S.; Hocquette, J.F. The Myth of Cultured Meat: A Review. Front Nutr. 2020, 7, 7. [CrossRef]
- Fraeye, I.; Kratka, M.; Vandenburgh, H.; Thorrez, L. Sensorial and Nutritional Aspects of Cultured Meat in Comparison to Traditional Meat: Much to Be Inferred. Front Nutr. 2020, 7, 35. [CrossRef]
- Bryant, C.J. Culture, meat, and cultured meat. J Anim Sci. 2020, 98,skaa172. [CrossRef]
- Lee, L.Y.G.N.; Leow, S.Y.; Wen, H.; Soh, J.Y.; Chiang, W.C.; Zhong, Y.; Tham, E.H.; Loh, W.; Delsing, D.J.; Lee, B.W.; et al. An Evaluation of the Mechanisms of Galacto-Oligosaccharide (GOS)-Induced IgE Cross-Linking on Basophils in GOS Allergy. Front Allergy. 2022, 3, 840454. [CrossRef]
- Commins, S.P. Diagnosis & management of alpha-gal syndrome: lessons from 2, 500 patients. Expert Rev Clin Immunol. 2020, 16, 667–677. [CrossRef]
- Restani, P.; Ballabio, C.; Tripodi, S.; Fiocchi, A. Meat allergy. Curr Opin Allergy Clin Immunol. 2009, 9, 265–9. [CrossRef]
- Doumeizel, V.; Aass, K. Seaweed revolution: a manifesto for a sustainable future. Lloyd’s Register Foundation 2020. Available online: https://www.lrfoundation.org.uk/publications/the-seaweed-revolution-a-manifesto-for-a-sustainable-future (accessed on 22.06.2025).
- Fleurence, J. M.; Morancais, M.; Dumay, J. Seaweed proteins. In Proteins in food processing, 2nd edition; Editor Yada, R.Y. Woodhead Publishing: Sawston, UK,2017; pp.245-262.
- Thomas, I.; Siew, L.Q.C.; Watts, T.J.; Haque, R. Seaweed allergy. J Allergy Clin Immunol Pract. 2019, 7, 714–715. [CrossRef]
- DIC color and comfort. Available online: https://www.dic-global.com/en/products/health_foods (accessed on 22.06.2025).
- Damhert nutrition. Available online: https://damhert.com/en/shop/r-gime-spirulina-chips (accessed on 22.06.2025).
- Phycom. Available online: https://phycom.eu/how-we-create-algae (accessed on 22.06.2025).
- Purasana your natural protection. Available online: https://purasana.com/super-green/spirulina-raw-powder (accessed on 22.06.2025).
- Moura, M.A.F.E.; Martins, B.A.; Oliveira, G.P.; Takahashi, J.A. Alternative protein sources of plant, algal, fungal and insect origins for dietary diversification in search of nutrition and health. Crit Rev Food Sci Nutr. 2023, 63, 10691–10708. [CrossRef]
- Banach, J. L.; Hoffmans, Y.; Faassen, E. J.; Hoek-van den Hil, E. F.; Klijnstra, M.D. Food safety in the seaweed food supply chain: inventory of production, consumption and chemical and physical hazards. Wageningen, the Netherlands, 2020, WFSR-report / Wageningen Food Safety Research. Available on line https://research.wur.nl/en/publications/food-safety-in-the-seaweed-food-supply-chain-inventory-of-product (accessed on 22.06.2025).
- van der Fels-Klerx, H. J.; Camenzuli, L.; Belluco, S.; Meijer, N.; Ricci, A. Food safety issues related to uses of insects for feeds and foods. Compr Rev Food Sci Food Saf. 2018, 17, 1172–1183. [CrossRef]
- Adesogan, A. T.; Havelaar, A. H.; McKune, S. L.; Eilittä, M.; Dahl, G. E.; Animal source foods: Sustainability problem or malnutrition and sustainability solution? Perspective matters. Global Food Security, 2020, 25, 100325. [CrossRef]
- McElhenney, T.R.; Bold, H.C.; Brown, R.M. Jr.; McGovern, J.P. Algae: a cause of inhalant allergy in children. Ann Allergy. 1962, 20, 739–43. [CrossRef]
- Henderson, A.K.; Ranger, A.F.; Lloyd, J.; McSharry, C.; Mills, R.J.; Moran, F. Pulmonary hypersensitivity in the alginate industry. Scottish Med J.1984, 29, 90-5. [CrossRef]
- Gangemi, S.; Spagnolo, E.V.; Cardia, G.; Minciullo, P.L. Fatal anaphylactic shock due to a dental impression material. Int J Prosthodontics. 2009, 22, 33–4.
- Lauerma, A.I.; Petman, L.; Mäkinen-Kiljunen, S. IgE-mediated anaphylaxis to antacid. Allergy. 2001, 56, 580. [CrossRef]
- McCarthy, S.; Dvorakova, V.; O’Sullivan, P.; Bourke, J.F. Anaphylaxis caused by alginate dressing. Contact Dermatitis. 2018, 79, 396. [CrossRef]
- Sierra, T.; Figueroa, M.M.; Chen, K.T.; Lunde, B.; Jacobs, A. Hypersensitivity to laminaria: a case report and review of literature. Contraception. 2015, 91, 353–5. [CrossRef]
- Cian, R.E.; Drago, S.R.; de Medina, F.S.; Martínez-Augustin, O. Proteins and carbohydrates from red seaweeds: evidence for beneficial effects on gut function and microbiota. Marine Drugs. 2015, 13, 5358–83. [CrossRef]
- Peipei, L.I.; Sheng, L.; Ye, Y.; Wang, J-S.; Geng, S.; Ning, D.; Sun, X. Allergenicity of alternative proteins: research hotspots, new findings, evaluation strategies, regulatory status, and future trends: a bibliometric analysis, Crit Rev Food Sci Nutr. 2025;65, 1749-1760. [CrossRef]
- Petrus, M.; Culerrier, R.; Campistron, M.; Barre, A.; Rougé, P. First case report of anaphylaxis to spirulin: identification of phycocyanin as responsible allergen. Allergy. 2010, 65, 924–5. [CrossRef]
- Le, T.M.; Knulst, A.C.; Röckmann, H. Anaphylaxis to Spirulina confirmed by skin prick test with ingredients of Spirulina tablets. Food Chem Toxicol. 2014, 74, 309–10. [CrossRef]
- Peter, P. Spirulina allergy; a case history of two patients. World Allergy Organization Journal. 2020, 13, 100149–. [CrossRef]
- Li, Y.P.; Ahmadi, F.; Kariman, K.; Lackner, M. Recent advances and challenges in single cell protein (SCP) technologies for food and feed production. NPJ Sci Food. 2024, 8, 66. [CrossRef]
- Ribeiro, G.O.; Rodrigues, L.A.P.; Dos Santos, T.B.S.; Alves, J.P.S.; Oliveira, R.S.; Nery, T.B.R.; Barbosa, J.D.V.; Soares, M.B.P. Innovations and developments in single cell protein: Bibliometric review and patents analysis. Front Microbiol. 2023, 13, 1093464. [CrossRef]
- Salazar-López, N.J.; Barco-Mendoza, G.A.; Zuñiga-Martínez, B.S.; Domínguez-Avila, J.A.; Robles-Sánchez, R.M.; Ochoa, M.A.V.; González-Aguilar, G.A. Single-Cell Protein Production as a Strategy to Reincorporate Food Waste and Agro By-Products Back into the Processing Chain. Bioengineering (Basel). 2022, 9, 623. [CrossRef]
- Sekoai, P.T.; Roets-Dlamini, Y.; Brien, F.; Ramchuran, S.; Chunilall, V. Valorization of Food Waste into Single-Cell Protein: An Innovative Technological Strategy for Sustainable Protein Production. Microorganisms. 2024, 12, 166. [CrossRef]
- Ritala, A.; Häkkinen, S.T.; Toivari, M.; Wiebe, M.G. Single Cell Protein-State-of-the-Art, Industrial Landscape and Patents 2001-2016. Front Microbiol. 2017, 8, 2009. [CrossRef]
- Ye, L.; Bogicevic, B.; Bolten, C.J.; Wittmann, C. Single-cell protein: overcoming technological and biological challenges towards improved industrialization. Curr Opin Biotechnol. 2024, 88, 103171. [CrossRef]
- Nyyssölä, A.; Suhonen, A.; Ritala, A.; Oksman-Caldentey, K.M. The role of single cell protein in cellular agriculture. Curr Opin Biotechnol. 2022, 75, 102686. [CrossRef]
- Saeed, F.; Afzaal, M.; Khalid, A.; Shah, Y.A.; Ateeq, H.; Islam, F.; Akram, N.; Ejaz, A.; Nayik, G.A.; Shah, M.A. Role of Mycoprotein as a Non-Meat Protein in Food Security and Sustainability: A Review. Int. J. Food Prop. 2023, 26, 683−695. [CrossRef]
- Xing, H.; Wang, J.; Sun, Y.; Wang, H. Recent Advances in the Allergic Cross-Reactivity between Fungi and Foods. J. Immunol. Res. 2022, 2022, 7583400. [CrossRef]
- Fasihi, M.; Jouzi, F.; Tervasmäki, P.; Vainikka, P.; Breyer, C. Global potential of sustainable single-cell protein based on variable renewable electricity. Nat Commun. 2025, 16, 1496. [CrossRef]
- McClements, D.J.; Grossmann, L. The science of plant-based foods: Constructing next-generation meat, fish, milk, and egg analogs. Compr Rev Food Sci Food Saf. 2021, 20, 4049–4100. [CrossRef]
- He, J.; Evans, N.M.; Liu, H.; Shao, S. A review of research on plant-based meat alternatives: Driving forces, history, manufacturing, and consumer attitudes. Compr Rev Food Sci Food Saf. 2020, 19, 2639–2656. [CrossRef]
- Sha, L.; Xiong, Y. Plant protein-based alternatives of reconstructed meat: Science, technology, and challenges. Trends in Food Science. Technology. 2020, 102, 51–61. [CrossRef]
- Webb, D.; Plattner, B. J.; Donald, E.; Funk, D.; Plattner, B. S.; Alavi, S. Role of chickpea flour in texturization of extruded pea protein. Journal of Food Science. 2020, 85, 4180–4187. [CrossRef]
- Hussain, M.; Qayum, A.; Zhang, X.; Liu, L.; Hussain, K.; Pan, Y.; Sun, Y.; Koko, M. Y. F.; Hussain, A.; Li, X. Potato protein: An emerging source of high quality and allergy free protein, and its possible future based products. Food Research International. 2021;148, 110583. [CrossRef]
- Bessada, S. M. F.; Barreira, J. C. M.; Oliveira, M. B. P. P. Pulses and food security: Dietary protein, digestibility, bioactive and functional properties. TrendsIn Food Science and Technology. 2019, 93, 53–68. [CrossRef]
- Kakleas, K.; Luyt, D.; Foley, G.; Noimark, L. Is it necessary to avoid all legumes in legume allergy? Pediatr Allergy Immunology. 2020, 31, 848–851. [CrossRef]
- Masilamani, M.; Commins, S.; Shreffler, W. Determinants of food allergy. Immunol Allergy Clin North Am. 2012, 32, 11–33. [CrossRef]
- Shahali, Y.; Dadar, M. Plant food allergy: Influence of chemicals on plant allergens. Food Chem Toxicol. 2018, 115, 365–374. [CrossRef]
- Soller, L.; Vieille, S. L.; Cameron, S. B.; Mak, R.; Cook, V. E.; Gerdts, J.; Chan, E. S. Allergic reactions to emerging food allergens in Canadian children. Allergy Asthma Clin Immunol. 2021, 17, 71. [CrossRef]
- Lavine, E.; Ben-Shoshan, M. Anaphylaxis to hidden pea protein: A Canadian pediatric case series. J Allergy Clin Immunol Pract. 2019, 7, 2070–2071. [CrossRef]
- Martin-Munoz, M.F.; Diaz-Perales, A.; Cannabal, J.; Quirce, S. Anaphylaxis to hidden potato allergens in a peach and egg allergic boy. Eur Ann Allergy Clin Immunol. 2017;49, 45–48.
- Skypala, I. J. Food-Induced anaphylaxis: Role of hidden allergens and cofactors. Front Immunol. 2019, 10, 673. [CrossRef]
- Carrera, M.; Canas, B.; Gallardo, J. M. Advanced proteomics and systems biology applied to study food allergy. Current Opinion in Food Science. 2018, 22, 9–16. [CrossRef]
- Khan, M.U.; Lin, H.; Ahmed, I.; Chen, Y.; Zhao, J.; Hang, T.; Dasanayaka, B.P.; Li, Z. Whey allergens: Influence of nonthermal processing treatments and their detection methods. Compr Rev Food Sci Food Saf. 2021, 20, 4480–4510. [CrossRef]
- Popescu, F.D. Cross-reactivity between aeroallergens and food allergens. World Journal of Methodology. 2015, 5, 31–50. [CrossRef]
- Verhoeckx, K.; Bøgh, K. L.; Constable, A.; Epstein, M.; Sommergruber, K.H.; Holzhauser, T.; Houben, G.; Kuehn, A.; Roggen, E.; O’Mahony, L.; et al. COST action ‘ImpARAS’: What have we learnt to improve food allergy risk assessment. A summary of a 4-year networking consortium. Clinical and Translational Allergy. 2020, 10, 13. [CrossRef]
- Toda, M.; Hellwig, M.; Henle, T.; Vieths, S. Influence of the Maillard Reaction on the Allergenicity of Food Proteins and the Development of Allergic Inflammation. Curr Allergy Asthma Rep. 2019, 19, 4. [CrossRef]
- Nakamura, A.; Watanabe, K.; Ojima, T.; Ahn, D.H.; Saeki, H. Effect of maillard reaction on allergenicity of scallop tropomyosin. J. Agric. Food Chem. 2005, 53, 7559–7564. [CrossRef]
- Teodorowicz, M.; van Neerven, J; Savelkoul, H. Food Processing: The Influence of the Maillard Reaction on Immunogenicity and Allergenicity of Food Proteins. Nutrients. 2017, 9, 835. [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies. Scientific Opinion on the evaluation of allergenic foods and food ingredients for labelling purposes. EFSA Journal. 2014, 12, 3894. [CrossRef]
- Verhoeckx, K. C. M.; Vissers, Y. M.; Baumert, J. L.; Faludi, R.; Feys, M.; Flanagan, S.; Herouet-Guicheney, C.; Holzhauser, T.; Shimojo, R.; van der Bolt, N.; et al. Food processing and allergenicity. Food and Chemical Toxicology. 2015, 80, 223–240. [CrossRef]
- Liew, W. K.; Chiang, W. C.; Goh, A. E.; Lim, H. H.; Chay, O. M.; Chang, S.; Tan, J.H.; Shih, E. C.; Kidon, M. Paediatric anaphylaxis in a Singaporean children cohort: Changing food allergy triggers over time. Asia Pacific Allergy. 2013, 3, 29–34. [CrossRef]
- Radauer, C.; Breiteneder, H. Evolutionary biology of plant food allergens. J Allergy Clin Immunol. 2007, 120, 518–25. [CrossRef]
- Schwager, C.; Kull, S.; Behrends, J.; Rockendorf, N.; Schocker, F.; Frey, A.; Homann, A.; Becker, W.M.; Jappe, U. Peanut oleosins associated with severe peanut allergy-importance of lipophilic allergens for comprehensive allergy diagnostics. J Allergy Clin Immunol. 2017, 140, 1331–1338.e8. [CrossRef]
- Bublin, M.; Breiteneder, H. Cross-reactivity of peanut allergens. Curr Allergy Asthma Rep. 2014, 14, 426. [CrossRef]
- Inomata, N. Gibberellin-regulated protein allergy: clinical features and cross-reactivity. Allergol Int. 2020, 69, 11–18. [CrossRef]
- Moreno, F.J.; Clemente, A. 2S albumin storage proteins: what makes them food allergens? Open Biochem J. 2008, 2, 16–28. [CrossRef]
- Smeekens, J.M.; Bagley, K.; Kulis, M. Tree nut allergies: allergen homology, cross- reactivity, and implications for therapy. Clin Exp Allergy. 2018, 48, 762–72. [CrossRef]
- Rasheed, F.; Markgren, J.; Hedenqvist, M.; Johansson, E. Modeling tounderstand plant protein structure-function relationships-implications for seed storage proteins. Molecules. 2020, 25, 873. [CrossRef]
- Huang, A.H.C. Plant lipid droplets and their associated proteins: potential for rapid advances. Plant Physiol. 2018, 176, 1894–1918. [CrossRef]
- Bublin, M.; Breiteneder, H. Cross-reactivity of peanut allergens. Curr Allergy Asthma Rep. 2014, 14, 426. [CrossRef]
- Tatham AS, Shewry PR. Allergens to wheat and related cereals. Clin Exp Allergy. 2008, 38, 1712–26. [CrossRef]
- Matsuo, H.; Yokooji, T.; Taogoshi, T. Common food allergens and their IgE-binding epitopes. Allergol Int. 2015, 64, 332–43. [CrossRef]
- Sander, I.; Rihs, H-P.; Brüning, T.; Raulf, M. A further wheat allergen for baker;s asthma: Tri a 40. J Allergy Clin Immunol. 2016, 137, 1286. [CrossRef]
- Carlson, G.; Coop, C. Pollen food allergy syndrome (PFAS): a review of current available literature. Ann Allergy Asthma Immunol. 2019, 123, 359–365. [CrossRef]
- Fukutomi, Y.; Sjolander, S.; Nakazawa, T.; Borres, M.P.; Ishii, T.; Nakayama, S.; Tanaka, A.; Taniguchi, M.; Saito, A.; Yasueda, H.; et al. Clinical relevance of IgE to recombinant Gly m 4 in the diagnosis of adult soybean allergy. J Allergy Clin Immunol. 2012, 129, 860–863.e3. [CrossRef]
- Kapingidza, A.B.; Pye, S.E.; Hyduke, N.; Dolamore, C.; Pote, S.; Schlachter, C.R.; Commins, S.P.; Kowal, K.; Chruszcz, M. Comparative structural and thermal stability studies of Cuc m 2.0101, Art v 4.0101 and other allergenic pro lins. Mol Immunol. 2019, 114, 19–29. [CrossRef]
- Asero, R.; Piantanida, M.; Pinter, E.; Pravettoni, V. The clinical relevance of lipid transfer protein. Clin Exp Allergy. 2018, 48, 6–12. [CrossRef]
- Oliveira-Lima, M.; Benko-Iseppon, A.M.; Ribamar Costa Ferreira Neto, J.; Rodriguez-Decuadro, S.; Kido, E.A.; Crovella, S.; Pandolfi, V. Snakin: structure, roles and applications of a plant antimicrobial peptide. Curr Protein Pept Sci. 2017, 18, 368–374. https:// doi.org/10.2174/1389203717666160619183140.
- Barni, S.; Caimmi, D.; Chiera, F.; Comberiati, P.; Mastrorilli, C.; Pelosi, U.; Paravati, F.; Marseglia, G.L.; Arasi, S. Phenotypes and Endotypes of Peach Allergy: What Is New? Nutrients. 2022, 14, 998. [CrossRef]
- Tuppo, L.; Alessandri, C.; Pomponi, D.; Picone, D.; Tamburrini, M.; Ferrara, R.; Petriccione, M.; Mangone, I.; Palazzo, P.; Liso, M.; et al. Peamaclein-a new peach allergenic protein: similarities, differences and misleading features compared to Pru p 3. Clin Exp Allergy. 2013, 43, 128–40. [CrossRef]
- Senechal, H.; Keykhosravi, S.; Couderc, R.; Selva, M.A.; Shahali, Y.; Aizawa, T.; Busnel, J.M.; Arif, R.; Mercier, I.; Pham-Thi, N.; et al. Pollen/Fruit syndrome: clinical relevance of the cypress pollen allergenic gibberellin-regulated. Allergy Asthma Immunol Res. 2019, 11, 143–151. [CrossRef]
- Iizuka, T.; Takei, M.; Saito, Y.; Rumi, F.; Zheng, J.; Lu, X.; Chafey, P.; Broussard, C.; Guilloux-Assalet, L.; Charpin, D.; et al. Gibberellin-regulated protein sensitization in Japanese cedar (Cryptomeria japonica) pollen allergic Japanese cohorts. Allergy. 2021, 76, 2297–2302. [CrossRef]
- Quintieri, L.; Nitride, C.; De Angelis, E.; Lamonaca, A.; Pilolli, R.; Russo, F.; Monaci, L. Alternative Protein Sources and Novel Foods: Benefits, Food Applications and Safety Issues. Nutr. 2023, 15, 1509. [CrossRef]
- Rumpold, B.A.; Schlüter, O. Nutritional composition and safety aspects of edible insects. Mol Nutr Food Res. 2013, 57, 802–823. [CrossRef]
- Elhassan, M.; Wendin, K.; Olsson, V.; Langton, M.; Quality Aspects of Insects as Food—Nutritional, Sensory, and Related Concepts. Foods. 2019, 8, 95. [CrossRef]
- Grossmann, L.; Hinrichs, J.; Weiss, J. Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients. Crit Rev Food Sci Nutr. 2020, 60, 2961–2989. [CrossRef]
- Kim, T.; Lee, M.H.; Yu, M.H. Thermal stability and rheological properties of heat-induced gels prepared using edible insect proteins in a model system. LWT. 2020, 134, 110270. [CrossRef]
- Wang, J.; Jousse, M.; Jayakumar, J.Black Soldier Fly (Hermetia illucens) Protein Concentrates as a Sustainable Source to Stabilize O/W Emulsions Produced by a Low-Energy High-Throughput Emulsification Technology. Foods. 2021, 10, 1048. [CrossRef]
- Kouřimská, L.; Adámková, A. Nutritional and sensory quality of edible insects. NFS J. 2016, 4, 22–26. [CrossRef]
- Kowalski, S.; Mikulec, A.; Mickowska, B.; Skotnicka, M.; Mazurek, A. Wheat bread supplementation with various edible insect flours. Influence of chemical composition on nutritional and technological aspects. LWT. 2022, 159, 113220. [CrossRef]
- Mason, J.B.; Black, R.; Booth, S.L.; Fostering Strategies to Expand the Consumption of Edible Insects: The Value of a Tripartite Coalition between Academia, Industry, and Government. Curr Dev Nutr. 2018, 2,nzy056. [CrossRef]
- de Gier, S.; Verhoeckx, K. Insect (food) allergy and allergens. Mol Immunol. 2018, 100, 82–106. [CrossRef]
- Amadi, E.; Kiin-Kabari, D. Nutritional composition and microbiology of some edible insects commonly eaten in Africa, hurdles and future prospects: a critical review. Jour of Food: Micr, Saf & Hyg. 2016, 1, 1–7. [CrossRef]
- Barre, A.; Simplicien, M.; Cassan, G.; Benoist, H.; Rougé, P. Food allergen families common to different arthropods (mites, insects, crustaceans), mollusks and nematods: Cross-reactivity and potential cross-allergenicity. Rev Fr Allergol. 2018, 58, 581–593. [CrossRef]
- Ji, K.; Chen, J.; Li, M. Anaphylactic shock and lethal anaphylaxis caused by food consumption in China. Trends Food Sci Technol. 2009, 20, 227–231. [CrossRef]
- Ji, K.M.; Zhan, Z.K.; Chen, J.J.; Liu, Z.G. Anaphylactic shock caused by silkworm pupa consumption in China. Allergy. 2008, 63, 1407–8. [CrossRef]
- Barennes, H. Insect Consumption to Address Undernutrition, A National Survey on The Prevalence of İnsect Consumption Among Adults and Vendors in Laos. PloS one. 2015, 10,e0136458. [CrossRef]
- Verhoeckx, K.C.M.; van Broekhoven, S.; den Hartog-Jager, C.F. House dust mite (Der p 10) and crustacean allergic patients may react to food containing Yellow mealworm proteins. Food Chem Toxicol. 2014, 65, 364–373. [CrossRef]
- Kamemura, N.; Sugimoto, M.; Tamehiro, N. Cross-allergenicity of crustacean and the edible insect Gryllus bimaculatus in patients with shrimp allergy. Mol Immunol. 2019, 106, 127–134. [CrossRef]
- Radauer, C.; Bublin, M.; Wagner, S.; Mari, A.; Breiteneder, H. Allergens are distributed into few protein families and possess a restricted number of biochemical functions. J Allergy Clin Immunol. 2008, 121, 847–852.e7. [CrossRef]
- Pedrosa, M.; Boyano-Martínez, T.; García-Ara, C.; Quirce, S. Shellfish Allergy: a Comprehensive Review. Clin Rev All. Immunol. 2015, 49, 203–216. [CrossRef]
- Jeong, K.Y.; Han, I.S.; Lee, J.Y.; Park, K.H.; Lee, J.H.; Park, J.W. Role of tropomyosin in silkworm allergy. Mol Med Rep. 2017, 15, 3264–3270. [CrossRef]
- Pali-Schöll, I.; Verhoeckx, K.; Mafra, I.; Bavaro, S.L.; Clare Mills, E.N.; Monaci, L. Allergenic and novel food proteins: State of the art and challenges in the allergenicity assessment. Trends Food Sci Technol. 2019, 84, 45–48. [CrossRef]
- Broekman, H.; Verhoeckx, K.C.; den Hartog Jager, C.F. Majority of shrimp-allergic patients are allergic to mealworm. J Allergy Clin Immunol. 2016, 137, 1261–1. [CrossRef]
- Barre, A.; Pichereaux, C.; Velazquez, E. Insights into the Allergenic Potential of the Edible Yellow Mealworm (Tenebrio molitor). Foods. 2019, 8, 515. [CrossRef]
- Van Broekhoven, S.; Bastiaan-Net, S.; de Jong, N.W.; Wichers, H.J. Influence of processing and in vitro digestion on the allergic cross-reactivity of three mealworm species. Food Chem. 2016, 196, 1075–1083. [CrossRef]
- Liu, Z.; Xia, L.; Wu, Y.; Xia, Q.; Chen, J.; Roux, K.H. Identification and Characterization of an Arginine Kinase as a Major Allergen from Silkworm (Bombyx mori) Larvae. Int Arch Allergy Immunol. 2009, 150, 8–14. [CrossRef]
- Srinroch, C.; Srisomsap, C.; Chokchaichamnankit, D.; Punyarit, P.; Phiriyangkul, P. Identification of novel allergen in edible insect, Gryllus bimaculatus and its cross-reactivity with Macrobrachium spp. allergens. Food Chem. 2015, 184, 160–166. [CrossRef]
- Jeong, K.Y.; Son, M.; Lee, J.Y.; Park, K.H.; Lee, J.H.; Park, J.W. Allergenic Characterization of 27-kDa Glycoprotein, a Novel Heat Stable Allergen, from the Pupa of Silkworm, Bombyx mori. J Korean Med Sci. 2016, 31, 18. [CrossRef]
- Zhao, X.; Li, L.; Kuang, Z.; Luo, G.; Li, B. Experimental immunology Proteomic and immunological identification of two new allergens from silkworm (Bombyx mori L.) pupae. Cent Eur J Immunol. 2015, 1, 30–34. [CrossRef]
- Karnaneedi, S.; Johnston, E.B.; Bose, U. The Allergen Profile of Two Edible Insect Species—Acheta domesticus and Hermetia illucens. Mol Nutr Food Res. 2024, 68, 1–14. [CrossRef]
- 141. Nishimune, T.; Watanabe, Y.; Okazaki, H.; Akai, H. Thia min Is Decomposed Due to Anaphe spp. Entomophagy in Seasonal Ataxia Patients in Nigeria. J Nutr. 2000, 130, 1625–1628. [CrossRef]
- Sathe, S.K.; Sharma, G.M. Effects of food processing on food allergens. Mol Nutr Food Res. 2009, 53, 970–978. [CrossRef]
- De Marchi, L.; Wangorsch, A.; Zoccatelli, G. Allergens from Edible Insects: Cross-reactivity and Effects of Processing. Curr Allergy Asthma Rep. 2021, 21, 35. [CrossRef]
- Pali-Schöll, I.; Meinlschmidt, P.; Larenas-Linnemann, D. Edible insects: Cross-recognition of IgE from crustacean- and house dust mite allergic patients, and reduction of allergenicity by food processing. World Allergy Organ J. 2019, 12, 100006. [CrossRef]
- He, W.; He, K.; Sun, F. Effect of heat, enzymatic hydrolysis and acid-alkali treatment on the allergenicity of silkworm pupa protein extract. Food Chem. 2021, 343, 128461. [CrossRef]
- Regulation (EC) No 258/97 of the European Parliament and of the Council of 27 January 1997 concerning novel foods and novel food ingredients Official Journal L 043, 14/02/1997 P. 0001 – 0006.
- Regulation (EC) No 1829/2003 of the European Parliament and of the Council of 22 September 2003 on genetically modified food and feed (Text with EEA relevance) Official Journal L 268, 18.10.2003, p. 1–23.
- 25 October 1169; 148. Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004.
- Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001 (Text with EEA relevance) OJ L 327, 11.12.2015, p. 1–22.
- Commission Implementing Regulation (EU) 2021/1975 of 12 November 2021 Authorising the Placing on the Market of Frozen, Dried and Powder Forms of Locusta migratoria as a Novel Food under Regulation (EU) 2015/2283 of the European Parliament and of the Counc.
- Commission Implementing Regulation (EU) 2021/1975 of 12 November 2021 Authorising the Placing on the Market of Frozen, Dried and Powder Forms of Locusta migratoria as a Novel Food under Regulation (EU) 2015/2283 of the European Parliament and of the Counc.
- 1 June 2021; 152. Commission Implementing Regulation (EU) 2021/882 of 1 June 2021 Authorising the Placing on the Market of Dried Tenebrio molitor larva as a Novel Food under Regulation (EU) 2015/2283 of the European Parliament and of the Council, and Amending Commission Im.
- Commission Implementing Regulation (EU) 2022/188 of 10 February 2022 Authorising the Placing on the Market of Frozen, Dried and Powder Forms of Acheta domesticus as a Novel Food under Regulation (EU) 2015/2283 of the European Parliament and of the Council.
- 5 January 2023; 154. Commission Implementing Regulation (EU) 2023/58 of 5 January 2023 Authorising the Placing on the Market of the Frozen, Paste, Dried and Powder Forms of Alphitobius diaperinus Larvae (Lesser Mealworm) as a Novel Food and Amending Implementing Regulation.
- Alimenti e preparati, destinati al consumo umano, ottenuti mediante l’utilizzzo della polvere parzialmente sgrassata di Acheta domesticus ovvero di Acheta domesticus congelato, essiccato e in polvere. (23A07040) (GU Serie Generale n.302 del 29-12-2023).
- Alimenti e preparati, destinati al consumo umano, ottenuti mediante l’utilizzo della Locusta migratoria, congelata, essiccata e in polvere. (23A07042) (GU Serie Generale n.302 del 29-12-2023).
- Alimenti e preparati, destinati al consumo umano, ottenuti mediante l’utilizzo delle larve di Alphitobius diaperinus (verme della farina minore) congelata, in pasta, essiccate e in polvere. (23A07043) (GU Serie Generale n.302 del 29-12-2023).
- Alimenti e preparati, destinati al consumo umano, ottenuti mediante l’utilizzo della larva gialla della farina (larva di Tenebrio molitor) congelata, essiccata o in polvere. (23A07041) (GU Serie Generale n.302 del 29-12-2023).
- López-Pedrouso, M.; Lorenzo, J.M.; Alché, J.D.; Moreira, R.; Franco, D.; Advanced Proteomic and Bioinformatic Tools for Predictive Analysis of Allergens in Novel Foods. Biology (Basel). 2023 ;12:714. [CrossRef]
- European Parliament: Alternative protein sources for food and feed. Scientific Foresight Unit (STOA). 2024 https://www.europarl.europa.eu › etudes › STUD.

| Plant-derived foods | Tofu (main ingredient: fermented soy milk) |
| Soybeans, Tempeh (main ingredient: fermented soybeans), Edamame (immature soybeans) |
|
| Peanuts | |
| Lentils | |
| Chickpeas | |
| Beans | |
| Peas | |
| Quinoa | |
| Mycoprotein | |
| Broccoli | |
| Treenuts (especially almonds) | |
| Spirulina | |
| Plant-derived food allergen components | Prolamin superfamily, including 2S albumin, non-specific lipid transfer protein (ns-LTP), cereal prolamin, and a-amylase/trypsin inhibitors |
| Cupin, including vicilin (7S globulin) and legumin (11S globulin) | |
| Bet v 1/pathogenesis related protein 10 (PR-10) | |
| Profilin | |
| Oleosins |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
