Submitted:
26 June 2025
Posted:
27 June 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Approaches to C. neoformans Proteomic Analysis
3. Proteomics of the C. neoformans Organism
3.1. Capsule and Cell Wall
3.2. Extracellular Vesicles and Secretome
3.2. Host Envrionmental Stress Response
3.3. Ubiquitin-Proteasome Pathway
3.4. Spores and Biofilms
3.6. Acteylation
3.7. Other Discoveries
4. Proteomics of Cryptococcosis
4.1. Human Cryptococcosis
4.2. Infection Modeling
5. Evaluating Novel Clinical Interventions
5.1. Antifungals and Vaccines
5.2. Clinical Identification Using Mass Spectrometry
6. Future Directions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nelson, B.N.; Hawkins, A.N.; Wozniak, K.L. Pulmonary Macrophage and Dendritic Cell Responses to Cryptococcus neoformans. Front. Cell. Infect. Microbiol. 2020, 10, 37. [CrossRef]
- Goldman, D.L.; Khine, H.; Abadi, J.; Lindenberg, D.J.; Pirofski, L.; Niang, R.; Casadevall, A. Serologic Evidence for Cryptococcus neoformansInfection in Early Childhood. Pediatrics 2001, 107, e66. [CrossRef]
- Rajasingham, R.; Govender, N.P.; Jordan, A.; Loyse, A.; Shroufi, A.; Denning, D.W.; Meya, D.B.; Chiller, T.M.; Boulware, D.R. The Global Burden of HIV-Associated Cryptococcal Infection in Adults in 2020: A Modelling Analysis. Lancet Infect. Dis. 2022, 22, 1748–1755. [CrossRef]
- Ding, M.; Smith, K.D.; Wiesner, D.L.; Nielsen, J.N.; Jackson, K.M.; Nielsen, K. Use of Clinical Isolates to Establish Criteria for a Mouse Model of Latent Cryptococcus neoformans Infection. Front. Cell. Infect. Microbiol. 2022, 11.
- Fisher, M.C.; Denning, D.W. The WHO Fungal Priority Pathogens List as a Game-Changer. Nat. Rev. Microbiol. 2023, 21, 211–212. [CrossRef]
- Muselius, B.; Roux-Dalvai, F.; Droit, A.; Geddes-McAlister, J. Resolving the Temporal Splenic Proteome during Fungal Infection for Discovery of Putative Dual Perspective Biomarker Signatures. J. Am. Soc. Mass Spectrom. 2023, 34, 1928–1940. [CrossRef]
- Rose, S.; Misharin, A.; Perlman, H. A Novel Ly6C/Ly6G-Based Strategy to Analyze the Mouse Splenic Myeloid Compartment. Cytom. Part J. Int. Soc. Anal. Cytol. 2012, 81, 343–350. [CrossRef]
- Zhang, Y.; Wang, F.; Tompkins, K.C.; McNamara, A.; Jain, A.V.; Moore, B.B.; Toews, G.B.; Huffnagle, G.B.; Olszewski, M.A. Robust Th1 and Th17 Immunity Supports Pulmonary Clearance but Cannot Prevent Systemic Dissemination of Highly Virulent Cryptococcus neoformans H99. Am. J. Pathol. 2009, 175, 2489–2500. [CrossRef]
- Hevey, M.A.; Presti, R.M.; O’Halloran, J.A.; Larson, L.; Raval, K.; Powderly, W.G.; Spec, A. Mortality Following Cryptococcal Infection in the Modern Antiretroviral Therapy Era. J. Acquir. Immune Defic. Syndr. 1999 2019, 82, 81–87. [CrossRef]
- Pasquier, E.; Kunda, J.; De Beaudrap, P.; Loyse, A.; Temfack, E.; Molloy, S.F.; Harrison, T.S.; Lortholary, O. Long-Term Mortality and Disability in Cryptococcal Meningitis: A Systematic Literature Review. Clin. Infect. Dis. 2018, 66, 1122–1132. [CrossRef]
- Vidal, J.E.; Boulware, D.R. Lateral Flow Assay for Cryptococcal Antigen: An Important Advance to Improve the Continuum of HIV Care and Reduce Cryptococcal Meningitis-Related Mortality. Rev. Inst. Med. Trop. São Paulo 2015, 57, 38–45. [CrossRef]
- Boulware, D.R.; Rolfes, M.A.; Rajasingham, R.; von Hohenberg, M.; Qin, Z.; Taseera, K.; Schutz, C.; Kwizera, R.; Butler, E.K.; Meintjes, G.; et al. Multisite Validation of Cryptococcal Antigen Lateral Flow Assay and Quantification by Laser Thermal Contrast. Emerg. Infect. Dis. 2014, 20, 45–53. [CrossRef]
- Bongomin, F.; Govender, N.P.; Chakrabarti, A.; Robert-Gangneux, F.; Boulware, D.R.; Zafar, A.; Oladele, R.O.; Richardson, M.D.; Gangneux, J.-P.; Alastruey-Izquierdo, A.; et al. Essential in Vitro Diagnostics for Advanced HIV and Serious Fungal Diseases: International Experts’ Consensus Recommendations. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1581–1584. [CrossRef]
- Roell, M.; Baker, K. Seronegative Disseminated Cryptococcosis: A Case Report. Case Rep. Med. 2025, 2025, 5564622. [CrossRef]
- Nanfuka, V.; Mkhoi, M.L.; Gakuru, J.; Kwizera, R.; Baluku, J.B.; Bongomin, F.; Meya, D.B. <p>Symptomatic Cryptococcal Meningitis with Negative Serum and Cerebrospinal Fluid Cryptococcal Antigen Tests</P>. HIVAIDS - Res. Palliat. Care 2021, 13, 861–865. [CrossRef]
- Cryptococcosis: Adult and Adolescent OIs | NIH Available online: https://clinicalinfo.hiv.gov/en/guidelines/hiv-clinical-guidelines-adult-and-adolescent-opportunistic-infections/cryptococcosis (accessed on 3 June 2025).
- Mpoza, E.; Rhein, J.; Abassi, M. Emerging Fluconazole Resistance: Implications for the Management of Cryptococcal Meningitis. Med. Mycol. Case Rep. 2017, 19, 30–32. [CrossRef]
- Huang, Y.; Zhang, Y.; Yang, S.; Lu, H.; Yu, H.; Wang, X.; Jia, X.; Tang, D.; Wu, L.; Huang, S.; et al. Epidemiology of Cryptococcal Meningitis and Fluconazole Heteroresistance in Cryptococcus neoformans Isolates from a Teaching Hospital in Southwestern China. Microbiol. Spectr. 2024, 12, e00725-24. [CrossRef]
- Zafar, H.; Altamirano, D.S.; Ballou, E.R.; Nielsen, K. A Titanic Drug Resistance Threat in Cryptococcus neoformans. Curr. Opin. Microbiol. 2019, 52, 158–164. [CrossRef]
- Altamirano, S.; Katrina; Nielsen, K. The Interplay of Phenotype and Genotype in Cryptococcus neoformans Disease. Biosci. Rep. 2020, 40. [CrossRef]
- Wiesner, D.L.; Specht, C.A.; Lee, C.K.; Smith, K.D.; Mukaremera, L.; Lee, S.T.; Lee, C.G.; Elias, J.A.; Nielsen, J.N.; Boulware, D.R.; et al. Chitin Recognition via Chitotriosidase Promotes Pathologic Type-2 Helper T Cell Responses to Cryptococcal Infection. PLOS Pathog. 2015, 11, e1004701. [CrossRef]
- Betancourt, J.J.; Ding, M.; Yoder, J.M.; Mutyaba, I.; Atkins, H.M.; De la Cruz, G.; Meya, D.B.; Nielsen, K. Pulmonary Granuloma Formation during Latent Cryptococcus neoformans Infection in C3HeB/FeJ Mice Involves Progression through Three Immunological Phases. mBio 2025, 16, e03610-24. [CrossRef]
- Jarvis, J.N.; Meintjes, G.; Rebe, K.; Williams, G.N.; Bicanic, T.; Williams, A.; Schutz, C.; Bekker, L.-G.; Wood, R.; Harrison, T.S. Adjunctive Interferon-γ Immunotherapy for the Treatment of HIV-Associated Cryptococcal Meningitis. AIDS 2012, 26, 1105–1113. [CrossRef]
- Alspaugh, J.A. Virulence Mechanisms and Cryptococcus neoformans Pathogenesis. Fungal Genet. Biol. 2015, 78, 55–58. [CrossRef]
- Almeida, F.; Wolf, J.M.; Casadevall, A. Virulence-Associated Enzymes of Cryptococcus neoformans. Eukaryot. Cell 2015, 14, 1173–1185. [CrossRef]
- Geddes, J.M.H.; Caza, M.; Croll, D.; Stoynov, N.; Foster, L.J.; Kronstad, J.W. Analysis of the Protein Kinase A-Regulated Proteome of Cryptococcus neoformans Identifies a Role for the Ubiquitin-Proteasome Pathway in Capsule Formation. mBio 2016, 7, e01862-01815. [CrossRef]
- Karkowska-Kuleta, J.; Kozik, A. Cell Wall Proteome of Pathogenic Fungi. Acta Biochim. Pol. 2015, 62, 339–351. [CrossRef]
- Calegari-Alves, Y.P.; da Rosa, R.L.; Costa, R.P.; Innocente-Alves, C.; Faustino, A.M.; Yates, J.R. 3rd; Beys-da-Silva, W.O.; Santi, L. Lavandula Angustifolia Oil Induces Oxidative Stress, Stiffening of Membranes, and Cell Wall in Cryptococcus Spp. Can. J. Microbiol. 2025, 71, 1–13. [CrossRef]
- Baker, R.P.; Chrissian, C.; Stark, R.E.; Casadevall, A. Cryptococcus neoformans Melanization Incorporates Multiple Catecholamines to Produce Polytypic Melanin. J. Biol. Chem. 2021, 298, 101519. [CrossRef]
- Camacho, E.; Vij, R.; Chrissian, C.; Prados-Rosales, R.; Gil, D.; O’Meally, R.N.; Cordero, R.J.B.; Cole, R.N.; McCaffery, J.M.; Stark, R.E.; et al. The Structural Unit of Melanin in the Cell Wall of the Fungal Pathogen Cryptococcus neoformans. J. Biol. Chem. 2019, 294, 10471–10489. [CrossRef]
- Khajo, A.; Bryan, R.A.; Friedman, M.; Burger, R.M.; Levitsky, Y.; Casadevall, A.; Magliozzo, R.S.; Dadachova, E. Protection of Melanized Cryptococcus neoformans from Lethal Dose Gamma Irradiation Involves Changes in Melanin’s Chemical Structure and Paramagnetism. PloS One 2011, 6, e25092. [CrossRef]
- Rizzo, J.; Wong, S.S.W.; Gazi, A.D.; Moyrand, F.; Chaze, T.; Commere, P.-H.; Novault, S.; Matondo, M.; Péhau-Arnaudet, G.; Reis, F.C.G.; et al. Cryptococcus Extracellular Vesicles Properties and Their Use as Vaccine Platforms. J. Extracell. Vesicles 2021, 10, e12129. [CrossRef]
- Rodrigues, M.L.; Nakayasu, E.S.; Oliveira, D.L.; Nimrichter, L.; Nosanchuk, J.D.; Almeida, I.C.; Casadevall, A. Extracellular Vesicles Produced by Cryptococcus neoformans Contain Protein Components Associated with Virulence. Eukaryot. Cell 2008, 7, 58–67. [CrossRef]
- Qu, X.; Bhalla, K.; Horianopoulos, L.C.; Hu, G.; Alcázar Magaña, A.; Foster, L.J.; Roque da Silva, L.B.; Kretschmer, M.; Kronstad, J.W. Phosphate Availability Conditions Caspofungin Tolerance, Capsule Attachment and Titan Cell Formation in Cryptococcus neoformans. Front. Fungal Biol. 2024, 5, 1447588. [CrossRef]
- Zaragoza, O.; Nielsen, K. Titan Cells in Cryptococcus neoformans: Cells with a Giant Impact. Curr. Opin. Microbiol. 2013, 16, 409–413. [CrossRef]
- García-Rodas, R.; de Oliveira, H.C.; Trevijano-Contador, N.; Zaragoza, O. Cryptococcal Titan Cells: When Yeast Cells Are All Grown Up. In Fungal Physiology and Immunopathogenesis; Springer, Cham, 2018; pp. 101–120 ISBN 978-3-030-30237-5.
- Chew, S.Y.; Brown, A.J.P.; Lau, B.Y.C.; Cheah, Y.K.; Ho, K.L.; Sandai, D.; Yahaya, H.; Than, L.T.L. Transcriptomic and Proteomic Profiling Revealed Reprogramming of Carbon Metabolism in Acetate-Grown Human Pathogen Candida Glabrata. J. Biomed. Sci. 2021, 28, 1. [CrossRef]
- Aslam, B.; Basit, M.; Nisar, M.A.; Khurshid, M.; Rasool, M.H. Proteomics: Technologies and Their Applications. J. Chromatogr. Sci. 2017, 55, 182–196. [CrossRef]
- Hanash, S. Disease Proteomics. Nature 2003, 422, 226–232. [CrossRef]
- Saleh, S.; Staes, A.; Deborggraeve, S.; Gevaert, K. Targeted Proteomics for Studying Pathogenic Bacteria. PROTEOMICS 2019, 19, 1800435. [CrossRef]
- Zhang, N.; Park, Y.-D.; Williamson, P.R. New Technology and Resources for Cryptococcal Research. Fungal Genet. Biol. FG B 2015, 78, 99–107. [CrossRef]
- Selvan, L.D.N.; Renuse, S.; Kaviyil, J.E.; Sharma, J.; Pinto, S.M.; Yelamanchi, S.D.; Puttamallesh, V.N.; Ravikumar, R.; Pandey, A.; Prasad, T.S.K.; et al. Phosphoproteome of Cryptococcus neoformans. J. Proteomics 2014, 97, 287–295. [CrossRef]
- Muselius, B.; Durand, S.-L.; Geddes-McAlister, J. Proteomics of Cryptococcus neoformans: From the Lab to the Clinic. Int. J. Mol. Sci. 2021, 22. [CrossRef]
- Wu, C.C.; MacCoss, M.J. Shotgun Proteomics: Tools for the Analysis of Complex Biological Systems. Curr. Opin. Mol. Ther. 2002, 4, 242–250.
- Santi, L.; Beys-Da-Silva, W.O.; Berger, M.; Calzolari, D.; Guimarães, J.A.; Moresco, J.J.; Yates, J.R. Proteomic Profile of Cryptococcus neoformans Biofilm Reveals Changes in Metabolic Processes. J. Proteome Res. 2014, 13, 1545–1559. [CrossRef]
- Li, Y.; Li, H.; Sui, M.; Li, M.; Wang, J.; Meng, Y.; Sun, T.; Liang, Q.; Suo, C.; Gao, X.; et al. Fungal Acetylome Comparative Analysis Identifies an Essential Role of Acetylation in Human Fungal Pathogen Virulence. Commun. Biol. 2019, 2, 154. [CrossRef]
- Ball, B.; Sukumaran, A.; Krieger, J.R.; Geddes-McAlister, J. Comparative Cross-Kingdom DDA- and DIA-PASEF Proteomic Profiling Reveals Novel Determinants of Fungal Virulence and a Putative Druggable Target. J. Proteome Res. 2024, 23, 3917–3932. [CrossRef]
- Vallejo, M.C.; Nakayasu, E.S.; Matsuo, A.L.; Sobreira, T.J.P.; Longo, L.V.G.; Ganiko, L.; Almeida, I.C.; Puccia, R. Vesicle and Vesicle-Free Extracellular Proteome of Paracoccidioides Brasiliensis: Comparative Analysis with Other Pathogenic Fungi. J. Proteome Res. 2012, 11, 1676–1685. [CrossRef]
- Altincicek, B.; Linder, M.; Linder, D.; Preissner, K.T.; Vilcinskas, A. Microbial Metalloproteinases Mediate Sensing of Invading Pathogens and Activate Innate Immune Responses in the Lepidopteran Model Host Galleria Mellonella. Infect. Immun. 2007, 75, 175–183. [CrossRef]
- Rahman, S.; Chiou, C.-C.; Ahmad, S.; Islam, Z.U.; Tanaka, T.; Alouffi, A.; Chen, C.-C.; Almutairi, M.M.; Ali, A. Subtractive Proteomics and Reverse-Vaccinology Approaches for Novel Drug Target Identification and Chimeric Vaccine Development against Bartonella Henselae Strain Houston-1. Bioengineering 2024, 11, 505. [CrossRef]
- Zhu, F.; Zhou, Z.; Ma, S.; Xu, Y.; Tan, C.; Yang, H.; Zhang, P.; Qin, R.; Luo, Y.; Pan, P.; et al. Design of a Cryptococcus neoformans Vaccine by Subtractive Proteomics Combined with Immunoinformatics. Int. Immunopharmacol. 2024, 135, 112242. [CrossRef]
- Ball, B.; Sukumaran, A.; Geddes-McAlister, J. Label-Free Quantitative Proteomics Workflow for Discovery-Driven Host-Pathogen Interactions. J. Vis. Exp. JoVE 2020. [CrossRef]
- Gouw, J.W.; Krijgsveld, J.; Heck, A.J.R. Quantitative Proteomics by Metabolic Labeling of Model Organisms. Mol. Cell. Proteomics MCP 2010, 9, 11–24. [CrossRef]
- Ball, B.; Krieger, J.R.; Geddes-McAlister, J. Phosphoproteomic Sample Preparation for Global Phosphorylation Profiling of a Fungal Pathogen. Methods Mol. Biol. Clifton NJ 2022, 2456, 141–151. [CrossRef]
- Pandey, A.; Ding, S.L.; Qin, Q.-M.; Gupta, R.; Gomez, G.; Lin, F.; Feng, X.; Fachini da Costa, L.; Chaki, S.P.; Katepalli, M.; et al. Global Reprogramming of Host Kinase Signaling in Response to Fungal Infection. Cell Host Microbe 2017, 21, 637-649.e6. [CrossRef]
- Bai, Y.; Chen, B.; Li, M.; Zhou, Y.; Ren, S.; Xu, Q.; Chen, M.; Wang, S. FPD: A Comprehensive Phosphorylation Database in Fungi. Fungal Biol. 2017, 121, 869–875. [CrossRef]
- Li, J.; Cao, Y.; Niu, K.; Qiu, J.; Wang, H.; You, Y.; Li, D.; Luo, Y.; Zhu, Z.; Zhang, Y.; et al. Quantitative Acetylomics Reveals Dynamics of Protein Lysine Acetylation in Mouse Livers During Aging and Upon the Treatment of Nicotinamide Mononucleotide. Mol. Cell. Proteomics 2022, 21. [CrossRef]
- Levin, M.; Butter, F. Proteotranscriptomics – A Facilitator in Omics Research. Comput. Struct. Biotechnol. J. 2022, 20, 3667–3675. [CrossRef]
- Culibrk, L.; Croft, C.A.; Tebbutt, S.J. Systems Biology Approaches for Host-Fungal Interactions: An Expanding Multi-Omics Frontier. Omics J. Integr. Biol. 2016, 20, 127–138. [CrossRef]
- Erpf, P.E.; Chua, S.M.H.; Phung, T.K.; Kerr, E.D.; Rothnagel, J.A.; Schulz, B.L.; Fraser, J.A. Identification and Characterisation of sPEPs in Cryptococcus neoformans. Fungal Genet. Biol. FG B 2022, 160, 103688. [CrossRef]
- Nesvizhskii, A.I. Proteogenomics: Concepts, Applications and Computational Strategies. Nat. Methods 2014, 11, 1114–1125. [CrossRef]
- Muselius, B.; Bodein, A.; Roux-Dalvai, F.; Droit, A.; Geddes-McAlister, J. Proteomic Profiling of Samples Derived from a Murine Model Following Cryptococcus neoformans Infection. Methods Mol. Biol. Clifton NJ 2024, 2775, 127–137. [CrossRef]
- Basenko, E.Y.; Pulman, J.A.; Shanmugasundram, A.; Harb, O.S.; Crouch, K.; Starns, D.; Warrenfeltz, S.; Aurrecoechea, C.; Stoeckert, C.J.; Kissinger, J.C.; et al. FungiDB: An Integrated Bioinformatic Resource for Fungi and Oomycetes. J. Fungi 2018, 4, 39. [CrossRef]
- Perez-Riverol, Y.; Bandla, C.; Kundu, D.J.; Kamatchinathan, S.; Bai, J.; Hewapathirana, S.; John, N.S.; Prakash, A.; Walzer, M.; Wang, S.; et al. The PRIDE Database at 20 Years: 2025 Update. Nucleic Acids Res. 2025, 53, D543–D553. [CrossRef]
- Kavanaugh, L.A.; Fraser, J.A.; Dietrich, F.S. Recent Evolution of the Human Pathogen Cryptococcus neoformans by Intervarietal Transfer of a 14-Gene Fragment. Mol. Biol. Evol. 2006, 23, 1879–1890. [CrossRef]
- Demichev, V.; Messner, C.B.; Vernardis, S.I.; Lilley, K.S.; Ralser, M. DIA-NN: Neural Networks and Interference Correction Enable Deep Proteome Coverage in High Throughput. Nat. Methods 2020, 17, 41–44. [CrossRef]
- Vita, R.; Blazeska, N.; Marrama, D.; Duesing, S.; Bennett, J.; Greenbaum, J.; De Almeida Mendes, M.; Mahita, J.; Wheeler, D.K.; Cantrell, J.R.; et al. The Immune Epitope Database (IEDB): 2024 Update. Nucleic Acids Res. 2024, 53, D436–D443. [CrossRef]
- Parreira, V. da S.C.; Santos, L.G.C.; Rodrigues, M.L.; Passetti, F. ExVe: The Knowledge Base of Orthologous Proteins Identified in Fungal Extracellular Vesicles. Comput. Struct. Biotechnol. J. 2021, 19, 2286–2296. [CrossRef]
- Jung, K.-W.; Yang, D.-H.; Maeng, S.; Lee, K.-T.; So, Y.-S.; Hong, J.; Choi, J.; Byun, H.-J.; Kim, H.; Bang, S.; et al. Systematic Functional Profiling of Transcription Factor Networks in Cryptococcus neoformans. Nat. Commun. 2015, 6, 6757. [CrossRef]
- Kim, H.; Jung, K.; Maeng, S.; Chen, Y.; Shin, J.; Shim, J.; Hwang, S.; Janbon, G.; Kim, T.; Heitman, J.; et al. Network-Assisted Genetic Dissection of Pathogenicity and Drug Resistance in the Opportunistic Human Pathogenic Fungus Cryptococcus neoformans. Sci. Rep. 2015, 5. [CrossRef]
- Bernhard, M.; Worasilchai, N.; Kangogo, M.; Bii, C.; Trzaska, W.J.; Weig, M.; Groß, U.; Chindamporn, A.; Bader, O. CryptoType – Public Datasets for MALDI-TOF-MS Based Differentiation of Cryptococcus neoformans/Gattii Complexes. Front. Cell. Infect. Microbiol. 2021, 11. [CrossRef]
- O’Meara, T.R.; Alspaugh, J.A. The Cryptococcus neoformans Capsule: A Sword and a Shield. Clin. Microbiol. Rev. 2012, 25, 387–408. [CrossRef]
- García-Rodas, R.; Zaragoza, O. Catch Me If You Can: Phagocytosis and Killing Avoidance by Cryptococcus neoformans. FEMS Immunol. Med. Microbiol. 2012, 64, 147–161. [CrossRef]
- Vecchiarelli, A.; Pericolini ,Eva; Gabrielli ,Elena; Kenno ,Samyr; Perito ,Stefano; Cenci ,Elio; and Monari, C. Elucidating the Immunological Function of the Cryptococcus neoformans Capsule. Future Microbiol. 2013, 8, 1107–1116. [CrossRef]
- Casadevall, A.; Coelho, C.; Cordero, R.J.B.; Dragotakes, Q.; Jung, E.; Vij, R.; Wear, M.P. The Capsule of Cryptococcus neoformans. Virulence 2018, 10, 822–831. [CrossRef]
- Levitz, S.M.; Specht, C.A. The Molecular Basis for the Immunogenicity of Cryptococcus neoformans Mannoproteins. FEMS Yeast Res. 2006, 6, 513–524. [CrossRef]
- Geddes, J.M.H.; Croll, D.; Caza, M.; Stoynov, N.; Foster, L.J.; Kronstad, J.W. Secretome Profiling of Cryptococcus neoformans Reveals Regulation of a Subset of Virulence-Associated Proteins and Potential Biomarkers by Protein Kinase A. BMC Microbiol. 2015, 15, 206. [CrossRef]
- Huffnagle, G.B.; Chen, G.H.; Curtis, J.L.; McDonald, R.A.; Strieter, R.M.; Toews, G.B. Down-Regulation of the Afferent Phase of T Cell-Mediated Pulmonary Inflammation and Immunity by a High Melanin-Producing Strain of Cryptococcus neoformans. J. Immunol. 1995, 155, 3507–3516. [CrossRef]
- Rodrigues, M.L.; Nakayasu, E.S.; Almeida, I.C.; Nimrichter, L. The Impact of Proteomics on the Understanding of Functions and Biogenesis of Fungal Extracellular Vesicles. J. Proteomics 2014, 97, 177–186. [CrossRef]
- Lev, S.; Crossett, B.; Cha, S.Y.; Desmarini, D.; Li, C.; Chayakulkeeree, M.; Wilson, C.F.; Williamson, P.R.; Sorrell, T.C.; Djordjevic, J.T. Identification of Aph1, a Phosphate-Regulated, Secreted, and Vacuolar Acid Phosphatase in Cryptococcus neoformans. mBio 2014, 5, e01649-01614. [CrossRef]
- Clarke, S.C.; Dumesic, P.A.; Homer, C.M.; O’Donoghue, A.J.; La Greca, F.; Pallova, L.; Majer, P.; Madhani, H.D.; Craik, C.S. Integrated Activity and Genetic Profiling of Secreted Peptidases in Cryptococcus neoformans Reveals an Aspartyl Peptidase Required for Low pH Survival and Virulence. PLoS Pathog. 2016, 12, e1006051. [CrossRef]
- Santiago-Tirado, F.H.; Hurtaux, T.; Geddes-McAlister, J.; Nguyen, D.; Helms, V.; Doering, T.L.; Römisch, K. The ER Protein Translocation Channel Subunit Sbh1 Controls Virulence of Cryptococcus neoformans. mBio 2023, 14, e0338422. [CrossRef]
- Park, H.-S.; Chow, E.W.L.; Fu, C.; Soderblom, E.J.; Moseley, M.A.; Heitman, J.; Cardenas, M.E. Calcineurin Targets Involved in Stress Survival and Fungal Virulence. PLoS Pathog. 2016, 12, e1005873. [CrossRef]
- Odom, A.; Muir, S.; Lim, E.; Toffaletti, D.L.; Perfect, J.; Heitman, J. Calcineurin Is Required for Virulence of Cryptococcus neoformans. EMBO J. 1997, 16, 2576–2589. [CrossRef]
- Kozubowski, L.; Thompson, J.W.; Cardenas, M.E.; Moseley, M.A.; Heitman, J. Association of Calcineurin with the COPI Protein Sec28 and the COPII Protein Sec13 Revealed by Quantitative Proteomics. PLoS ONE 2011, 6, e25280. [CrossRef]
- Chatterjee, S.; Tatu, U. Heat Shock Protein 90 Localizes to the Surface and Augments Virulence Factors of Cryptococcus neoformans. PLoS Negl. Trop. Dis. 2017, 11, e0005836. [CrossRef]
- Fu, C.; Beattie, S.R.; Jezewski, A.J.; Robbins, N.; Whitesell, L.; Krysan, D.J.; Cowen, L.E. Genetic Analysis of Hsp90 Function in Cryptococcus neoformans Highlights Key Roles in Stress Tolerance and Virulence. Genetics 2022, 220, iyab164. [CrossRef]
- Ball, B.; Woroszchuk, E.; Sukumaran, A.; West, H.; Afaq, A.; Carruthers-Lay, D.; Muselius, B.; Gee, L.; Langille, M.; Pladwig, S.; et al. Proteome and Secretome Profiling of Zinc Availability in Cryptococcus neoformans Identifies Wos2 as a Subtle Influencer of Fungal Virulence Determinants. BMC Microbiol. 2021, 21, 341. [CrossRef]
- Ball, B.; Sukumaran, A.; Pladwig, S.; Kazi, S.; Chan, N.; Honeywell, E.; Modrakova, M.; Geddes-McAlister, J. Proteome Signatures Reveal Homeostatic and Adaptive Oxidative Responses by a Putative Co-Chaperone, Wos2, to Influence Fungal Virulence Determinants in Cryptococcosis. Microbiol. Spectr. 2024, 12, e00152-24. [CrossRef]
- Vargas-Muñiz, J.M.; Renshaw, H.; Richards, A.D.; Lamoth, F.; Soderblom, E.J.; Moseley, M.A.; Juvvadi, P.R.; Steinbach, W.J. The Aspergillus Fumigatus Septins Play Pleiotropic Roles in Septation, Conidiation, and Cell Wall Stress, but Are Dispensable for Virulence. Fungal Genet. Biol. FG B 2015, 81, 41–51. [CrossRef]
- Kozubowski, L.; Heitman, J. Septins Enforce Morphogenetic Events during Sexual Reproduction and Contribute to Virulence of Cryptococcus neoformans. Mol. Microbiol. 2010, 75, 658–675. [CrossRef]
- Barrera, S.M.; Hatchell, E.; Byrum, S.D.; Mackintosh, S.G.; Kozubowski, L. Quantitative Analysis of Septin Cdc10 & Cdc3-Associated Proteome during Stress Response in the Fungal Pathogen Cryptococcus neoformans. PLOS ONE 2024, 19, e0313444. [CrossRef]
- Gross, N.T.; Nessa, K.; Camner, P.; Jarstrand, C. Production of Nitric Oxide by Rat Alveolar Macrophages Stimulated by Cryptococcus neoformans or Aspergillus Fumigatus. Med. Mycol. 1999, 37, 151–157. [CrossRef]
- Missall, T.A.; Pusateri, M.E.; Lodge, J.K. Thiol Peroxidase Is Critical for Virulence and Resistance to Nitric Oxide and Peroxide in the Fungal Pathogen, Cryptococcus neoformans. Mol. Microbiol. 2004, 51, 1447–1458. [CrossRef]
- Missall, T.A.; Pusateri, M.E.; Donlin, M.J.; Chambers, K.T.; Corbett, J.A.; Lodge, J.K. Posttranslational, Translational, and Transcriptional Responses to Nitric Oxide Stress in Cryptococcus neoformans: Implications for Virulence. Eukaryot. Cell 2006, 5, 518–529. [CrossRef]
- Skowyra, D.; Craig, K.L.; Tyers, M.; Elledge, S.J.; Harper, J.W. F-Box Proteins Are Receptors That Recruit Phosphorylated Substrates to the SCF Ubiquitin-Ligase Complex. Cell 1997, 91, 209–219. [CrossRef]
- Liu, T.-B.; Wang, Y.; Stukes, S.; Chen, Q.; Casadevall, A.; Xue, C. The F-Box Protein Fbp1 Regulates Sexual Reproduction and Virulence in Cryptococcus neoformans. Eukaryot. Cell 2011, 10, 791–802. [CrossRef]
- Liu, T.-B.; Xue, C. Fbp1-Mediated Ubiquitin-Proteasome Pathway Controls Cryptococcus neoformans Virulence by Regulating Fungal Intracellular Growth in Macrophages. Infect. Immun. 2014, 82, 557–568. [CrossRef]
- Han, L.-T.; Wu, Y.-J.; Liu, T.-B. The F-Box Protein Fbp1 Regulates Virulence of Cryptococcus neoformans Through the Putative Zinc-Binding Protein Zbp1. Front. Cell. Infect. Microbiol. 2021, 11, 794661. [CrossRef]
- Lee, J.R.E.; Oestreich, A.J.; Payne, J.A.; Gunawan, M.S.; Norgan, A.P.; Katzmann, D.J. The HECT Domain of the Ubiquitin Ligase Rsp5 Contributes to Substrate Recognition*. J. Biol. Chem. 2009, 284, 32126–32137. [CrossRef]
- Telzrow, C.L.; Nichols, C.B.; Castro-Lopez, N.; Wormley, F.L.; Alspaugh, J.A. A Fungal Arrestin Protein Contributes to Cell Cycle Progression and Pathogenesis. mBio 2019, 10, 10.1128/mbio.02682-19. [CrossRef]
- du Plooy, L.M.; Telzrow, C.L.; Nichols, C.B.; Probst, C.; Castro-Lopez, N.; Wormley, F.L.J.; Alspaugh, J.A. A Fungal Ubiquitin Ligase and Arrestin Binding Partner Contribute to Pathogenesis and Survival during Cellular Stress. mBio 2024, 15, e0098124. [CrossRef]
- Huang, M.; Hebert, A.S.; Coon, J.J.; Hull, C.M. Protein Composition of Infectious Spores Reveals Novel Sexual Development and Germination Factors in Cryptococcus. PLOS Genet. 2015, 11, e1005490. [CrossRef]
- Huang, M.; Hull, C.M. Sporulation: How to Survive on Planet Earth (and Beyond). Curr. Genet. 2017, 63, 831–838. [CrossRef]
- Wyatt, T.T.; Wösten, H.A.B.; Dijksterhuis, J. Chapter Two - Fungal Spores for Dispersion in Space and Time. In Advances in Applied Microbiology; Sariaslani, S., Gadd, G.M., Eds.; Academic Press, 2013; Vol. 85, pp. 43–91.
- Martinez, L.R.; Casadevall, A. Cryptococcus neoformans Biofilm Formation Depends on Surface Support and Carbon Source and Reduces Fungal Cell Susceptibility to Heat, Cold, and UV Light. Appl. Environ. Microbiol. 2007, 73, 4592–4601. [CrossRef]
- Banerjee, U.; Gupta, K.; Venugopal, P. A Case of Prosthetic Valve Endocarditis Caused by Cryptococcus neoformans Var. Neoformans. J. Med. Vet. Mycol. Bi-Mon. Publ. Int. Soc. Hum. Anim. Mycol. 1997, 35, 139–141.
- Braun, D.K.; Janssen, D.A.; Marcus, J.R.; Kauffman, C.A. Cryptococcal Infection of a Prosthetic Dialysis Fistula. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 1994, 24, 864–867. [CrossRef]
- Martinez, L.R.; Casadevall, A. Specific Antibody Can Prevent Fungal Biofilm Formation and This Effect Correlates with Protective Efficacy. Infect. Immun. 2005, 73, 6350–6362. [CrossRef]
- Martinez, L.R.; Casadevall, A. Susceptibility of Cryptococcus neoformans Biofilms to Antifungal Agents In Vitro. Antimicrob. Agents Chemother. 2006, 50, 1021–1033. [CrossRef]
- Santi, L.; Berger, M.; Guimarães, J.A.; Calegari-Alves, Y.P.; Vainstein, M.H.; Yates, J.R. 3rd; Beys-da-Silva, W.O. Proteomic Profile of Cryptococcus Gattii Biofilm: Metabolic Shift and the Potential Activation of Electron Chain Transport. J. Proteomics 2024, 290, 105022. [CrossRef]
- Ngamskulrungroj, P.; Chang, Y.; Sionov, E.; Kwon-Chung, K.J. The Primary Target Organ of Cryptococcus Gattii Is Different from That of Cryptococcus neoformans in a Murine Model. mBio 2012, 3, 10.1128/mbio.00103-12. [CrossRef]
- Imai, S.; Armstrong, C.M.; Kaeberlein, M.; Guarente, L. Transcriptional Silencing and Longevity Protein Sir2 Is an NAD-Dependent Histone Deacetylase. Nature 2000, 403, 795–800. [CrossRef]
- Arras, S.D.M.; Chitty, J.L.; Wizrah, M.S.I.; Erpf, P.E.; Schulz, B.L.; Tanurdzic, M.; Fraser, J.A. Sirtuins in the Phylum Basidiomycota: A Role in Virulence in Cryptococcus neoformans. Sci. Rep. 2017, 7, 46567. [CrossRef]
- Choi, J.-T.; Choi, Y.; Lee, Y.; Lee, S.-H.; Kang, S.; Lee, K.-T.; Bahn, Y.-S. The Hybrid RAVE Complex Plays V-ATPase-Dependent and -Independent Pathobiological Roles in Cryptococcus neoformans. PLoS Pathog. 2023, 19, e1011721. [CrossRef]
- Choi, Y.; Yu, S.-R.; Lee, Y.; Na, A.-Y.; Lee, S.; Heitman, J.; Seo, R.; Lee, H.-S.; Lee, J.-S.; Bahn, Y.-S. Casein Kinase 2 Complex: A Central Regulator of Multiple Pathobiological Signaling Pathways in Cryptococcus neoformans. mBio 2024, 15, e0327523. [CrossRef]
- de Melo, A.T.; Martho, K.F.; Roberto, T.N.; Nishiduka, E.S.; Machado, J.J.; Brustolini, O.J.B.; Tashima, A.K.; Vasconcelos, A.T.; Vallim, M.A.; Pascon, R.C. The Regulation of the Sulfur Amino Acid Biosynthetic Pathway in Cryptococcus neoformans: The Relationship of Cys3, Calcineurin, and Gpp2 Phosphatases. Sci. Rep. 2019, 9, 11923. [CrossRef]
- Wang, Y.; Pawar, S.; Dutta, O.; Wang, K.; Rivera, A.; Xue, C. Macrophage Mediated Immunomodulation During Cryptococcus Pulmonary Infection. Front. Cell. Infect. Microbiol. 2022, 12, 859049. [CrossRef]
- Selvan, L.D.N.; Sreenivasamurthy, S.K.; Kumar, S.; Yelamanchi, S.D.; Madugundu, A.K.; Anil, A.K.; Renuse, S.; Nair, B.G.; Gowda, H.; Mathur, P.P.; et al. Characterization of Host Response to Cryptococcus neoformans through Quantitative Proteomic Analysis of Cryptococcal Meningitis Co-Infected with HIV. Mol. Biosyst. 2015, 11, 2529–2540. [CrossRef]
- Pacifici, N.; Cruz-Acuña, M.; Diener, A.; Tu, A.; Senthil, N.; Han, H.; Lewis, J.S. Vomocytosis of Cryptococcus neoformans Cells from Murine, Bone Marrow-Derived Dendritic Cells. PLOS ONE 2023, 18, e0280692. [CrossRef]
- Yang, C.; Wang, J.; Zou, L. Innate Immune Evasion Strategies against Cryptococcal Meningitis Caused by Cryptococcus?Neoformans (Review). Exp. Ther. Med. 2017. [CrossRef]
- Davis, M.J.; Eastman, A.J.; Qiu, Y.; Gregorka, B.; Kozel, T.R.; Osterholzer, J.J.; Curtis, J.L.; Swanson, J.A.; Olszewski, M.A. Cryptococcus neoformans-Induced Macrophage Lysosome Damage Crucially Contributes to Fungal Virulence. J. Immunol. Baltim. Md 1950 2015, 194, 2219–2231. [CrossRef]
- Sukumaran, A.; Ball, B.; Krieger, J.R.; Geddes-McAlister, J. Cross-Kingdom Infection of Macrophages Reveals Pathogen- and Immune-Specific Global Reprogramming and Adaptation. mBio 2022, 13, e0168722. [CrossRef]
- Qin, Q.-M.; Luo, J.; Lin, X.; Pei, J.; Li, L.; Ficht, T.A.; de Figueiredo, P. Functional Analysis of Host Factors That Mediate the Intracellular Lifestyle of Cryptococcus neoformans. PLoS Pathog. 2011, 7, e1002078. [CrossRef]
- Coelho, C.; Bocca, A.L.; Casadevall, A. The Intracellular Life of Cryptococcus neoformans. Annu. Rev. Pathol. Mech. Dis. 2014, 9, 219–238. [CrossRef]
- Kim, W.-K.; Corey, S.; Alvarez, X.; Williams, K. Monocyte/Macrophage Traffic in HIV and SIV Encephalitis. J. Leukoc. Biol. 2003, 74, 650–656. [CrossRef]
- Schorey, J.S.; Cheng, Y.; Singh, P.P.; Smith, V.L. Exosomes and Other Extracellular Vesicles in Host–Pathogen Interactions. EMBO Rep. 2015, 16, 24–43. [CrossRef]
- Zhang, L.; Zhang, K.; Li, H.; Coelho, C.; de Souza Gonçalves, D.; Fu, M.S.; Li, X.; Nakayasu, E.S.; Kim, Y.-M.; Liao, W.; et al. Cryptococcus neoformans-Infected Macrophages Release Proinflammatory Extracellular Vesicles: Insight into Their Components by Multi-Omics. mBio 2021, 12, e00279-21. [CrossRef]
- Jarvis, J.N.; Meintjes, G.; Rebe, K.; Williams, G.N.; Bicanic, T.; Williams, A.; Schutz, C.; Bekker, L.-G.; Wood, R.; Harrison, T.S. Adjunctive Interferon-γ Immunotherapy for the Treatment of HIV-Associated Cryptococcal Meningitis: A Randomized Controlled Trial. AIDS Lond. Engl. 2012, 26, 1105–1113. [CrossRef]
- Nixon, G.L.; McEntee, L.; Johnson, A.; Farrington, N.; Whalley, S.; Livermore, J.; Natal, C.; Washbourn, G.; Bibby, J.; Berry, N.; et al. Repurposing and Reformulation of the Antiparasitic Agent Flubendazole for Treatment of Cryptococcal Meningoencephalitis, a Neglected Fungal Disease. Antimicrob. Agents Chemother. 2018, 62, 10.1128/aac.01909-17. [CrossRef]
- Joffe, L.S.; Schneider, R.; Lopes, W.; Azevedo, R.; Staats, C.C.; Kmetzsch, L.; Schrank, A.; Del Poeta, M.; Vainstein, M.H.; Rodrigues, M.L. The Anti-Helminthic Compound Mebendazole Has Multiple Antifungal Effects against Cryptococcus neoformans. Front. Microbiol. 2017, 8. [CrossRef]
- de Oliveira, H.C.; Joffe, L.S.; Simon, K.S.; Castelli, R.F.; Reis, F.C.G.; Bryan, A.M.; Borges, B.S.; Medeiros, L.C.S.; Bocca, A.L.; Del Poeta, M.; et al. Fenbendazole Controls In Vitro Growth, Virulence Potential, and Animal Infection in the Cryptococcus Model. Antimicrob. Agents Chemother. 2020, 64, 10.1128/aac.00286-20. [CrossRef]
- de Oliveira, H.C.; Santos, M.D.M.; Camillo-Andrade, A.C.; Castelli, R.F.; Dos Reis, F.C.G.; Carvalho, P.C.; Rodrigues, M.L. Proteomics Reveals That the Antifungal Activity of Fenbendazole against Cryptococcus neoformans Requires Protein Kinases. Int. J. Antimicrob. Agents 2024, 63, 107157. [CrossRef]
- Gutierrez-Gongora, D.; Raouf-Alkadhimi, F.; Prosser, R.S.; Geddes-McAlister, J. Differentiated Extracts from Freshwater and Terrestrial Mollusks Inhibit Virulence Factor Production in Cryptococcus neoformans. Sci. Rep. 2023, 13, 4928. [CrossRef]
- Gutierrez-Gongora, D.; Woods, M.; Prosser, R.S.; Geddes-McAlister, J. Natural Compounds from Freshwater Mussels Disrupt Fungal Virulence Determinants and Influence Fluconazole Susceptibility in the Presence of Macrophages in Cryptococcus neoformans. Microbiol. Spectr. 2024, 12, e0284123. [CrossRef]
- Vernel-Pauillac, F.; Laurent-Winter, C.; Fiette, L.; Janbon, G.; Aimanianda, V.; Dromer, F. Cryptococcus neoformans Infections: Aspartyl Protease Potential to Improve Outcome in Susceptible Hosts. mBio 2024, 15, e0273324. [CrossRef]
- Caballero Van Dyke, M.C.; Wormley, F.L. A Call to Arms: Quest for a Cryptococcal Vaccine. Trends Microbiol. 2018, 26, 436–446. [CrossRef]
- Chaturvedi, A.K.; Weintraub, S.T.; Lopez-Ribot, J.L.; Wormley, F.L.J. Identification and Characterization of Cryptococcus neoformans Protein Fractions That Induce Protective Immune Responses. Proteomics 2013, 13, 3429–3441. [CrossRef]
- De Groot, A.S.; Moise, L.; Terry, F.; Gutierrez, A.H.; Hindocha, P.; Richard, G.; Hoft, D.F.; Ross, T.M.; Noe, A.R.; Takahashi, Y.; et al. Better Epitope Discovery, Precision Immune Engineering, and Accelerated Vaccine Design Using Immunoinformatics Tools. Front. Immunol. 2020, 11. [CrossRef]
- Pfaller, M.A.; Rhomberg, P.R.; Wiederhold, N.P.; Gibas, C.; Sanders, C.; Fan, H.; Mele, J.; Kovanda, L.L.; Castanheira, M. In Vitro Activity of Isavuconazole against Opportunistic Fungal Pathogens from Two Mycology Reference Laboratories. Antimicrob. Agents Chemother. 2018, 62. [CrossRef]
- Calderón-Hernández, A.; Castro-Bonilla, N.; Cob-Delgado, M. Chromogenic, Biochemical and Proteomic Identification of Yeast and Yeast-like Microorganisms Isolated from Clinical Samples from Animals of Costa Rica. J. Fungi Basel Switz. 2024, 10. [CrossRef]
- Klein, K.R.; Hall, L.; Deml, S.M.; Rysavy, J.M.; Wohlfiel, S.L.; Wengenack, N.L. Identification of Cryptococcus Gattii by Use of L-Canavanine Glycine Bromothymol Blue Medium and DNA Sequencing. J. Clin. Microbiol. 2009, 47, 3669–3672. [CrossRef]
- Stevenson, L.G.; Drake, S.K.; Shea, Y.R.; Zelazny, A.M.; Murray, P.R. Evaluation of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Clinically Important Yeast Species. J. Clin. Microbiol. 2010, 48, 3482–3486. [CrossRef]
- Tarumoto, N.; Sakai, J.; Kodana, M.; Kawamura, T.; Ohno, H.; Maesaki, S. Identification of Disseminated Cryptococcosis Using MALDI-TOF MS and Clinical Evaluation. Med. Mycol. J. 2016, 57, E41–E46. [CrossRef]
- Firacative, C.; Trilles, L.; Meyer, W. MALDI-TOF MS Enables the Rapid Identification of the Major Molecular Types within the Cryptococcus neoformans/C. Gattii Species Complex. PLOS ONE 2012, 7, e37566. [CrossRef]
- McTaggart, L.R.; Lei, E.; Richardson, S.E.; Hoang, L.; Fothergill, A.; Zhang, S.X. Rapid Identification of Cryptococcus neoformans and Cryptococcus Gattii by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry. J. Clin. Microbiol. 2011, 49, 3050–3053. [CrossRef]
- Jin, L.; Cao, J.-R.; Xue, X.-Y.; Wu, H.; Wang, L.-F.; Guo, L.; Shen, D.-X. Clinical and Microbiological Characteristics of Cryptococcus Gattii Isolated from 7 Hospitals in China. BMC Microbiol. 2020, 20, 73. [CrossRef]
- Hagen, F.; Illnait-Zaragozí, M.-T.; Meis, J.F.; Chew, W.H.M.; Curfs-Breuker, I.; Mouton, J.W.; Hoepelman, A.I.M.; Spanjaard, L.; Verweij, P.E.; Kampinga, G.A.; et al. Extensive Genetic Diversity within the Dutch Clinical Cryptococcus neoformans Population. J. Clin. Microbiol. 2012, 50, 1918–1926. [CrossRef]
- Cogliati, M. Global Molecular Epidemiology of Cryptococcus neoformans and Cryptococcus Gattii: An Atlas of the Molecular Types. Scientifica 2013, 2013, 675213. [CrossRef]
- Pini, G.; Faggi, E.; Bravetti, E. Molecular Typing of Clinical and Environmental Cryptococcus neoformans Strains Isolated in Italy. Open J. Med. Microbiol. 2017, 7, 77–85. [CrossRef]
- Mukaremera, L.; McDonald, T.R.; Nielsen, J.N.; Molenaar, C.J.; Akampurira, A.; Schutz, C.; Taseera, K.; Muzoora, C.; Meintjes, G.; Meya, D.B.; et al. The Mouse Inhalation Model of Cryptococcus neoformans Infection Recapitulates Strain Virulence in Humans and Shows That Closely Related Strains Can Possess Differential Virulence. Infect. Immun. 2019, 87, e00046-19. [CrossRef]
- Jackson, K.M.; Kono, T.J.Y.; Betancourt, J.J.; Wang, Y.; Kabbale, K.D.; Ding, M.; Kezh, P.; Ha, G.; Yoder, J.M.; Fulton, S.R.; et al. Single Nucleotide Polymorphisms Are Associated with Strain-Specific Virulence Differences among Clinical Isolates of Cryptococcus neoformans. Nat. Commun. 2024, 15, 10491. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
