Submitted:
24 June 2025
Posted:
26 June 2025
You are already at the latest version
Abstract
Keywords:
Introduction
The Evolutionary Landscape of AI in NIPT
Fundamental Concepts of AI-Enhanced Cell-Free Fetal DNA Analysis
Current Trends in AI Applications for NIPT Accuracy
| Algorithm Name | Type | Targeted Abnormality | Reported Sensitivity | Reported Specificity | Reported PPV | Snippet IDs |
|---|---|---|---|---|---|---|
| aiD-Ensemble | CNN-based | T21, T18, T13 | 99.07% | >99.40% accuracy | 88.43% | [15], B2, B18 |
| aiD-Mean | CNN-based | T21, T18, T13 | 99.07% | >99.40% accuracy | 87.70% | [38], B2 |
| aiD-IQR | CNN-based | T21, T18, T13 | 98.15% | >99.40% accuracy | 80.92% | [38], B2 |
| aiD-Median | CNN-based | T21, T18, T13 | 97.22% | >99.40% accuracy | 67.74% | [38], B2 |
| DeepHoobari | DNN | Fetal Genotyping | High (surpasses Hoobari) | Not Specified | Not Specified | [51], B6, B10 |
| Random Forest | ML | Down Syndrome | 85.2% (validation) | 95% | Not Specified | [14] |
| Convolutional Neural Network | DL | Down Syndrome | 96.72% Sensitivity, 98.45% Specificity | Not Specified | Not Specified | [14] |
| Artificial Neural Network | DL | Aneuploidy (T21, T18, T13) | 100% for T21, >80% for others | Minimal False Positives | High Detection Rates | [14] |
| WisecondorX | Statistical | T13, T18, T21 (non-mosaic) | 100% | 98.5% | Not Specified | [39] |
| VINIPT | Statistical | T13, T18, T21 (non-mosaic) | 100% | 99.9% | Not Specified | [39] |
| NIPT-PG | Statistical + Pan-Genome | Chromosomal Aneuploidies | Outperforms standard Z-score | Not Specified | Not Specified | [41] |
Use Cases and Case Studies of AI in NIPT
Detailed Working Mechanisms of AI-Enhanced NIPT
Country-Wise Analysis of AI-Enhanced NIPT
| Country | Adoption Level/Policy | Key Research Initiatives/Studies | Healthcare/Regulatory Factors |
|---|---|---|---|
| USA | Wide implementation, no national policy | Research focused on improving accuracy and expanding scope | Primarily private market, increasing insurance coverage |
| Netherlands | Universal offer | Research on genetic variants affecting NIPT accuracy | Strong public healthcare system, high NIPT uptake |
| Belgium | Universal offer | Not specified in snippets | Strong public healthcare system, very high NIPT uptake |
| China | Increasing adoption, partial government coverage | Development of aiD-NIPT, numerous studies on AI in NIPT | Growing healthcare market, varying insurance coverage by region |
| Japan | Recommended for high-risk, mostly out-of-pocket | Nationwide clinical study to evaluate NIPT | Primarily private payment, specific guidelines for NIPT use |
| South Korea | Not specified in snippets | Development of aiD-NIPT algorithm | Advanced healthcare system, GC Genome research center |
| Croatia | Private healthcare setting | Monocentric study on NIPT usage patterns | NIPT not included in national prenatal care strategy |
| Italy | Considering nationwide public funding | Focus on contingent implementation and cost-effectiveness | Regional variations in public healthcare coverage |
| England | Second-tier test (after risk assessment) | Research project on ethical implications of NIPT | National Health Service, ethical guidelines |
| France | Second-tier test (after risk assessment) | Research project on ethical implications of NIPT | Public healthcare system, ethical guidelines |
| Germany | Second-tier test (after risk assessment) | Research project on ethical implications of NIPT | Public healthcare system, varying insurance coverage |
A Synthesis of Existing Literature on AI in NIPT
Future Directions and the Scope of Innovation in AI for NIPT
Conclusion
References
- CarusoPhD, A. Evolution of non-invasive prenatal testing (NIPT),” Diagnostic Precision, Dec. 20, 2022. https://blog.seracare.com/ngs/evolution-of-non-invasive-prenatal-testing-nipt-testing.
- PhD, R.R. The Scientist, Nov. 08, 2023. https://www.the-scientist.com/the-basics-and-applications-of-cell-free-dna-71479.
- McCreary, D.; McCreary, D. , “The Past, Present and Future of Non-Invasive Prenatal Testing (NIPT),” Sapio Sciences, Mar. 13, 2024. https://www.sapiosciences.com/blog/non-invasive-prenatal-testing-nipt-sapio-sciences/.
- Berenger, M. , “Continued Advances in NIPT Drives Updated Recommendations,” Clinical Diagnostics, Sep. 14, 2023. https://blog.lgcclinicaldiagnostics.com/nipt-evolutions.
- Bedei, I.; Wolter, A.; Weber, A.; Signore, F.; Axt-Fliedner, R. Chances and Challenges of New Genetic Screening Technologies (NIPT) in Prenatal Medicine from a Clinical Perspective: A Narrative Review. Genes 2021, 12, 501. [Google Scholar] [CrossRef] [PubMed]
- Podobnik, P.; Meštrović, T.; Đorđević, A.; Kurdija, K.; Jelčić, D.; Ogrin, N.; Bertović-Žunec, I.; Gebauer-Vuković, B.; Hočevar, G.; Lončar, I.; et al. A Decade of Non-Invasive Prenatal Testing (NIPT) for Chromosomal Abnormalities in Croatia: First National Monocentric Study to Inform Country’s Future Prenatal Care Strategy. Genes 2024, 15, 1590. [Google Scholar] [CrossRef] [PubMed]
- Sadvakassova, L.; Kurmangali, Z.; Beloussov, V.; Rakisheva, Z.; Terzic, M. The effectiveness of non-invasive prenatal test technology and the prenatal screening algorithm based on various methods for determining foetal aneuploidy. J. Turk. Gynecol. Assoc. 2023, 24, 152–158. [Google Scholar] [CrossRef]
- Ltd, M.D.F. , “Global Prenatal Testing Market Size, Share, Trends & Growth Forecast Report, Segmented By Technology (Non-Invasive (Non-Invasive Prenatal Testing (NIPT), Maternal Serum Screening and Ultrasound-Based Testing) And Invasive (Amniocentesis, Chorionic Villus Sampling (CVS) and Others), Type, Application, End-Users and Region (North America, Europe, Asia-Pacific, Latin America, Middle East and Africa), Industry Analysis (2024 to 2032),” Market Data Forecast. https://www.marketdataforecast.com/market-reports/prenatal-testing-market-report.
- Jayashankar, S.S.; Nasaruddin, M.L.; Hassan, M.F.; Dasrilsyah, R.A.; Shafiee, M.N.; Ismail, N.A.S.; Alias, E. Non-Invasive Prenatal Testing (NIPT): Reliability, Challenges, and Future Directions. Diagnostics 2023, 13, 2570. [Google Scholar] [CrossRef]
- Demko, Z.; Prigmore, B.; Benn, P. A Critical Evaluation of Validation and Clinical Experience Studies in Non-Invasive Prenatal Testing for Trisomies 21, 18, and 13 and Monosomy X. J. Clin. Med. 2022, 11, 4760. [Google Scholar] [CrossRef]
- Miskeen, E.; Alfaifi, J.; Alhuian, D.M.; Alghamdi, M.; Alharthi, M.H.; Alshahrani, N.A.; Alosaimi, G.; Alshomrani, R.A.; Hajlaa, A.M.; Khair, N.M.; et al. Prospective Applications of Artificial Intelligence In Fetal Medicine: A Scoping Review of Recent Updates. Int. J. Gen. Med. 2025, ume 18, 237–245. [Google Scholar] [CrossRef]
- Tsui, W.A.; Ding, S.C.; Jiang, P.; Lo, Y.D. Artificial intelligence and machine learning in cell-free-DNA-based diagnostics. Genome Res. 2025, 35, 1–19. [Google Scholar] [CrossRef]
- Yeganegi, M.; Danaei, M.; Azizi, S.; Jayervand, F.; Bahrami, R.; Dastgheib, S.A.; Rashnavadi, H.; Masoudi, A.; Shiri, A.; Aghili, K.; et al. Research advancements in the Use of artificial intelligence for prenatal diagnosis of neural tube defects. Front. Pediatr. 2025, 13, 1514447. [Google Scholar] [CrossRef]
- Danaei, M.; Rashnavadi, H.; Yeganegi, M.; Dastgheib, S.A.; Bahrami, R.; Azizi, S.; Jayervand, F.; Masoudi, A.; Shahbazi, A.; Shiri, A.; et al. Advancements in machine learning and biomarker integration for prenatal Down syndrome screening. J. Turk. Soc. Obstet. Gynecol. 2025, 22, 75–82. [Google Scholar] [CrossRef]
- Yang, J.; Ding, X.; Zhu, W.; Shomron, N. Improving the calling of non-invasive prenatal testing on 13-/18-/21-trisomy by support vector machine discrimination. PLOS ONE 2018, 13, e0207840. [Google Scholar] [CrossRef]
- Qi, Y.; Hu, C.; Yang, J.; Gao, Y.; Yin, A. Self-learning neural network as a prediction model in non-invasive prenatal testing to detect fetal SNVs. J. Transl. Med. 2024, 22, 1–4. [Google Scholar] [CrossRef] [PubMed]
- News-Medical, “Non-invasive prenatal testing (NIPT): What it is, advancements and future prospects,” News-Medical, Aug. 05, 2024. https://www.news-medical.net/whitepaper/20240805/Non-invasive-prenatal-testing-(NIPT)-What-it-is-advancements-and-future-prospects.
- Liscovitch-Brauer, N.; Mesika, R.; Rabinowitz, T.; Volkov, H.; Grad, M.; Matar, R.T.; Basel-Salmon, L.; Tadmor, O.; Beker, A.; Shomron, N. Machine learning-enhanced noninvasive prenatal testing of monogenic disorders. Prenat. Diagn. 2024, 44, 1024–1032. [Google Scholar] [CrossRef] [PubMed]
- Shetty, H.P.; Patil, M.S.; Yadav, S.; Reddy. I, V. The Role of AI and Machine Learning in Revolutionizing Prenatal Screening and Genetic Analysis. Int. J. Innov. Sci. Res. Technol. (IJISRT) 2024, 2065–2067. [Google Scholar] [CrossRef]
- Miskeen, E.; Alfaifi, J.; Alhuian, D.M.; Alghamdi, M.; Alharthi, M.H.; Alshahrani, N.A.; Alosaimi, G.; Alshomrani, R.A.; Hajlaa, A.M.; Khair, N.M.; et al. Prospective Applications of Artificial Intelligence In Fetal Medicine: A Scoping Review of Recent Updates. Int. J. Gen. Med. 2025, ume 18, 237–245. [Google Scholar] [CrossRef]
- Yeganegi, M.; Danaei, M.; Azizi, S.; Jayervand, F.; Bahrami, R.; Dastgheib, S.A.; Rashnavadi, H.; Masoudi, A.; Shiri, A.; Aghili, K.; et al. Research advancements in the Use of artificial intelligence for prenatal diagnosis of neural tube defects. Front. Pediatr. 2025, 13, 1514447. [Google Scholar] [CrossRef]
- Shetty, H.P.; Patil, M.S.; Yadav, S.; Reddy. I, V. The Role of AI and Machine Learning in Revolutionizing Prenatal Screening and Genetic Analysis. Int. J. Innov. Sci. Res. Technol. (IJISRT) 2024, 2065–2067. [Google Scholar] [CrossRef]
- Xu, X.; Wang, L.; Cheng, X.; Ke, W.; Jie, S.; Lin, S.; Lai, M.; Zhang, L.; Li, Z. Machine learning-based evaluation of application value of the USM combined with NIPT in the diagnosis of fetal chromosomal abnormalities. Math. Biosci. Eng. 2022, 19, 4260–4276. [Google Scholar] [CrossRef]
- Boddupally, K.; Thuraka, E.R. Artificial intelligence for prenatal chromosome analysis. Clin. Chim. Acta 2023, 552, 117669. [Google Scholar] [CrossRef]
- Shaikh, M.A.; Al-Rawashdeh, H.S.; Sait, A.R.W. A Review of Artificial Intelligence-Based Down Syndrome Detection Techniques. Life 2025, 15, 390. [Google Scholar] [CrossRef]
- Ramakrishnan, R.; Rao, S.; He, J.-R. Perinatal health predictors using artificial intelligence: A review. Women's Heal. 2021, 17. [Google Scholar] [CrossRef]
- Tsui, W.A.; Ding, S.C.; Jiang, P.; Lo, Y.D. Artificial intelligence and machine learning in cell-free-DNA-based diagnostics. Genome Res. 2025, 35, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Yeganegi, M.; Danaei, M.; Azizi, S.; Jayervand, F.; Bahrami, R.; Dastgheib, S.A.; Rashnavadi, H.; Masoudi, A.; Shiri, A.; Aghili, K.; et al. Research advancements in the Use of artificial intelligence for prenatal diagnosis of neural tube defects. Front. Pediatr. 2025, 13, 1514447. [Google Scholar] [CrossRef] [PubMed]
- Miskeen, E.; Alfaifi, J.; Alhuian, D.M.; Alghamdi, M.; Alharthi, M.H.; Alshahrani, N.A.; Alosaimi, G.; Alshomrani, R.A.; Hajlaa, A.M.; Khair, N.M.; et al. Prospective Applications of Artificial Intelligence In Fetal Medicine: A Scoping Review of Recent Updates. Int. J. Gen. Med. 2025, ume 18, 237–245. [Google Scholar] [CrossRef]
- New study highlights AI’s potential to help doctors detect congenital heart defects - Society for Maternal-Fetal Medicine.” https://www.smfm.org/news/new-study-highlights-ais-potential-to-help-doctors-detect-congenital-heart-defects.
- Patel, L. , “AI in prenatal care: Transforming fetal medicine,” Sonio, Feb. 05, 2025. https://sonio.ai/en/blog/ai-prenatal-care/.
- Miskeen, E.; Alfaifi, J.; Alhuian, D.M.; Alghamdi, M.; Alharthi, M.H.; Alshahrani, N.A.; Alosaimi, G.; Alshomrani, R.A.; Hajlaa, A.M.; Khair, N.M.; et al. Prospective Applications of Artificial Intelligence In Fetal Medicine: A Scoping Review of Recent Updates. Int. J. Gen. Med. 2025, ume 18, 237–245. [Google Scholar] [CrossRef]
- Shivarkar, A. , “AI in Ultrasound Imaging Market to Uplift >.57 Bn by 2034,” Mar. 10, 2025. https://www.towardshealthcare.com/insights/ai-in-ultrasound-imaging-market-size.
- Alius, “AI in Maternal Healthcare: Transforming Prenatal Care & Outcomes,” SentiSight.ai, Feb. 11, 2025. https://www.sentisight.ai/role-of-ai-in-maternal-healthcare/.
- Sonio at SMFM 2025: Advancing AI in Maternal-Fetal Medicine,” Sonio, Feb. 27, 2025. https://sonio.ai/news/smfm-2025-ai-ultrasound-innovation/. 2025.
- Ali, M.O.A.M.; Elhabeeb, S.M.A.; Elsheikh, N.E.A.; Mohammed, F.S.A.; Ali, S.H.M.; Abdelhalim, A.A.I.; Altom, D.S.; Omar, M.; Sr. , F.S.A.M. Advancing Obstetric Care Through Artificial Intelligence-Enhanced Clinical Decision Support Systems: A Systematic Review. Cureus 2025, 17. [Google Scholar] [CrossRef]
- Yeganegi, M.; Danaei, M.; Azizi, S.; Jayervand, F.; Bahrami, R.; Dastgheib, S.A.; Rashnavadi, H.; Masoudi, A.; Shiri, A.; Aghili, K.; et al. Research advancements in the Use of artificial intelligence for prenatal diagnosis of neural tube defects. Front. Pediatr. 2025, 13, 1514447. [Google Scholar] [CrossRef]
- Lee, J.; Lee, S.-M.; Ahn, J.M.; Lee, T.-R.; Kim, W.; Cho, E.-H.; Ki, C.-S. Development and performance evaluation of an artificial intelligence algorithm using cell-free DNA fragment distance for non-invasive prenatal testing (aiD-NIPT). Front. Genet. 2022, 13, 999587. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Nguyen, H.V.; Pham, M.D.; Le, V.S. An Efficient Computational Method to Create Positive NIPT Samples with Autosomal Trisomy. 2024 12th International Conference on Bioinformatics and Computational Biology (ICBCB). LOCATION OF CONFERENCE, JapanDATE OF CONFERENCE; pp. 126–131.
- Gc_Admin, “NIPT,” GC Genome. https://gc-genome.com/our-science/focused-areas/nipt/.
- Xue, Z.; Zhou, A.; Zhu, X.; Li, L.; Zhu, H.; Jin, X.; Wang, J. NIPT-PG: empowering non-invasive prenatal testing to learn from population genomics through an incremental pan-genomic approach. Briefings Bioinform. 2024, 25. [Google Scholar] [CrossRef]
- Lee, J.; Lee, S.-M.; Ahn, J.M.; Lee, T.-R.; Kim, W.; Cho, E.-H.; Ki, C.-S. Development and performance evaluation of an artificial intelligence algorithm using cell-free DNA fragment distance for non-invasive prenatal testing (aiD-NIPT). Front. Genet. 2022, 13, 999587. [Google Scholar] [CrossRef]
- Lee, J.; Lee, S.-M.; Ahn, J.M.; Lee, T.-R.; Kim, W.; Cho, E.-H.; Ki, C.-S. Development and performance evaluation of an artificial intelligence algorithm using cell-free DNA fragment distance for non-invasive prenatal testing (aiD-NIPT). Front. Genet. 2022, 13, 999587. [Google Scholar] [CrossRef]
- Duboc, V.; Pratella, D.; Milanesio, M.; Boudjarane, J.; Descombes, S.; Paquis-Flucklinger, V.; Bottini, S. NiPTUNE: an automated pipeline for noninvasive prenatal testing in an accurate, integrative and flexible framework. Briefings Bioinform. 2021, 23. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; He, Y.; Lv, J.; Li, R.; Fu, X. The evolution of cell-free fetal DNA testing: expanded non-invasive prenatal testing and its effect on target populations. Front. Med. 2025, 12, 1522680. [Google Scholar] [CrossRef] [PubMed]
- Paluoja, P.; Teder, H.; Ardeshirdavani, A.; Bayindir, B.; Vermeesch, J.; Salumets, A.; Krjutškov, K.; Palta, P.; Li, J. Systematic evaluation of NIPT aneuploidy detection software tools with clinically validated NIPT samples. PLOS Comput. Biol. 2021, 17, e1009684. [Google Scholar] [CrossRef] [PubMed]
- Sotoudeh, H.; Shafaat, O.; Bernstock, J.D.; Brooks, M.D.; Elsayed, G.A.; Chen, J.A.; Szerip, P.; Chagoya, G.; Gessler, F.; Sotoudeh, E.; et al. Artificial Intelligence in the Management of Glioma: Era of Personalized Medicine. Front. Oncol. 2019, 9, 768. [Google Scholar] [CrossRef]
- Okon, E.S.; Michael, K.O.; Friday, R.E.; Efiong, A.J.; Obi, O.-A.M.; Timothy, A.J.; Edet, O.P.; Dominic, E.R.; Jimmy, U.A. Application of AI Algorithms for the Prediction of the Likelihood of Sickle Cell Crises. Sch. J. Eng. Technol. 2024, 12, 394–403. [Google Scholar] [CrossRef]
- Davidson, L.; Boland, M.R. Towards deep phenotyping pregnancy: a systematic review on artificial intelligence and machine learning methods to improve pregnancy outcomes. Briefings Bioinform. 2021, 22. [Google Scholar] [CrossRef]
- Ocak, H. A Medical Decision Support System Based on Support Vector Machines and the Genetic Algorithm for the Evaluation of Fetal Well-Being. J. Med Syst. 2013, 37, 1–9. [Google Scholar] [CrossRef]
- Schwammenthal, Y.; Rabinowitz, T.; Basel-Salmon, L.; Tomashov-Matar, R.; Shomron, N. Noninvasive fetal genotyping using deep neural networks. Briefings Bioinform. 2024, 26. [Google Scholar] [CrossRef]
- Danaei, M.; Rashnavadi, H.; Yeganegi, M.; Dastgheib, S.A.; Bahrami, R.; Azizi, S.; Jayervand, F.; Masoudi, A.; Shahbazi, A.; Shiri, A.; et al. Advancements in machine learning and biomarker integration for prenatal Down syndrome screening. J. Turk. Soc. Obstet. Gynecol. 2025, 22, 75–82. [Google Scholar] [CrossRef]
- Schmid, M.; Wang, E.; Bogard, P.E.; Bevilacqua, E.; Hacker, C.; Wang, S.; Doshi, J.; White, K.; Kaplan, J.; Sparks, A.; et al. Prenatal Screening for 22q11.2 Deletion Using a Targeted Microarray-Based Cell-Free DNA Test. Fetal Diagn. Ther. 2017, 44, 299–304. [Google Scholar] [CrossRef]
- News-Medical, “Genomics advances in non-invasive prenatal testing (NIPT) research,” News-Medical, Feb. 13, 2024. https://www.news-medical.net/whitepaper/20230727/Genomics-Advances-in-non-invasive-prenatal-testing-(NIPT)-Research.
- Natera, “Panorama – Non-Invasive Prenatal Testing (NIPT) | NaTERA,” Natera, Nov. 27, 2024. https://www.natera.com/womens-health/panorama-nipt-prenatal-screening/.
- Zhang, R.; Zhang, H.; Zhang, L.; Kong, X.; Wang, W.; Jia, Y.; Ren, M.; Liu, Y.; Zhu, L.; Chen, H.; et al. Clinical indications and Z-score-assisted NIPT testing: a new perspective in prenatal screening. Gynecol. Obstet. Clin. Med. 2025, 5, e000187. [Google Scholar] [CrossRef]
- Natera, “Panorama® SMART Study Confirms Market-Leading Performance in largest prospective NIPT Trial to date | Natera,” Natera, , 2023. https://www.natera.com/company/news/panorama-smart-study-confirms-market-leading-performance-in-largest-prospective-nipt-trial-to-date/. 10 May.
- Natera, “NaTera implements first wave of Panorama® AI improvements with immediate impact on patient experience and COGS | NATERA,” Natera, , 2023. https://www.natera.com/company/news/natera-implements-first-wave-of-panorama-ai-improvements-with-immediate-impact-on-patient-experience-and-cogs-2/. 09 May.
- triSure - Non-invasive prenatal testing (NIPT),” Gene Solutions. https://genesolutions.com/our-test/trisure-nipt.
- Noninvasive Prenatal Testing (NIPT) | NGS-based technology.” https://www.illumina.com/clinical/reproductive-genetic-health/nipt.html.
- Gadsbøll, K.; Petersen, O.B.; Gatinois, V.; Strange, H.; Jacobsson, B.; Wapner, R.; Vermeesch, J.R.; Vogel, I. Current use of noninvasive prenatal testing in Europe, Australia and the USA: A graphical presentation. Acta Obstet. Gynecol. Scand. 2020, 99, 722–730. [Google Scholar] [CrossRef] [PubMed]
- Connor, C.; Sato, T.; Bianchi, D.W.; Fenton, K.; Somani, E.; Turriff, A.; Berkman, B.; Hendriks, S. Comparing the Introduction and Implementation of Noninvasive Prenatal Testing (NIPT) in Japan, the Netherlands, and the United States: An Integrative Review. Prenat. Diagn. 2025. [Google Scholar] [CrossRef] [PubMed]
- Jayashankar, S.S.; Nasaruddin, M.L.; Hassan, M.F.; Dasrilsyah, R.A.; Shafiee, M.N.; Ismail, N.A.S.; Alias, E. Non-Invasive Prenatal Testing (NIPT): Reliability, Challenges, and Future Directions. Diagnostics 2023, 13, 2570. [Google Scholar] [CrossRef]
- Takahashi, M.; Linh, L.K.; Sayed, A.M.; Imoto, A.; Sato, M.; Dila, K.A.S.; Huy, N.T.; Moji, K. Non-Invasive Prenatal Testing (NIPT) Implementation in Japan: A Comparison with the United Kingdom, Germany, Italy, Sweden, and Taiwan. Int. J. Environ. Res. Public Heal. 2022, 19, 16404. [Google Scholar] [CrossRef]
- Sesa, G.; Czabanowska, K.; Kok, K.; Vrijenhoek, T. Mainstreaming genetics into Italian prenatal care: exploring the future implementation of non-invasive prenatal testing (NIPT) in the Italian National Healthcare System using stakeholder interviews. BMJ Public Heal. 2024, 2, e001074. [Google Scholar] [CrossRef]
- Sesa, G.; Czabanowska, K.; Kok, K.; Vrijenhoek, T. Mainstreaming genetics into Italian prenatal care: exploring the future implementation of non-invasive prenatal testing (NIPT) in the Italian National Healthcare System using stakeholder interviews. BMJ Public Heal. 2024, 2, e001074. [Google Scholar] [CrossRef]
- AI adoption rate by country.” https://www.byteplus.com/en/topic/516576.
- Markets, R.A. , “Non-Invasive Prenatal Testing (NIPT) Market Report 2025: Rising demand for early and accurate Fetal screening spurs growth in Non-Invasive Prenatal Testing Market,” GlobeNewswire News Room, Jan. 07, 2025. [Online]. Available: https://www.globenewswire.com/news-release/2025/01/07/3005691/28124/en/Non-Invasive-Prenatal-Testing-NIPT-Market-Report-2025-Rising-Demand-for-Early-and-Accurate-Fetal-Screening-Spurs-Growth-in-Non-Invasive-Prenatal-Testing-Market.html.
- Markets, R.A. , “Asia-Pacific Non-Invasive Prenatal Testing (NIPT) Market Analysis and Forecast Report 2024, with Focus on BGI Genomics and Annoroad Gene Technology,” GlobeNewswire News Room, Dec. 06, 2024. [Online]. Available: https://www.globenewswire.com/news-release/2024/12/06/2992902/28124/en/Asia-Pacific-Non-Invasive-Prenatal-Testing-NIPT-Market-Analysis-and-Forecast-Report-2024-with-Focus-on-BGI-Genomics-and-Annoroad-Gene-Technology.html.
- Lundin, A.; Lundin, A. , “How genetic background of pregnant women can influence NIPT results,” Clinical Lab Products, Sep. 26, 2024. https://clpmag.com/disease-states/womens-health/prenatal-testing/how-genetic-background-of-pregnant-women-can-influence-nipt-results/.
- Non-invasive prenatal genetics and genomics in England, France and Germany - Exploring practical ethical issues ‘on the ground,’” Haiku. https://www.ethox.ox.ac.uk/Our-research/research-projects/nipt.
- Zaami, S.; Orrico, A.; Signore, F.; Cavaliere, A.F.; Mazzi, M.; Marinelli, E. Ethical, Legal and Social Issues (ELSI) Associated with Non-Invasive Prenatal Testing: Reflections on the Evolution of Prenatal Diagnosis and Procreative Choices. Genes 2021, 12, 204. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J.; Qin, Y.; Zhang, C.; Wang, B.; Wang, Y. Anticipatory Governance of Noninvasive Prenatal Testing for “Non-Medical” Traits: Lessons from Regulation of Medically Assisted Reproduction. Am. J. Bioeth. 2023, 23, 45–47. [Google Scholar] [CrossRef]
- Deans, Z.; Clarke, A.J.; Newson, A.J. For Your Interest? The Ethical Acceptability of Using Non-Invasive Prenatal Testing to Test ‘Purely for Information’. Bioethics 2014, 29, 19–25. [Google Scholar] [CrossRef]
- McDonough, B.M. , “The ethics of prenatal genetic testing,” Harvard Medicine Magazine, Mar. 03, 2025. [Online]. Available: https://magazine.hms.harvard.edu/articles/ethics-prenatal-genetic-testing.
- Non-Invasive Prenatal Testing – Ethical & Medico-legal issues - MDA National.” https://www.mdanational.com.au/advice-and-support/library/articles-and-case-studies/2017/11/nipt-ethical-issues. 2017.
- Moufarrej, M.N.; Bianchi, D.W.; Shaw, G.M.; Stevenson, D.K.; Quake, S.R. Noninvasive Prenatal Testing Using Circulating DNA and RNA: Advances, Challenges, and Possibilities. Annu. Rev. Biomed. Data Sci. 2023, 6, 397–418. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, M.A.; Al-Rawashdeh, H.S.; Sait, A.R.W. A Review of Artificial Intelligence-Based Down Syndrome Detection Techniques. Life 2025, 15, 390. [Google Scholar] [CrossRef] [PubMed]
- Honeywood, K. , “International Collaboration Aims to Revolutionise Diagnosis of the Rare Diseases with AI and Federated Learning | Myrovlytis Trust.” https://myrovlytistrust.org/announcing-a-new-collaborative-research-project-funded-by-the-myrovlytis-trust/.
- Nuvo.” https://www.nuvocares.com/resources/sheba-medical-center-collaborates-with-nuvo-intl-group-to-develop-advanced-ai-powered-remote-prenatal-care-solutions.
- AI-enabled ultrasound.” https://www.gatesfoundation.org/ideas/science-innovation-technology/future-womens-health-technology/ai-ultrasounds.
- AI in maternal health – how research and policy intertwine - APRU,” APRU, Aug. 29, 2024. https://apru.org/news/ai-in-maternal-health/.
- Liu, X.; Zhang, Y.; Zhu, H.; Jia, B.; Wang, J.; He, Y.; Zhang, H. Applications of artificial intelligence-powered prenatal diagnosis for congenital heart disease. Front. Cardiovasc. Med. 2024, 11, 1345761. [Google Scholar] [CrossRef] [PubMed]
- Responsible AI in Global Health: Solutions from the Global South | Center for Global Digital Health Innovation,” Center for Global Digital Health Innovation. https://publichealth.jhu.edu/center-for-global-digital-health-innovation/responsible-ai-in-global-health-solutions-from-the-global-south.
- AI in Genetic Testing: How 3billion is Revolutionizing Rare Disease Diagnosis.” https://3billion.io/blog/ai-in-genetic-testing-how-3billion-is-revolutionizing-rare-disease-diagnosis.
- Whisperer, L. , “Life Whisperer launches its third global IVF clinic collaboration at ESHRE to apply Artificial Intelligence to Oocytes,” Life Whisperer, Mar. 10, 2023. https://www.lifewhisperer.com/life-whisperer-launches-its-third-global-ivf-clinic-collaboration-at-eshre-to-apply-artificial-intelligence-to-oocytes/.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
