Submitted:
25 June 2025
Posted:
26 June 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Why Do Fish Stunt?
3. Energy Budget, Growth and Food Intake
4. Morphology and Habitat
5. Life History
6. Discussion
7. Further Perspective
8. Conclusions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Alm, G. Investigations on the growth etc. by different forms of trout. Medd. Unders. Førsøksanst. Søtvf. 1939, 15, 1–93.
- Alm. G. Reasons for the occurrence of stunted fish populations-with special regard to the perch. Medd. Unders. Førsøksanst. Søtvf. 1946, 25, 1–146.
- Beckman, W. C. Further studies on the increased growth rate of the rock bass Ambloplites rupestris (Rafinesque), following reduction in density of the population. Trans. Am. Fish. Soc. 1943, 72, 72–78.
- Dahl, K. 1917. [Studier and Experiments on Trout and Trout Waters](in Norwegian). Centraltrykkeriet, Christiania, Norway, 119pp.
- Deedler, C.L. A contribution to the knowledge of the stunted growth of perch (Perca fluviatilis L.) in Holland. Hydrobiolgia 1951, 3, 357–378.
- Swingle, H.S. Experiments with combinations of largemouth black bass, bluegills, and minnows in ponds. Trans. Am. Fish. Soc. 1946, 76, 46–62. [CrossRef]
- Weatherley, A.H.. Ecology of fish growth. Nature 1966, 212, 1321–1324.
- Amundsen, P.A.; Primicerio, R.; Smalås, A.; Henriksen, E.H.; Knudsen, R.; Kristoffersen, R.; Klemetsen, A. Long-term ecological studies in northern lakes—challenges, experiences, and accomplishments. Limnol. Oceanogr. 2019, 64 (S1), 11–21.
- Babu, P.P.S.; Anuraj, A.; Loka, J..; Praveen, N.D.; Rao, P.S.; Shilta, M.T.; Anikuttan, K.K.; Jayakumar, R.; Nazar, A.K.A.; Boby, I.; et al. Impact of duration of stunting on compensatory growth and biometrics of snubnose pompano, Trachinotus blochii (Lacepede,1801) in low saline conditions. Thalassas: Int. J. Mar. Sci. 2022, 38, 1301–1310. [CrossRef]
- Denechaud, C., Smoliński, S., Geffen, A.J., Godiksen, J.A., Campana, S.E. A century of fish growth in relation to climate change, population dynamics and exploitation, Glob. Change Biol. 2020, 26, 5661–5678.
- Lingam, S.S.; Sawant, P.B.; Chadha, N.K. Duration of stunting impacts compensatory growth and carcass quality of farmed milkfish, Chanos chanos (Forsskal, 1775) under field conditions. Sci. Rep. 2019, 9, 16747. [CrossRef]
- Neuenfeldt, S.; Bartolino, V.; Orio, A.; Andersen, K.; Andersen, N.G.; Niiranen, S.; Bergström, U.; Kulatska, N.; Casini, M. Feeding and growth of Atlantic cod (Gadus morhua L.) in the eastern Baltic Sea under environmental change. ICES J. Mar. Sci. 2020, 77, 624–632. [CrossRef]
- Stearns, S.C. The evolutionary significance of phenotypic plasticity. BioScience 1989, 39, 436–445.
- Forsman, A. Rethinking phenotypic plasticity and its consequences for individuals, populations and species. Heredity 2015, 115, 276–284. [CrossRef]
- Gomulkiewicz, R.; Stinchcombe, J.R. Phenotypic plasticity made simple, but not too simple. Am. J. Bot. 2022, 109, 1519–1524.
- Jonsson, B.; Hindar, K. Reproductive strategy of dwarf and normal Arctic charr (Salvelinus alpinus) from Vangsvatnet Lake, western Norway. Can. J. Fish. Aquat. Sci. 1982, 39, 1404–1413.
- Hindar, K.; Jonsson, B. Habitat and food segregation of dwarf and normal Arctic charr (Salvelinus alpinus) from Vangsvatnet Lake, western Norway. Can. J. Fish. Aquat. Sci. 1982, 39, 1030–1045. [CrossRef]
- Ylikarjula, J.; Heino, M,; Dickmann, U. Ecology and adaptation of stunted growth in fish. Evol. Ecol. 1999, 13, 433–453.
- Berg, O.K. The formation of non-anadromous populations of Atlantic salmon, Salmo salar L., in Europe. J. Fish Biol. 1985, 27, 805–815.
- Forseth, T.; Ugedal, O.; Jonsson, B. The energy budget, niche shift, reproduction and growth in a population of Arctic charr, Salvelinus alpinus. J. Anim. Ecol. 1994, 63, 116–126. [CrossRef]
- Huusko, A.; Mäki-Petäys, A.; Stickler, M.; Mykrä, H. Fish can shrink under harsh living conditions. Funct. Ecol. 2011, 25, 628–635.
- Letcher, B.H.; Nislow, K.H.; O’Donnell, M.J.; Hayden, M.J.; Dubreuil, T,L. Negative growth in body mass of trout and salmon in a small stream network. Can. J. Fish. Aquat. Sci. 2025. [CrossRef]
- Leggett, W.C.; Power, G. Differences between two populations of landlocked Atlantic salmon (Salmo salar) in Newfoundland. J. Fish. Res. Board Can. 1969, 26, 1585–1596. [CrossRef]
- Davidsen, J.G.; Eikås, L.; Hedger, R.D.; Thorstad, E.B.; Rønning, L.; Sjursen, A.D., Berg, O.K.; Bremset, G.; Karlsson, S.; Sundt-Hansen, L.E. Migration and habitat use of the landlocked riverine Atlantic salmon Salmo salar småblank. Hydrobiologia 2020, 847, 2295–2306. [CrossRef]
- Lorenzen K, Enberg K. Density-dependent growth as a key mechanism in the regulation of fish populations: evidence from among-population comparisons. Proc. Biol. Sci. 2002, 269, 49–54. [CrossRef]
- Zimmermann, F.; Ricard D.; Heino, M. Density regulation in Northeast Atlantic fish populations: Density dependence is stronger in recruitment than in somatic growth. J. Anim. Ecol. 2018, 78, 1763–1778.
- Fletcher, C.M.; Vollins, S.F.; Nannini, M.A.; Wahl, D.H. Competition during early ontogeny: Effects of native and invasive planktivores on the growth, survival, and habitat use of bluegill. Freshw. Biol. 2019, 64, 697–707. [CrossRef]
- Croll, J.C.;, van Kooten, T.; de Roos, A.M. The consequences of density-dependent individual growth for sustainable harvesting and management of fish stocks. Fish Fish. 2023, 24, 427–438.
- Lobon-Cervia J. Density-dependent growth in stream-living brown trout Salmo trutta L. Funct. Ecol. 2007, 21, 117–124.
- Amundsen, P.A.; Knudsen, R.; Klemetsen, A. Intraspecific competition and density dependence of food competition and growth in Arctic charr. J. Anim. Ecol. 2007, 76, 149–158.
- Huss, M.; Persson, L.; Borcherding, J.; Heermann, L. Timing of the diet shift from zooplankton to macroinvertebrates and size at maturity determine whether normally piscivorous fish can persist in otherwise fishless lakes. Freshw. Biol, 2013, 58, 1416–1424. [CrossRef]
- Cantin, A.; Post, J.R. Habitat availability and ontogenetic shifts alter bottlenecks in size-structured fish populations. Ecology 2018, 99, 1644–1659. [CrossRef]
- Matte, J.M.O.; Grant, J.W.A.; Fraser, D.J. Meta-analysis reveals that density dependent growth, survival and their trade-off vary systematically among habitats and taxa. Can. J. Zool. 2025, 103. [CrossRef]
- Aday, D.D. Exploring stunted body size: Where have we been, what do we know, and where do we go? Am. Fish. Soc. Symp 2008, 62, 349–367.
- Zuh, C.K.; Abodi, S.M.; Campion, B.B. Comparative assessment of age, growth and food habit of the black-chinned tilapia, Sarotherodon melanotheron (Rüppell, 1852), from a closed and open lagoon, Ghana. Fish. Aquat. Sci. 2019, 22, 31. [CrossRef]
- Rindorf, A.; van Deurs, M.; Howell, D.; Andonegi, E.; Berger, A.; Bogstad, B.; Cadigan, N.; Elvarsson, B. Þ.; Hintzen, N.; Roland, M.S.; et al. Strength and consistency of density dependence in marine fish productivity. Fish Fish. 2022, 231, 812–828.
- Schram, E.; van der Heul, J.W.; Kamstra, A.; Verdegem, M.C.J. Stocking density dependent growth of Dover sole (Solea solea). Aquaculture 2006, 252, 339–347.
- Agrawal, A.A. Phenotypic plasticity in the interactions and evolution of species. Science 2001, 294, 321–326. [CrossRef]
- Heath, D.D.; Roff, D.A. The role of trophic bottlenecks in stunting: A field test of an allocation model of growth and reproduction in yellow perch, Perca flavescens. Env. Biol. Fish. 1996, 45, 53–63. [CrossRef]
- Blouzdis, C.E.; Ivan, L.N.; Pothoven, S.A. ; Roswell, C.R.; Foley, C.J.; Höök, T.O. A trophic bottleneck?: The ecological role of trout-perch Percopsis omiscomaycus in Saginaw Bay, Lake Huron. J. Appl, Ichthyol, 2013, 29, 416–424.
- Jakobsen, P.J.; Johnsen, G.H.; Larsson, P. Effect of predation risk on the feeding ecology, habitat us and abundance of lacustrine threespine stickleback (Gasterosteus aculeatus). Can. J. Fish. Aquat. Sci. 1988, 45, 426–431.
- Damsgård, B.; Ugedal, O. The influence of predation risk on habitat selection and food intake by Arctic charr, Salvelinus alpinus (L). Ecol. Freshw. Fish 1997, 6, 95–101. [CrossRef]
- Bordeau, P. E.; Johansson, F. Predator-induced morphological defenses as by-products of prey behavior: a review and prospectus. Oikos 2012, 121, 1175–1190.
- Bell, A.M.; Dingemanse, N.J.; Hankison, S.J.; Langenhof, M.B.W.; Rollins, K. Early exposure to non-lethal predation risk by size-selective predators increases somatic growth and decrease size at adulthood of three-spined sticklebacks. J. Evol. Biol. 2011, 24, 943–953.
- Gosch, N.J.C.; Pierce, L.L.; Pope, K.L. The effect of predation on stunted and nonstunted white perch. Ecol. Freshw Fish 2010, 19, 401–407. [CrossRef]
- Czorlich, Y.; Aykanat, T.; Erkinaro, J.; Orell, P.; Primmer, C.R. Rapid evolution in salmon life history induced by direct and indirect effects of fishing. Science 2022, 376, 420-423. [CrossRef]
- Sneider, J.C.; Lockwood, R.N. Use of walleye stocking, antimycin treatments, and catch-and-release angling regulations to increase growth and length of stunted bluegill populations in Michigan lakes. N. Am, J. Fish. Manage. 2002, 22, 1041–1052.
- de Roos, A. M.; Schellekens, T.; van Kooten, T.; Persson, L. Stage-specific predator species help each other to persist while competing for a single prey. Proc. Natl. Acad. Sci. USA 2008, 105, 13930–13935. [CrossRef]
- Boerlijst, M.C.; de Roos, A.M. Competition and facilitation between a disease and a predator in a stunted prey population. PLOS One 2015, 10, e0132251.
- Chizinski, C.J.;, Pope, K.L.; Wilde, G.R.; Strauss, R.E. Implications of stunting on morphology of freshwater fishes. J. Fish Biol. 2010, 76, 564–579. [CrossRef]
- Mustafa, S.A.; Al-Rudainy A.J.; Salman, N.M. Effect of environmental pollutants on fish health: An overview. Egypt. J. Aquat. Res. 2024, 50. 225–233.
- Bolle, L.J.; Hoek, R.; Pennock, I.; Poiesz, S.S.H.; van Beusekom, J.E.E.; van der Veer. H.; Wille, J.I.J.; Tulp, I. Evidence for reduced growth in resident fish species in the era of de-eutrophication in a coastal area in NW Europe. Mar. Env. Res. 2021, 169, 105364. [CrossRef]
- Neuheimer, A.; Thresher, R.; Lyle, J.; Semmens, J.M. Tolerance limit for fish growth exceeded by warming waters. Nat. Clim. Chang. 2011, 1, 110–113.
- Kolding, J.; Haug, L.; Stefansson, S. Effect of ambient oxygen on growth and reproduction in Nile tilapia (Oreochromis niloticus). Can. J. Fish, Aquat. Sci. 2008, 65, 1413–1424. [CrossRef]
- Thorarensen, H.; Gústavsson, A.; Gunnarsson, S.; Árnason, J.; Steinarsson, A.; Björnsdóttir, R.; Imsland, A.K.D. The effect of oxygen saturation on the growth and food conversion of juvenile Atlantic cod Gadus morhua L. Aquaculture 2017, 475, 24–28. [CrossRef]
- Mackett, D.B.; Tam, W.H.; Fryer, V.N. Histological changes in insulin-immunoreactive pancreatic beta-cells, and suppression of insulin-secretion and somatotropic activity in brook trout (Salvelinus fontinalis) maintained on reduced food-intake or exposed to acidic environment. Fish Physiol. Biochem. 1992, 10, 223–243.
- Brogowski, Z.; Siewert, H.; Keplinger, D. Feeding and growth responses of bluegill fish (Lepomis macrochirus) at various pH levels. Pol. J. Env. Stud. 2005, 14, 517–519.
- Schlichting, C.D.; Wund, M.A. Phenotypic plasticity and epigenetic marking: an assessment of evidence for epigenetic accommodation. Evolution 2014, 68, 656–672.
- Vogt, G. Facilitation of environmental adaptation by epigenetic phenotype variation: insights from clonal, invasive, polyploid, and domesticated animals. Env. Epigen. 2017, 3, dvx002.
- Tsigos, C.; Chrousos, G.P. Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res. 2002, 53, 65 – 871.
- Metcalfe, N.B. How important is hidden phenotypic plasticity arising from alternative but converging developmental trajectories, and what limits it? J. Exp. Biol. 2024, 227(Suppl 1), jeb246010. [CrossRef]
- Yaribeygi, H.; Maleki, M.; Butler, A.E.; Jamialahmadi, T.; Sahebkar, A. Molecular mechanisms linking stress and insulin resistance. Excli. J. 2022, 21, 317–334. [CrossRef]
- Duan, C.M.;, Plisetskaya, E.M.; Dickhoff, W.W. Expression of insulin-like growth-factor in normally and abnormally developing coho salmon (Oncorhynchus kisuch). Endocrinology 1995, 136, 446–452.
- Canosa, L.F.; Bertucci, J.I. The effect of environmental stressors on growth in fish and its endocrine control. Front. Endicrinol. 2023, 14, 1109461. [CrossRef]
- Patel, D.M.; Brinchmann, M.F.; Hansen, A.; Iversen, M.H. Changes in the skin proteome and signs of allostatic overload Type 2, chronic stress, in response to repeated overcrowding of lumpfish (Cyclopterus lumpus L.). Front. Mar. Sci. 2022, 9, 891451.
- Janhunen, M.; Peuhkuri, N.; Piironen, J. A comparison of growth patterns between a stunted and two large predatory Arctic charr populations under identical hatchery conditions. Env. Biol. Fish. 2010, 87, 113–121. [CrossRef]
- Canale, C.J.; Henry, P.Y. Adaptive phenotypic plasticity and resilience of vertebrates to increasing climatic instability. Clim. Res. 2010, 43, 135–147.
- Khare, S.B.; Holt, R.D.; Scheiner, S.M. The genetics of phenotypic plasticity. XVIII. Developmental limits restrict adaptive plasticity. Evolution 2024, 78, 1761–1773. [CrossRef]
- Abdelnour, S.A.; Naiel, A.E.; Said, M.B.; Alnajeebi, A.M.; Nasr FA, Al-Doaiss, A.A.; Mahasneh, Z.M.H.; Noreldin, A.E. Environmental epigenetics: Exploring phenotypic plasticity and transgenerational adaptation in fish. Env. Res., 2024, 252, 118799.
- Chukwuma, C. Epigenetics and its essence in understanding human growth, development and disease. J. Med. Dis. 2022, 8, 165–172.
- Kanherkar, R.R.; Bhatia-Dey, N.; Csoka, A.B. Epigenetics across the human lifespan. Front. Cell. Dev. Biol. 2014, 2, 49. [CrossRef]
- Lui, J.C. Growth disorders caused by variants in epigenetic regulators; progress and prospects. Front. Endocrinol. 2024, 15, 1327378.
- Oplinger, R.W.; Wahl, D.H. Egg characteristics and larval growth of bluegill from stunted and non-stunted populations. J. Freshw. Ecol. 2015, 30, 299–309. [CrossRef]
- Jonsson, B.; Jonsson, N.; Hansen, M.M. Knock-on effects of environmental influences during embryonic development of ectothermic vertebrates. Q. Rev. Biol. 2022, 97, 95–139.
- Martell, D.J.; Kieffer, D.J.; Trippel, E.A. Effects of temperature during early life history on embryonic and larval development and growth in haddock. J. Fish Biol. 2005, 66, 1558–1575. [CrossRef]
- Korwin-Kossakowski, M. The influence of temperature during the embryonic period on larval growth and development in carp, Cyprinus carpio L. and grass carp, Ctenopharyngodon Idella (Val.): theoretical and practical aspects. Arch. Pol. Fish. 2008, 16, 231–314.
- Finstad, A.G; Jonsson, B. Effect of incubation temperature on growth performance in Atlantic salmon. Mar. Ecol. Progr. Ser. 2012, 454, 75–82. [CrossRef]
- Steinbacher, P.; Wanzenböck, J.; Brandauer, M.; Holper, R.; Landertshammer, J.; Mayr, M.; Platzl, C.; Stoiber, W. Thermal experience during embryogenesis contributes to the induction of dwarfism in whitefish Coregonus lavaretus. PLOS One 2017, 12, e0185384.
- Carballo, C.; Firmino, J.; Anjos, L.; Santos, S.; Power, D.M.; Manchad, M. Short- and long-term effects on growth and expression patterns in response to incubation temperature in Senegalese sole. Aquaculture 2018, 495, 222–231. [CrossRef]
- Jonsson, B.; Jonsson, N.; Finstad, A.G. Linking embryonic temperature with adult reproductive investment. Mar. Ecol. Progr. Ser. 2014, 515, 217–226.
- Almeida, L.Z.; Ludsin, S.A.; Faust, M.D.; Marschall, E.A. Lingering legacies: Past growth and parental experience influence somatic growth in a fish population. J. Anim. Ecol. 2024, 93, 1462–1474.
- Forseth, T.; Jonsson, B.; Neumann, R.; Ugedal, O. Radioisotope method for estimating food consumption by brown trout(Salmo trutta). Can. J. Fish. Aquat. Sci. 1992, 49, 1328–1335. [CrossRef]
- Ugedal, O.; Jonsson, B.; Njåstad, O.; Næumann, R. Effects of temperature and body size on radiocaesium retention in brown trout, Salmo trutta. Freshw. Biol. 1992, 28, 165–171.
- Jonsson, B.; Forseth, T.; Ugedal, T. Chernobyl radioactivity persists in fish. Nature 1999, 400, 417. [CrossRef]
- Rowan, D.J.; Rasmussen, J.B. Measuring the bioenergetic cost of fish activity in situ using a globally dispersed radiotracer (137Cs). Can. J. Fish. Aquat. Sci. 1996, 53, 734–745.
- Kennedy; B.P.; Klaue, B.; Blum, J.D.; Folt, C.L. Integrative measures of consumption rates in salmon: expansion and application of a trace element approach. J. Appl. Ecol. 2004, 41, 1009–1020. [CrossRef]
- de Groot, V.A.; Trueman, C.; Bates, A.E. 2024. Incorporating otolith-isotope inferred field metabolic rate into conservation strategies. Cons Physiol. 2024, 12, coae013.
- Anacleto, P.; Figueiredo, C.; Baptista, M.; Maulvault A.L.; Camacho, C.; Pousao-Ferreira, P.; Valente, L.M.P.;, Marques A, Rosa. Fish energy budget under ocean warming and flame retardant exposure. Env. Res. 2018, 164, 186–196.
- Assis, Y.P.A.S.; de Assis Porto, L.; de Melo, N.F.A.C.; Palheta, G.D.A.; Luz, R.K.; Favero, G.C. Feeding restriction a feed management strategy in Colossoma macropomum juveniles under recirculating aquaculture system (RAS). Aquaculture 2020, 529, 735689. [CrossRef]
- Schultz, E.T.; Langford, T.E.; Conover, D.O. The covariance of routine and compensatory juvenile growth rates over a seasonality gradient in a coastal fish. Oecologia 2002, 133, 501–509.
- Sahoo, P.R., Das, P.C.; Nanda, S.; Sahu, B.; Muduli, L. Compensatory growth response of Catla catla (Hamilton, 1822) juveniles, stunted with varied stocking density and photoperiod, in subsequent grow-out phase. Ind. J. Fish. 2021, 68, 49–55. [CrossRef]
- Wootton, R.J. Ecology of Teleost Fishes. Chapman & Hall: London, UK, 1990.
- Volkoff. H.; Rønnestad, I. Effects of temperature on feeding and digestive processes in fish. Temperature 2020, 7, 307–320.
- Werner, E.E. Species packing and niche complementarity in three sunfishes. Am. Nat. 1977, 111, 553–578.
- Metcalfe, N.B.; Thorpe, J.E. Anorexia and defended energy levels in over-wintering juvenile salmon. J. Anim. Ecol. 1992, 61, 175–181. [CrossRef]
- Nikolsky GV. Ecology of Fishes. Acad. Press: London, UK, 1963.
- Hvas, M.; Kolrevic, J.; Noble, C.; Oppedahl, F.; Stien, L.H. Fasting and its implications for fish welfare in Atlantic salmon aquaculture. Rev. Aquacult. 2024, 16, 1308–1332. [CrossRef]
- Diana, J.S. 1987. Stunting in northern pike Esox lucius is caused by lack of suitable prey size, lack of thermal refuges in mid-summer overpopulations and competition. Trans. Am. Fish. Soc. 1987, 116, 612–617.
- Venturelli, P.A.; Tonn, W.M. Diet and growth in the absence of prey fishes: Initial consequences in disturbance-prone lakes. Trans. Am. Fish. Soc. 2016, 135, 1512–1522.
- Xie, B., Huang, C., Wang, Y., Zhou, X., Peng, G., Tao, Y., Huang, J., Lin, X. Huang, L. Trophic Gauntlet Effects on Fisheries Recovery: A Case Study in Sansha Bay, China. Ecosyst. Health Sustain. 2021, 7, 1965035.
- Finstad, A.G.; Berg, O.K.; Langeland, A.; Lohrmann, A. Reproductive investment and energy allocation in an Alpine Arctic charr, Salvelinus alpinus, population. Env. Biol. Fish. 2002, 65, 63–70. [CrossRef]
- Amundsen, P.A. Contrasting life-history strategies facilitated by cannibalism in a stunted Arctic charr population. Hydrobiologia 2016, 783, 11–19. [CrossRef]
- Sandlund, O.T.; Gunnarson, K.; Jónasson, P.M.; Jonsson, B.; Lindem, T.; Magnússon, K.P.; Malmquist, H.J.; Sigurjónsdóttir, H.: Skúlason S.; Snorrason, S.S. The Arctic charr Salvelinus alpinus (L.) in Thingvallavatn. Oikos 1992, 64, 305–351.
- Langeland, A.; L’Abée-Lund, J.H.; Jonsson, B.; Jonsson, N. Resource partitioning and niche shift in Arctic charr, Salvelinus alpinus and brown trout, Salmo trutta. J. Anim. Ecol. 1991, 60, 895–912. [CrossRef]
- L’Abée-Lund, J.H.; Langeland, A.L.; Jonsson B. Spatial segregation by age and size in brown trout and Arctic charr: a trade-off between feeding possibilities and risk of predation. J. Anim. Ecol. 1993, 62, 160–168.
- Holopainen, I.J.; Aho, J.; Vornanen, M.; Huuskonen, H. Phenotypic plasticity and predator effects on morphology and physiology of crucian carp in nature and in the laboratory. J. Fish Biol. 1997, 50, 781–798.
- Hindar, K.; Jonsson, B. Ecological polymorphism in Arctic charr. Biol. J. Linn. Soc. 1993, 8, 63–74.
- Snorrason, S.S.; Skulason, S; Jonsson B.; Malmquist, H.; Jonasson, P.M.; Sandlund, O.T.; Lindem ,T. Trophic specialization in Arctic charr Salvelinus alpinus (Pisces: Salmonidae): morphological divergence and ontogenetic shifts. Biol. J. Linn. Soc. 1994, 52, 1–18.
- Sandlund, O.T.; Jonsson, B.; Malmquist H.J.; Gydemo, R.; Lindem, T.; Snorrason, S.S.; Skùlason, S; Jónasson, P.M. Habitat use by Arctic charr Salvelinus alpinus in lake Thingvallavatn, Iceland, as shown by gill net catches. Env. Biol. Fish. 1987, 20, 263-274.
- Malmquist, H.J.; Snorrason, S.S.;, Skulason, S.; Jonsson, B.; Sandlund, O.T.; Jonasson, P.M. Diet differentiation in polymorphic arctic charr, Salvelinus alpinus (L.) in Thingvallavatn, Iceland. J. Anim. Ecol. 1992, 61, 21–35.
- Svedäng, H. Genetic basis of life history variation of dwarf and normal Arctic charr, Salvelinus alpinus (L.) in Stora Rösjön, Central Sweden. J. Fish Biol. 1990, 36, 917–932.
- Gardeno-Paz, M.V.; Huntingford, F.A.; Garrett, S.; Adams, C.E. A phenotypically magic trait promote reproductive isolation in stickleback. Evol. Ecol. 2020, 34, 123–131. [CrossRef]
- Klemetsen, A. The charr problem revisited: Exceptional phenotypic plasticity promotes ecological speciation in postglacial lakes. Freshw. Rev. 2010, 3, 49–74.
- Brönmark, C.; Miner, J.G. Predator-induced phenotypical change in body morphology in crucian carp. Science 1992, 258, 1348–1350.
- Olsén, K.H.; Bonow, M. Crucian carp (Carassius carassius (L.)), and anonymous fish with great skills. Ichthyol. Res. 2023, 70, 313–331. [CrossRef]
- Brönmark, C.; Petterson, L.B. Chemical cues from piscivores induce a change in morphology in crucian carp. Oikos 1994, 70, 364–402.
- Andersson, J.; Johansson, F.; Söderlund, T. 2006. Interactions between predator- and diet-induced phenotypic changes in body shape of crucian carp. Proc. Biol. Sci. 2005, 273, 431–437.
- Arnett, H.A.; Kinnison, M.T. Predation-induced phenotypic plasticity of shape and behavior: parallel and unique patterns across sexes and species. Curr. Zool. 2017, 63, 369–378. [CrossRef]
- Meutthen, D.; Ferrari, M.C.O.; Lane, T., Chivers, D.P. Predation risk induces age- and sex-specific morphological plastic responses in the fathead minnow Pimephales promelas. Sci. Rep. 2019, 9, 15378.
- Yang, Y.; Axelrod, C.J.; Grant, E.; Earl, S.R.; Urquart, E.M.; Talbert, K.; Johnson, L.E., Walker, Z.; Hsiao, K.; Stone, I.; et al. Evolutionary divergence of developmental plasticity and learning of mating tactics in Trinidadian guppies. J. Anim. Ecol. 2025, 94, 276-290.
- Persson, L. Food consumption and competition between age classes in a perch Perca fluviatilis population in a shallow eutrophic lake. Oikos 1983, 40, 197–207. [CrossRef]
- Jonsson, N.; Næsje, T.F.; Jonsson, B.; Saksgård R.; Sandlund, O.T. The influence of piscivory on life history traits of brown trout. J. Fish Biol. 1999, 55, 1129–114.
- Persson, A.; Brönmark, C. Foraging capacity and resource synchronization in an ontogenetic diet switcher, pikeperch (Stizostedion lucioperca). Ecology 2002, 83, 3014–3022.
- Gatz, A. J. Community organization in fishes as indicated by morphological features. Ecology 1979, 60, 711–718.
- Binning, S. A.; Chapman, L. J. Is intraspecific variation in diet and morphology related to environmental gradients? Exploring Liem’s paradox. Integr. Zool. 2010, 5, 241–255. [CrossRef]
- Shuai, F.; Yu, S.; Li, X. Habitat effects on intra-species variation in functional morphology: Evidence from freshwater fish. Ecol. Evol. 2018, 8, 10902-10913.
- Davis, A. M.; Pusey, B. J.; Pearson, R. G. Trophic ecology of terapontid fishes (Pisces : Terapontidae): The role of morphology and ontogeny. Mar. Freshw. Res. 2012, 63, 128–141.
- Berchtoldi, A.E.; Colborne, S.F.; Longsstaffe, F.J.; Neff, B.D. Ecomorphological patterns linking morphology and diet across three populations of pumpkinseed sunfish (Lepomis gibbosus). Can. J. Zool. 2015, 93, 289–297. [CrossRef]
- Wainwright, P. C. Ecomorphology: Experimental functional anatomy for ecological problems. Am. Zool. 1991, 31, 680–693.
- Elliott, J. P.; Bellwood, D. R.. Alimentary tract morphology and diet in three coral reef fish families. J. Fish Biol. 2003, 63, 1598–1609.
- Sullam, K.E.; Dalton, C.M.; Russell. J.A.; Kilham, S.S.; El-Sabaawi, R.; German, D.P.; Flecker, A.S. Changes in digestive traits and body nutritional composition accommodate a trophic niche shift in Trinidadian guppies. Oecologia 2015, 177, 245–257. [CrossRef]
- McCormick, S.D. Evolution of the hormonal control of animal performance: Insights from the seaward migration of salmon. Integr. Comp. Biol. 2009, 49, 408–422.
- Ojima, D.; Iwata, M. Central administration of growth hormone-releasing hormone and corticotropin-releasing hormone stimulate downstream movement and thyroxine secretion in fall-smolting coho salmon (Oncorhynchus kisutch). Gen. Comp. Endocrin. 2010, 168, 82–87. [CrossRef]
- Duarte, V.; Gaetano, P.; Striberny, A.; Hazlerigg, D.; Jørgensen, E.H.; Fuentes, J.; Campinho, M.A. Modulation of intestinal growth and differentiation by photoperiod and dietary treatment during smoltification in Atlantic salmon (Salmo salar, L.). Aquaculture 2023, 566, 739164.
- Yeda, T.; Iguchi, K.; Yamamoto, S.; Sakano, H.; Takasawa, T.; Katsura, K.; Abe, N.; Aawata, S.; Uchida, K. Prolactin and upstream migration of the amphidromous teleost, ayu Plecoglossus altivelis. Zool. Scr. 2014, 31, 507–514. [CrossRef]
- Regish, A.M.; Ardren, W.R.; Staats, N.R.; Bouchard, H.; Withers, J.L.; Castro-Santos, T.; McCormick, S.D. Surface water with more natural temperatures promotes physiological and endocrine changes in landlocked Atlantic salmon smolts. Can. J. Fish. Aquat. Sci. 2021, 78, 775–786.
- Blanck, A.; Tedesco, P. A.; Lamouroux, N. Relationships between life-history strategies of European freshwater fish species and their habitat preferences. Freshw. Biol. 2007, 52, 843–859. [CrossRef]
- Aykanat, T.; Debes, P.V.; Jansouz, S.; Gueguen, L.; House, A.H.; Roukolainen, A.; Erkinaro, J.; Prichard, V.L.; Primmer, C.R.; Bolstad, G.H. Large effect life-history genomic regions are associated with functional morphological traits in Atlantic salmon. G3 Genes Genomes Genetics 2025. [CrossRef]
- Barson, N.J.; Aykanat, T.; Hindar, K.; Baranski, M.; Bolstad, G.H.; Fiske, P.; Jacq, C.; Jensen, A.J.; Johnston, S.E.; Karlsson, S.; et al. Sex dependent dominance at a single locus maintains variation in age at maturity in salmon. Nature 2015, 528, 405–408. [CrossRef]
- Pritchard, V.L.; Makinen, H.; Vaha, J.P.; Erkinaro, J.; Orell, P.; Primmer, C.R. Genomic signatures of fine -scale local selection in Atlantic salmon suggest involvement of sexual maturation, energy homeostasis and immune.
- defence-related genes. Mol. Ecol. 2018, 27, 2560–2575.
- Bangura PB, Tiira K, Niemela PT, Erkinaro J, Liljestrom P, Toikkanen A. Primmer, C.R. Linking vgll3 genotype and aggressive behaviour in juvenile Atlantic salmon (Salmo salar). J. Fish Biol. 2022, 100, 1264–1271. [CrossRef]
- Prokkola, J.M.; Åsheim, E.R.; Morozov, S.; Bangura, P,; Erkinaro, J.; Ruokolainen, A., Primmer, C.R.; Aykanat, T. Genetic coupling of life - history and aerobic performance in Atlantic salmon. Proc R Soc B. 2022, 289, 20212500.
- Roff, D.A. 1992. Evolution of Life Histories. Theory and analysis. Chapman & Hall: New York, NY.
- Werner, E.E.; Gilliam, J.F. The ontogenetic niche and species interactions in size-structured populations. Ann. Rev. Ecol. Syst. 1984, 15, 393–425. [CrossRef]
- Fonseca, V.F.; Cabral, H.N. Are fish early growth and condition patterns related to life-history strategies? Rev. Fish Biol. Fish. 2007, 17, 545–564.
- Jonsson, B.; Hindar, K.; Northcote, T.G. Optimal age at sexual maturity of sympatric and experimentally allopatric cutthroat trout and Dolly Varden charr. Oecologia 1984, 61, 319–325.
- Jonsson, B.; Jonsson, N. Partial migration: niche shift versus sexual maturation in fishes. Rev. Fish Biol. Fish. 1993, 3, 348–365.
- Jensen, A.L. Origin of the relation between K and Linf and synthesis of relations among life history parameters. Can. J. Fish. Aquat. Sci. 1997, 54, 987–989. [CrossRef]
- Rossignol, O.; Dodson, J.J.; Guderley, H. Relationship between metabolism, sex and reproductive tactics in young Atlantic salmon (Salmo salar L.). Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 2011, 159, 82–91.
- Froese, R.; Binohlan, C. Empirical relationships to estimate asymptotic length, length at first maturity and length at maximum yield per recruit in fishes, with a simple method to evaluate length frequency data. J. Fish Biol. 2000, 56, 758–773.
- Rien, T.A.; Beamesderfer, R.C. Accuracy and precision of white sturgeon age estimates from pectoral fin rays. Trans. Am. Fish. Soc. 1994, 123, 255–265. [CrossRef]
- Jonsson, N.; Hansen, L.P.; Jonsson, B. Variation in age, size and repeat spawning of adult Atlantic salmon in relation to river discharge. J. Anim. Ecol. 1991, 60, 937–947.
- Rideout, R.M.; Rose, G.A.; Burton, M. Skipped spawning in female iteroparous fish. Fish Fish. 2005, 6, 50–72. [CrossRef]
- Bell, G. The costs of reproduction and their consequences. Am. Nat. 1980, 116, 45–76.
- Reznick, D.N. Cost of reproduction: an evaluation of the empirical evidence. Oikos 1985, 44, 257–267.
- Sneider, J. Energy balance and reproduction. Physiol. Behav. 2004, 81, 289–317.
- Ginther, S.C.; Cameron, H.; White, C.R.; Marshall, D.J. Metabolic loads and the cost of metazoan reproduction. Science 2024, 384, 763–767. [CrossRef]
- Jonsson, B. Life history patterns of freshwater resident and sea-run migrant brown trout in Norway. Trans. Am. Fish. Soc. 1985, 114, 182–194.
- Lothian, A.J.; Rodger, J.; Wilkie, L.; Walters, M.; Miller, R.; Conroy, C.; Marshall, S.; MacKenzie, M.; Adams, C.E. Smolting in post-sexually mature male Atlantic salmon (Salmo salar L.) parr in the wild. Ecol. Freshw. Fish 2024; 33, e12755.
- Rochet, M.J. A comparative approach to life history strategies and tactics among four orders of teleost fish. ICES J. Mar. Sci. 2000, 57, 228–239.
- Scarnecchia, D.L.; Ryckman, L.F.; Lim, Y.; Power, G.J.; Schmitz, B.J.; Firehammer, J.A. Life-history and the costs of reproduction in Northern Great Plains paddlefish (Polyodon spathula) as a potential framework for other Acipenseriform fishes. Rev. Fish. Sci. 2007, 15, 211–263. [CrossRef]
- Kuparinen, A.; Hardie, D.C.; Hutchings. J.A. Evolutionary and ecological feedbacks of the survival cost of reproduction, Evol. Appl. 2011, 5, 245–255.
- Metcalfe, N.B.; Fraser, N.H.C.; Burns, M.D. Food availability and the nocturnal vs. diurnal foraging trade-off in juvenile salmon. J. Anim. Ecol. 1999, 68, 371–381.
- Jonsson, N.; Jonsson, B.; Hansen L.P. Changes in proximate composition and estimates of energetic costs during upstream migration and spawning in Atlantic salmon Salmo salar. J. Anim. Ecol. 1997, 66, 425–436. [CrossRef]
- Glebe, B.D.; Leggett, W.C. Latitudinal differences in energy allocation and use during the freshwater migrations of American shad (Alosa sapidissima) during the spawning migration. Can. J. Fish. Aquat. Sci. 1981, 38, 806–820.
- Daufresne, F.; FitzGerald, G.J.; Lachance, S. Age and size-related differences in reproductive success and reproductive costs in threespine sticklebacks (Gasterosteus aculeatus). Behav. Ecol. 1990, 1, 140–147.
- Pauly, D. Female fish grow bigger: Let's deal with it. Trends Ecol. Evol. 2018, 34, 181–182.
- Jonsson B. Life history and habitat use of Norwegian brown trout (Salmo trutta). Freshw. Biol. 1989, 21, 71–86.
- Fleming, I.A. Reproductive strategies of Atlantic salmon: ecology and evolution. Rev. Fish Biol. Fish. 1996, 6, 379–416. [CrossRef]
- Schaffer, W.M.; Elson, P.F. The adaptive significance of variations in life history among local populations of Atlantic salmon in North America. Ecology 1975, 56, 577–590.
- Jonsson, B.; Jonsson, N. Sexual size dimorphism in anadromous brown trout Salmo trutta. J. Fish Biol. 2015, 87, 187–193.
- Gross, M.R. Alternative reproductive strategies and tactics: diversity within sexes. Trends. Ecol. Evol. 1996, 11, 92–98.
- Babu, P.P.S.; Rao, P.S.; Prasad, J.K.; Sharma, R.; Rani, A.M.B.; Biju, I.F. Observations on impact of stunting on breeding performance of farmed rohu Labeo rohita (Hamilton, 1822). Ind. J. Fish. 2021, 68, 117–121. [CrossRef]
- Jonsson, N.; Jonsson, B. Trade-off between egg size and numbers in brown trout. J. Fish Biol. 1999, 55, 767–783.
- Wood, C.C., Foote, C.J. Evidence for sympatric genetic divergence of anadromous and nonanadromous morphs of sockeye salmon (Oncorhynchus nerka). Evolution 1996, 50, 1265–1279. [CrossRef]
- Jonsson, B.; Jonsson, N. Polymorphism and speciation in Arctic charr. J. Fish Biol. 2001, 58, 605-638.
- Parker, H.H.; Noonburg, E.G.; Nisbet, R.M. Models of alternative life-history strategies, population structure and potential speciation in salmonid fish stocks. J. Anim. Ecol. 2001, 70, 260–272.
- Jonsson, B.; Jonsson, N. Lipid energy reserves influence life-history decision of Atlantic salmon (Salmo salar) and brown trout (S. trutta) in fresh water. Ecol. Freshw. Fish 2005, 14, 296–301. [CrossRef]
- Aday, D.D.; Kush, C.M.; Wahl, D.H.; Phillip, D.P. The influence of stunted body size on the reproductive ecology of bluegill Lepomis macrochirus. Ecol. Freshw. Fish 2002, 11, 190–195.
- Santiago, C.B.; Gonzales, A.C.; Aralar, E.V.; Arcilla, R.P. Effect of stunting of juvenile bighead carp Aristichthys nobilis (Richardson) on compensatory growth and reproduction. Aquacult. Res. 2004, 35, 836–841. [CrossRef]
- Fraley, K.M.; Warburton, H.J.; Jellyman, P.G.; Kelly, D.; McIntosh, A.R. Do body mass and habitat factors predict trophic position in temperate stream fishes? Freshw. Sci. 2020, 39, 405–414.
- Arim, M.; Abades, S. R.; Laufer, G.; Loureiro, M.; & Marquet, P. A. Food web structure and body size: Trophic position and resource acquisition. Oikos 2010, 119, 147–153. [CrossRef]
- Ou, C.; Montaña, C.; Winemiller, K.O. Body size–trophic position relationships among fishes of the lower Mekong basin. R. Soc. Open Sci. 2017, 4, 160645.
- Potapov, A. M., Brose, U., Scheu, S., & Tiunov, A. V. Trophic position of consumers and size structure of food webs across aquatic and terrestrial ecosystems. Am. Nat. 2019, 194, 823–839. [CrossRef]
- Kopf, R.K.; McPhan, L.; McInerney, P.J.; Zampatti, B.; Thiem, J.; Koster, W.; Butler, L.G.; Bond, N.; Thompson, R.M. Intraspecific body size determines isotopic trophic structure of a large river fish community. J. Anim Ecol. 2025. [CrossRef]
- Hallbert, T.B.; Keeley, E.R. Allometric shifts in foraging site selection and area increase energy intake for Yellowstone cutthroat trout but are constrained by functional limits to prey capture. Trans. Am. Fish. Soc. 2024, 153, 660–673.
- Osenberg, C.W.; Mittelbach, G.G. Effects on body size on the predator prey interaction between pumpkinseed sunfish and gastropods. Ecol. Monogr. 1989, 59, 405–432. [CrossRef]
- Olson, M.H.; Mittelbach, G.G.; Osenberg, C.W. Competition between predator and prey – resource-based mechanisms and implications for stage-structured dynamics. Ecology 1995, 76, 1758–1771.
- Matte, J.M.O.; Fraser, D.J.; Grant, J.W.A. Mechanisms of density dependence in juvenile salmonids: prey depletion, interference competition, or energy expenditure? Ecosphere 2021, 12, e0367.
- Pauly, D. Why do fish reach first maturity when they do? J. Fish Biol. 2022, 101, 333–341. [CrossRef]
- Alm, G. Connection between maturity, size and age in fishes. Rep. Inst. Freshw. Res. Drottningholm 1959, 40, 5–145.
- Rowe, D.; Thorpe, J.E. Difference in growth between maturing and nonmaturing male Atlantic salmon, Salmo salar. J. Fish Biol. 1990, 36, 643–658.
- Taylor, B.M.; Choat, J.H.; DeMartini, E.E.; Hoey, A.S.; Mershell, A.; Priest, M.S.; Rhodes, K.L.; Meekan, M.G. Demographic plasticity facilitates ecological and economic resilience in a commercially important reef fish. J. Anim. Ecol. 2019, 88, 1888–1900.
- Schaffer, W.M. Optimal reproductive effort in fluctuating environments. Am, Nat. 1974, 108, 783–790. [CrossRef]
- Charnov, E.L. Gompertz mortality, natural selection, and the ‘shape of ageing’. Evol. Ecol. Res. 2014, 16, 435–439.
- Steiner, U.K.; Tuljapurkar, S.; Coulson T. Generation time, net reproductive rate, and growth in stage-age structured populations. Am. Nat. 2014, 183, 771–783.
- Forseth, T.; Næsje. T.F.; Jonsson, B.; Hårsaker, K. Juvenile migration in brown trout: a consequence of energetic state. J. Anim. Ecol. 1999, 68, 783–793.
- Alioravainen, N.; Orell, P; Erkinaro, J. Long-term trends in freshwater and marine growth patterns in three sub-Arctic Atlantic salmon populations. Fishes 2023, 8,441. [CrossRef]
- Berglund, I.; Hansen, L.P.; Lundqvist, H.; Jonsson, B., Eriksson, T., Thorpe, J.E.; Eriksson, L.O. Effects of elevated winter temperature on seawater adaptability, sexual rematuration and downstream migratory behaviour in mature male Atlantic salmon parr (Salmo salar). Can. J. Fish. Aquat. Sci. 1991, 48, 1041–1047.
- Nevoux, M.; Finstad, B.; Davidsen, J.G.; Finlay, R.; Josset, Q.; Poole, R.; Höjesjö, J.; Aarestrup, K.; Persson, L.; Tolvanen, O.; Jonsson, B. Environmental influences of life history strategies in partial anadromous brown trout (Salmo trutta, Salmonidae). Fish Fish. 2019, 20, 1051–1082.
- Jonsson, B.; Finstad, A.G.; Jonsson, N. Winter temperature and food quality affect age and size at maturity in ectotherms: an experimental test with Atlantic salmon. Can, J. Fish Aquat. Sci. 2012, 69, 1817–1826.
- Jonsson, B.; Jonsson, N.; Finstad, A.G. Effects of temperature and food quality on age at maturity of ectotherms: an experimental test of Atlantic salmon. J. Anim. Ecol. 2013, 82, 201–210. [CrossRef]
- Åsheim, E.R.; Debes, P.V.; House, A.; Liljeström, P.; Niemelä, P.T.; Siren, J.; Erkinaro, J.; Primmer, C.R. Atlantic salmon (Salmo salar) age at maturity is strongly affected by temperature, population, and age-at-maturity genotype. Cons. Physiol. 2023, 11, coac86.
- Killen, S.S.; Glazier, D.S.; Rezende, E:L.; Clark, T.D.; Atkinson, D.; Willener, A.S.T.; Halsey. L.G. Ecological influences and morphological correlates of resting and maximal metabolic rates across teleost fish species. Am. Nat. 2016, 187, 592–606.
- Wang, S.; Bigman J.S.; Dolvy, N.K. The metabolic pace of life histories across fishes. Proc. Biol. Sci. 2021, 288, 20210910.
- Thorpe, J.E. Age at first maturity in Atlantic salmon, Salmo salar: freshwater period influences and conflicts with smolting. Can. Spec. Publ. Fish. Aquat. Sci. 1986, 89, 7–14.
- Edwards, R.W. The relation of oxygen consumption to body size and to temperature in the larvae of Chironomus riparius Meigen. J. Exp. Biol. 1958. 35, 383–395.
- Imsland, A. K. Sexual maturation in turbot (Scophthalmus maximus) is related to genotypic oxygen affinity: Experimental support for Pauly’s juvenile-to-adult transition hypothesis. ICES J. Mar. Sci. 1999, 56, 320–325.
- Amarasinghe, U.S.; Pauly, D. The relationship between size at maturity and maximum size in cichlid populations corroborates the gill-oxygen limitation theory (GOLT). Asian Fish. Sci. 2021, 34, 14–22. [CrossRef]
- Czorlich, Y.; Aykanat, T.; Erkinaro, J.; Orell P.; Primmer, C.R. Rapid sex specific evolution of age at maturity is shaped by genetic architecture in Atlantic salmon. Nat Evol. Ecol. 2018, 2, 1800–1807. [CrossRef]
- Yuan, R.; Hascup, E.; Hascup, K.; Bartke, A. Relationships among development, growth, body size, reproduction, aging, and longevity - trade-offs and pace-of-life. Biochemistry 2023, 88, 1692–1703.
- Mousseau, T.A.; Roff, D.A. Natural selection and the heritability of fitness components. Heredity 1987, 59, 181–97.
- McFarlane SE, Gorrell JC, Coltman DW, Humphries MM, Boutin S, McAdam AG. Very low levels of direct additive genetic variance in fitness and fitness components in a red squirrel population. Ecol Evol. 2014, 4, 1729–1738. [CrossRef]
- Aykanat, T.; Ozerov, M.; Vähä, J.P.; Orell, P.; Niemelä, E.; Erkinaro, J.; Primmer, C.R. Co-inheritance of age at maturity and iteroparity in the Atlantic salmon vgll3 genomic region. J. Evol. Biol. 2019, 32, 343–355.
- House, H.; Debes, P.V.; Holopainen, M.; Käkelä, R.; Donner, I.; Frapin, M.; Ahi E.P.; Kurko, J.; Ruhanen, H.; Primmer, C.R. Seasonal and genetic effects on lipid profiles of juvenile Atlantic salmon. Biochim. Biophys. Mol. Cell Biol. Lip. 2025, 1870, 159565. [CrossRef]
- Oplinger, R.W.; Wahl, D.H.; Philip, D.P. Parental influence on the size and age at maturity of bluegills. Trans. Am. Fish. Soc. 2013, 142, 1067–1074.
- Chavanne, H.; Jansen, K.; Hofherr, J.; Contini, F.; Haffray, P.; Komen, H.; Nielsen, E.E.; Bargelloni, L. 2016. A comprehensive survey on selective breeding programs and seed market in the European aquaculture fish industry. Aquacult. Int. 2016, 24, 1287–1307. [CrossRef]
- Gjedrem, T.; Rye, M. Selection response in fish and shellfish: a review. Rev. Aquacult. 2018, 10, 168–179.
- Devlin, R.H.; Leggatt, R.A.; Benfey, T.J. Genetic modification of growth in fish species used in aquaculture: phenotypic and physiological responses. Pages 237–272 in Farrell, A.P.; Brenner, C.J.; Benfey, T.J. [eds.] Fish Physiology 38 Aquaculture. Academic Press: New York, NY.
- Walsh, M.R.; Munch S.B.; Chiba S,; Conover D.O. Maladaptive changes in multiple traits caused by fishing: impediments to population recovery. Ecol. Lett. 2006, 9, 142–148. [CrossRef]
- Jonsson, N.; Jonsson, N.; Hansen, L.P. Does climate during embryonic development influences parr growth and age of seaward migration in Atlantic salmon (Salmo salar) smolts? Can. J. Fish. Aquat. Sci. 2005, 62, 2502–2508.
- Jonsson, B.; Jonsson, N. Phenotypic plasticity and epigenetics of fish: embryo temperature affects later developing traits. Aquat. Biol. 2019, 28, 21–32.
- Murugananthkumar, R.; Sudhakumari, C.C. Understanding the impact of stress on teleostean reproduction. Aquacult. Fish. 2022, 7, 553–561. [CrossRef]
- Kho, J.; Ruzzante, D.E. The role of DNA methylation in facilitating life history trait diversity in fishes. Rev. Fish. Biol. Fish. 2024, 34, 1531–156.
- Lee, W.S.; Monaghan, P.; Metcalfe, N.B. The pattern of early growth trajectories affects adult breeding performance. Ecology 2012, 93, 902–912. [CrossRef]
- Kim, SY.; Metcalfe, N.B.; da Silva A.; Velando A. Thermal conditions during early life influence seasonal maternal strategies in the three-spined stickleback. BMC Ecol 2017, 17, 34.
- Ramsteijn, A.S.; Ndiaye, M.; Kalashikam, R.R.; Htet, M.K.; Dm, D.Y.; Augustine, L.F.; Zahra, N.L.; Djigal, A.; Yanti, D.; Angelin, T.C.; et al. Epigenetic studies in children at risk of stunting and their parents in India, Indonesia and Sene and Senegal: a UKRI GCRF Action Against Stunting Hub protocol paper. BMJ Pediatr. Open 2024, 8(Suppl 1), e001770.
- Morán, P.; Pérez-Figueroa, A. Methylation changes associated with early maturation stages in the Atlantic salmon. BMC Genet. 2011, 12, 1–8.
- Liu, S.; Jonsson, B.; Greenberg, L.; Hansen, M.M. Limited persistence of temperature-induced methylation compared to significant parental effects in juvenile brown trout Salmo trutta. Submitted to Ecol. Evol. 2025.
- Aday D.D.; Wahl, D.H.; Philipp D.P. Assessing population-specific and environmental influences on bluegill life histories: A common garden approach. Ecology 2003, 84, 3370–3375. [CrossRef]
- Fischer-Rousseau, L.; Clautier, R.; Zelditch, M. Morphological integration and developmental progress during fish ontogeny in two contrasting habitats. Evol. Dev. 2009, 11, 740–753.37.
- Sibly, R.M.; Baker, J.; Grady, J.M.; Brown, J.H. Fundamental insights into ontogenetic growth from theory and fish. Proc. Nat. Acad. Sci. USA 2015, 112, 13934–13939. [CrossRef]
- Liu, Z.J.; Zhou, T.; Gao, D.Y. Genetic and epigenetic regulation of growth, reproduction, disease resistance and stress responses in aquaculture. Front. Genet. 2022, 13, 994471. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
