Submitted:
21 June 2025
Posted:
24 June 2025
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Material and Methods
2.1. Samples
2.2. Fluorescence Spectroscopy
2.3. Literature Analysis
3. Results
4. Discussion
4.1. Correlation Between the Wavelengths of Excitation and Emission Maxima
4.2. Analytical Interpretation of the Peak Position on the Regression Line
4.3. Implications for Analytical Methods
5. Conclusions
Supplementary Materials
Author Contributions
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sakhno, T.V.; Sakhno, Y.; Kuchmiy, S.Y. Clusteroluminescence in Organic, Inorganic, and Hybrid Systems: A Review. Theor Exp Chem 2022, 58, 297–327. [Google Scholar] [CrossRef]
- Sakhno, T.V.; Sakhno, Y.E.; Kuchmiy, S.Y. Clusteroluminescence of Unconjugated Polymers: A Review. Theor Exp Chem 2023, 59, 75–106. [Google Scholar] [CrossRef]
- Chatterjee, D.P.; Pakhira, M.; Nandi, A.K. Fluorescence in "Nonfluorescent" Polymers. ACS Omega, Vol 3, Iss 9, Pp 11179-11183 (2018) 2020, 5, 30747–30766. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, H.; Li, S.; Lei, D.; Tang, B.Z.; Ye, R. Recent Advances in Clusteroluminescence. Top. Curr. Chem. (Cham) 2021, 379, 14. [Google Scholar] [CrossRef] [PubMed]
- Bresolí-Obach, R.; Castro-Osma, J.A.; Nonell, S.; Lara-Sánchez, A.; Martín, C. Polymers showing cluster triggered emission as potential materials in biophotonic applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2024, 58, 100653. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, A.; Yuan, W.Z. Nonconventional Luminophores: Emission Mechanism, Regulation, and Applications. Acc. Chem. Res. 2025, 58, 612–624. [Google Scholar] [CrossRef]
- Liu, B.; Chu, B.; Zhu, L.; Zhang, H.; Yuan, W.-Z.; Zhao, Z.; Wan, W.-M.; Zhang, X.-H. Clusteroluminescence: A gauge of molecular interaction. Chinese Chemical Letters 2023, 34, 107909. [Google Scholar] [CrossRef]
- Tomalia, D.A.; Klajnert-Maculewicz, B.; Johnson, K.A.-M.; Brinkman, H.F.; Janaszewska, A.; Hedstrand, D.M. Non-traditional intrinsic luminescence: inexplicable blue fluorescence observed for dendrimers, macromolecules and small molecular structures lacking traditional/conventional luminophores. Progress in Polymer Science 2019, 90, 35–117. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, B.Z. Through-Space Interactions in Clusteroluminescence. JACS Au 2021, 1, 1805–1814. [Google Scholar] [CrossRef]
- Tao, S.; Zhu, S.; Feng, T.; Zheng, C.; Yang, B. Crosslink-Enhanced Emission Effect on Luminescence in Polymers: Advances and Perspectives. Angew. Chem. Int. Ed Engl. 2020, 59, 9826–9840. [Google Scholar] [CrossRef]
- Tang, S.; Yang, T.; Zhao, Z.; Zhu, T.; Zhang, Q.; Hou, W.; Yuan, W.Z. Nonconventional luminophores: characteristics, advancements and perspectives. Chem. Soc. Rev. 2021, 50, 12616–12655. [Google Scholar] [CrossRef] [PubMed]
- Avella, T.; Dechamps, R.; Bastin, M. Fluorescence Study of 10,610 Woody Species from the Tervuren (Tw) Collection, Belgium. IAWA journal / International Association of Wood Anatomists 1988, 9, 346–352. [Google Scholar] [CrossRef]
- Wheeler, E.; Baas, P.; Gasson, P.E. IAWA List of Microscopic Features for Hardwood Identification. IAWA journal / International Association of Wood Anatomists 1989, 10, 219–332. [Google Scholar]
- Donaldson, L. Autofluorescence in Plants. Molecules 2020, 25, 2393. [Google Scholar] [CrossRef]
- Maceda, A.; Terrazas, T. Fluorescence Microscopy Methods for the Analysis and Characterization of Lignin. Polymers 2022, 14. [Google Scholar] [CrossRef] [PubMed]
- Olmstead, J.A.; Gray, D.G. Fluorescence Spectroscopy of Cellulose, Lignin and Mechanical Pulps: A Review. Journal of pulp and paper science : JPPS 1997, 23, J571. [Google Scholar]
- Ding, Q.; Han, W.; Li, X.; Jiang, Y.; Zhao, C. New insights into the autofluorescence properties of cellulose/nanocellulose. Scientific reports 2020, 10, 21387. [Google Scholar] [CrossRef]
- Wang, D.; Ju, J.; Wang, S.; Tan, Y. Research progress on the luminescence of biomacromolecules. Journal of Materials Science & Technology 2021, 76, 60–75. [Google Scholar] [CrossRef]
- Dou, X.; Zhou, Q.; Chen, X.; Tan, Y.; He, X.; Lu, P.; Sui, K.; Tang, B.Z.; Zhang, Y.; Yuan, W.Z. Clustering-Triggered Emission and Persistent Room Temperature Phosphorescence of Sodium Alginate. Biomacromolecules 2018, 19, 2014–2022. [Google Scholar] [CrossRef]
- Peters, F.B.; Rapp, A.O. Wavelength-dependent photodegradation of wood and its effects on fluorescence. Holzforschung 2021, 76, 60–67. [Google Scholar] [CrossRef]
- Peters, F.B.; Rapp, A.O. Moisture as key for understanding the fluorescence of lignocellulose in wood. Cellulose 2024, 31, 4149–4160. [Google Scholar] [CrossRef]
- Dal Fovo, A.; Cicchi, R.; Gagliardi, C.; Baria, E.; Fioravanti, M.; Fontana, R. Detecting Early Degradation of Wood Ultrastructure with Nonlinear Optical Imaging and Fluorescence Lifetime Analysis. Polymers 2024, 16. [Google Scholar] [CrossRef]
- Werner, T.; Pecina, H. Versuche zur Anwendung der Fluoreszenz-Spektroskopie in der Holztechnologie für die Bewertung von Pilzbefall in Holz. Holz als Roh- und Werkstoff 1995, 53, 49–55. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Z.; McGonigal, P.R.; Ye, R.; Liu, S.; Lam, J.W.; Kwok, R.T.; Yuan, W.Z.; Xie, J.; Rogach, A.L.; et al. Clusterization-triggered emission: Uncommon luminescence from common materials. Materials Today 2020, 32, 275–292. [Google Scholar] [CrossRef]
- Xue, Y.; Qiu, X.; Wu, Y.; Qian, Y.; Zhou, M.; Deng, Y.; Li, Y. Aggregation-induced emission: the origin of lignin fluorescence. Polymer Chemistry 2016, 7, 3502–3508. [Google Scholar] [CrossRef]
- Du, L.-L.; Jiang, B.-L.; Chen, X.-H.; Wang, Y.-Z.; Zou, L.-M.; Liu, Y.-L.; Gong, Y.-Y.; Wei, C.; Yuan, W.-Z. Clustering-triggered Emission of Cellulose and Its Derivatives. Chin J Polym Sci 2019, 37, 409–415. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, X.; Wang, J.; Chen, Q.; Huang, H.; Huang, L.; Cao, S.; Ma, X. UV–visible diffuse reflectance spectroscopy used in analysis of lignocellulosic biomass material. Wood Sci.Technol. 2020, 54, 837–846. [Google Scholar] [CrossRef]
- Khalid, A.; Zhang, L.; Tetienne, J.-P.; Abraham, A.N.; Poddar, A.; Shukla, R.; Shen, W.; Tomljenovic-Hanic, S. Intrinsic fluorescence from cellulose nanofibers and nanoparticles at cell friendly wavelengths. APL Photonics 2019, 4, 20803. [Google Scholar] [CrossRef]
- Djikanović, D.; Kalauzi, A.; Radotić, K.; Lapierre, C.; Jeremić, M. Deconvolution of lignin fluorescence spectra: A contribution to the comparative structural studies of lignins. Russ. J. Phys. Chem. 2007, 81, 1425–1428. [Google Scholar] [CrossRef]
- Takada, M.; Okazaki, Y.; Kawamoto, H.; Sagawa, T. Tunable Light Emission from Lignin: Various Photoluminescence Properties Controlled by the Lignocellulosic Species, Extraction Method, Solvent, and Polymer. ACS Omega, Vol 3, Iss 9, Pp 11179-11183 (2018) 2022, 7, 5096–5103. [Google Scholar] [CrossRef]
- Grönroos, P.; Bessonoff, M.; Salminen, K.; Paltakari, J.; Kulmala, S. Phosphorescence and fluorescence of fibrillar cellulose films. Nordic Pulp & Paper Research Journal 2018, 33, 246–255. [Google Scholar] [CrossRef]
- Kasha, M. Characterization of electronic transitions in complex molecules. Discuss. Faraday Soc. 1950, 9, 14. [Google Scholar] [CrossRef]
- Peters, F.B.; Rapp, A.O. A simple light path modifying device to reduce scattering in front-face fluorescence spectra. Methods Appl. Fluoresc. 2024, 12. [Google Scholar] [CrossRef]
- Auxenfans, T.; Terryn, C.; Paës, G. Seeing biomass recalcitrance through fluorescence. Sci Rep 2017, 7, 8838. [Google Scholar] [CrossRef] [PubMed]
- Hoque, M.; Kamal, S.; Raghunath, S.; Foster, E.J. Unraveling lignin degradation in fibre cement via multidimensional fluorometry. Sci Rep 2023, 13, 8385. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, R.; Tanaka, Y.; Ogata, A.; Masakazu, N. Scientific evidence by fluorescence spectrometry for safflower red on ancient Japanese textiles stored in the Shosoin Treasure House repository. Studies in Conservation 2014, 59, 367–376. [Google Scholar] [CrossRef]
- Gong, Y.; Tan, Y.; Mei, J.; Zhang, Y.; Yuan, W.; Zhang, Y.; Sun, J.; Tang, B.Z. Room temperature phosphorescence from natural products: Crystallization matters. Sci. China Chem. 2013, 56, 1178–1182. [Google Scholar] [CrossRef]
- Jiang, J.; Lu, S.; Liu, M.; Li, C.; Zhang, Y.; Yu, T.B.; Yang, L.; Shen, Y.; Zhou, Q. Tunable Photoluminescence Properties of Microcrystalline Cellulose with Gradually Changing Crystallinity and Crystal Form. Macromolecular Rapid Communications 2021, 42, e2100321. [Google Scholar] [CrossRef]
- Li, M.; Li, X.; An, X.; Chen, Z.; Xiao, H. Clustering-Triggered Emission of Carboxymethylated Nanocellulose. Front. Chem. 2019, 7, 447. [Google Scholar] [CrossRef]
- Geng, Z.; Zhang, H.; Xiong, Q.; Zhang, Y.; Zhao, H.; Wang, G. A fluorescent chitosan hydrogel detection platform for the sensitive and selective determination of trace mercury(ii ) in water. J. Mater. Chem. A 2015, 3, 19455–19460. [Google Scholar] [CrossRef]
- Huang, J.; Wang, Y.-L.; Yu, X.-D.; Zhou, Y.-N.; Chu, L.-Q. Enhanced fluorescence of carboxymethyl chitosan via metal ion complexation in both solution and hydrogel states. International Journal of Biological Macromolecules 2020, 152, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Dramićanin, T.; Lenhardt Acković, L.; Zeković, I.; Dramićanin, M.D. Detection of Adulterated Honey by Fluorescence Excitation-Emission Matrices. Journal of Spectroscopy 2018, 2018, 1–6. [Google Scholar] [CrossRef]
- Li, Q.; Wang, X.; Huang, Q.; Li, Z.; Tang, B.Z.; Mao, S. Molecular-level enhanced clusterization-triggered emission of nonconventional luminophores in dilute aqueous solution. Nat Commun 2023, 14, 409. [Google Scholar] [CrossRef] [PubMed]
- Radotić, K.; Kalauzi, A.; Djikanović, D.; Jeremić, M.; Leblanc, R.M.; Cerović, Z.G. Component analysis of the fluorescence spectra of a lignin model compound. Journal of Photochemistry and Photobiology B: Biology 2006, 83, 1–10. [Google Scholar] [CrossRef]
- Millington, K.R. Anomalous fluorescence of white hair compared to other unpigmented keratin fibres. Int. J. Cosmet. Sci. 2020, 42, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Luo, W.; Ma, H.; Peng, Q.; Yuan, W.Z.; Zhang, Y. Prevalent intrinsic emission from nonaromatic amino acids and poly(amino acids). Sci. China Chem. 2018, 61, 351–359. [Google Scholar] [CrossRef]
- Zhao, W.; Gao, M.; Kong, L.; Yu, S.; Zhao, C.; Chen, C. Chirality-Regulated Clusteroluminescence in Polypeptides. Biomacromolecules 2024, 25, 1897–1905. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Feng, F.; Tsai, M.; Zeng, H.; McLean, D.; Ruvolo, E.; Kollias, N.; Lui, H. Fluorescence Excitation Emission Matrix Spectroscopy for Endogenous Skin Fluorescence Characterization. Meet. Abstr. 2010; -01. [Google Scholar] [CrossRef]
- Komura, T.; Yamanaka, M.; Nishimura, K.; Hara, K.; Nishikawa, Y. Autofluorescence as a noninvasive biomarker of senescence and advanced glycation end products in Caenorhabditis elegans. NPJ Aging Mech. Dis. 2021, 7, 12. [Google Scholar] [CrossRef]
- Séro, L.; Sanguinet, L.; Blanchard, P.; Dang, B.T.; Morel, S.; Richomme, P.; Séraphin, D.; Derbré, S. Tuning a 96-well microtiter plate fluorescence-based assay to identify AGE inhibitors in crude plant extracts. Molecules 2013, 18, 14320–14339. [Google Scholar] [CrossRef]
- Bao, J.; Tong, C.; He, M.; Zhang, H. Luminescent polypeptides. Luminescence 2024, 39, e4594. [Google Scholar] [CrossRef]
- Xu, L.; Liang, X.; Zhong, S.; Gao, Y.; Cui, X. Clustering-Triggered Emission from Natural Products: Gelatin and Its Multifunctional Applications. ACS Sustainable Chem. Eng. 2020, 8, 18816–18823. [Google Scholar] [CrossRef]
- Zhang, Q.; Mao, Q.; Shang, C.; Chen, Y.-N.; Peng, X.; Tan, H.; Wang, H. Simple aliphatic oximes as nonconventional luminogens with aggregation-induced emission characteristics. J. Mater. Chem. C 2017, 5, 3699–3705. [Google Scholar] [CrossRef]
- Xie, W.; Deng, J.; Bai, Y.; Xiao, J.; Wang, H. Hydrogen-Bonding-Driven Nontraditional Photoluminescence of a β-Enamino Ester. Molecules 2023, 28. [Google Scholar] [CrossRef]
- Zhou, Q.; Cao, B.; Zhu, C.; Xu, S.; Gong, Y.; Yuan, W.Z.; Zhang, Y. Clustering-Triggered Emission of Nonconjugated Polyacrylonitrile. Small 2016, 12, 6586–6592. [Google Scholar] [CrossRef] [PubMed]
- Shang, C.; Wei, N.; Zhuo, H.; Shao, Y.; Zhang, Q.; Zhang, Z.; Wang, H. Highly emissive poly(maleic anhydride-alt-vinyl pyrrolidone) with molecular weight-dependent and excitation-dependent fluorescence. J. Mater. Chem. C 2017, 5, 8082–8090. [Google Scholar] [CrossRef]
- Miao, X.; Liu, T.; Zhang, C.; Geng, X.; Meng, Y.; Li, X. Fluorescent aliphatic hyperbranched polyether: chromophore-free and without any N and P atoms. Phys. Chem. Chem. Phys. 2016, 18, 4295–4299. [Google Scholar] [CrossRef]
- Chu, B.; Zhang, H.; Chen, K.; Liu, B.; Yu, Q.-L.; Zhang, C.-J.; Sun, J.; Yang, Q.; Zhang, X.-H.; Tang, B.Z. Aliphatic Polyesters with White-Light Clusteroluminescence. Journal of the American Chemical Society 2022, 144, 15286–15294. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, Q.; Shi, W. Synthesis and intrinsic blue fluorescence study of hyperbranched poly(ester-amide-ether). Sci. China Chem. 2010, 53, 2452–2460. [Google Scholar] [CrossRef]
- Wang, J.; Xu, L.; Zhong, S.; Yang, Y.; Feng, G.; Meng, Q.; Gao, Y.; Cui, X. Clustering-triggered emission of poly(vinyl) alcohol. Polym. Chem. 2021, 12, 7048–7055. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, J.; Wang, L.; Song, Y.; Zhang, G.; Wang, H.; Yang, B. A general route to make non-conjugated linear polymers luminescent. Chem. Commun. (Camb) 2012, 48, 10889–10891. [Google Scholar] [CrossRef]
- Zhu, S.; Meng, Q.; Wang, L.; Zhang, J.; Song, Y.; Jin, H.; Zhang, K.; Sun, H.; Wang, H.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. Ed Engl. 2013, 52, 3953–3957. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Wang, L.; Zhou, N.; Zhao, X.; Song, Y.; Maharjan, S.; Zhang, J.; Lu, L.; Wang, H.; Yang, B. The crosslink enhanced emission (CEE) in non-conjugated polymer dots: from the photoluminescence mechanism to the cellular uptake mechanism and internalization. Chem. Commun. (Camb) 2014, 50, 13845–13848. [Google Scholar] [CrossRef]
- Wang, J.; Sahu, S.; Sonkar, S.K.; Tackett II, K.N.; Sun, K.W.; Liu, Y.; Maimaiti, H.; Anilkumar, P.; Sun, Y.-P. Versatility with carbon dots – from overcooked BBQ to brightly fluorescent agents and photocatalysts. RSC Adv. 2013, 3, 15604. [Google Scholar] [CrossRef]
- Bavya, V.; Pillai, A.S.; Surendran, K.P.; T. P.D., R.; K.I., S. Fluorescent Carbon Dots from Bamboo Stem Waste: Synthesis, Characterization, and Inkjet Printing. ChemistrySelect 2024, 9. [Google Scholar] [CrossRef]
- Zattar, P.; Pires, A.; Mesquita, P. de; Pereira, J.; Vargas, F. Luminescent carbon dots obtained from cellulose and their applications as sensors for metal ions. Materials Chemistry and Physics 2022, 290, 126633. [Google Scholar] [CrossRef]
- McNamara, G. PubSpectra: Open Data Access Fluorescence Spectra, 2012. Available online: http://works.bepress.com/gmcnamara/9/.
- Cory, R.M.; Miller, M.P.; McKnight, D.M.; Guerard, J.J.; Miller, P.L. Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra. Limnol. Oceangr. Methods 2010, 8, 67–78. [Google Scholar] [CrossRef]
- Girard, V.-D.; Chaussé, J.; Vermette, P. Bacterial cellulose: A comprehensive review. J. Appl. Polym. Sci. 2024, 141. [Google Scholar] [CrossRef]
- Fengel, D.; Wegener, G. Wood: Chemistry, ultrastructure, reactions, Reprint der Orig.-Ausg. (ehem. de Gruyter); Kessel: Remagen, 2003; ISBN 3935638396. [Google Scholar]
- Watkinson, S.C.; Eastwood, D.C. Serpula lacrymans, Wood and Buildings. Adv. Appl. Microbiol. 2012, 78, 121–149. [Google Scholar] [CrossRef]
- Evans, P.D. Weathering of Wood and Wood Composites. In Handbook of wood chemistry and wood composites, 2.th ed.; Rowell, R.M., Ed.; CRC Press: Boca Raton, Fla, 2013; ISBN 9781439853801. [Google Scholar]
- Niyangoda, C.; Miti, T.; Breydo, L.; Uversky, V.; Muschol, M. Carbonyl-based blue autofluorescence of proteins and amino acids. PLoS One 2017, 12, e0176983. [Google Scholar] [CrossRef]
- Tarekegne, A.T.; Janting, J.; Ou, H. Strong visible-light emission in annealed poly(acrylic acid). Opt. Mater. Express 2020, 10, 3424. [Google Scholar] [CrossRef]
- Kollias, N.; Gillies, R.; Moran, M.; Kochevar, I.E.; Anderson, R.R. Endogenous skin fluorescence includes bands that may serve as quantitative markers of aging and photoaging. J. Invest. Dermatol. 1998, 111, 776–780. [Google Scholar] [CrossRef]
- Beisswenger, P.J.; Howell, S.; Mackenzie, T.; Corstjens, H.; Muizzuddin, N.; Matsui, M.S. Two fluorescent wavelengths, 440(ex)/520(em) nm and 370(ex)/440(em) nm, reflect advanced glycation and oxidation end products in human skin without diabetes. Diabetes Technol. Ther. 2012, 14, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Risum, A.B.; Bevilacqua, M.; Li, C.; Engholm-Keller, K.; Poojary, M.M.; Rinnan, Å.; Lund, M.N. Resolving fluorescence spectra of Maillard reaction products formed on bovine serum albumin using parallel factor analysis. Food Res. Int. 2024, 178, 113950. [Google Scholar] [CrossRef] [PubMed]
- Morales, F.; van Boekel, M. A study on advanced Maillard reaction in heated casein/sugar solutions. International Dairy Journal 1997, 7, 675–683. [Google Scholar] [CrossRef]
- Shi, T.; Xu, L.; Wang, Y.-N.; Liu, S.-C.; Liu, Z.-H.; Zhao, G.-J.; Li, B.-Z.; Yuan, Y.-J. Aminated and amidated structures introduced by ethylenediamine pretreatment endow lignin with bright fluorescence. Green Chem. 2022, 24, 9040–9054. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Xiao, W.; Geng, Z.; Di Tan; Wei, L. ; Li, J.; Xue, L.; Wang, X.; Zhu, J. Lignin-derived red-emitting carbon dots for colorimetric and sensitive fluorometric detection of water in organic solvents. Anal. Methods 2020, 12, 3218–3224. [Google Scholar] [CrossRef]
- Liu, X.; Chu, B.; Xiong, Z.; Liu, B.; Tu, W.; Zhang, Z.; Zhang, H.; Sun, J.Z.; Zhang, X.; Tang, B.Z. Heteroatom-facilitated blue to near-infrared emission of nonconjugated polyesters. Mater. Horiz. 2024, 11, 1579–1587. [Google Scholar] [CrossRef]
- Chu, B.; Liu, X.; Xiong, Z.; Zhang, Z.; Liu, B.; Zhang, C.; Sun, J.Z.; Yang, Q.; Zhang, H.; Tang, B.Z.; et al. Enabling nonconjugated polyesters emit full-spectrum fluorescence from blue to near-infrared. Nat Commun 2024, 15, 366. [Google Scholar] [CrossRef]
- Hou, X.; Xu, J.; Zhou, P.; Dai, L.; Zhang, J.; Xiao, X.; Huo, K. A shining transmutation of lignin into multicolor carbon dots via the dynamic solvent-fractionation engineering. Chemical Engineering Journal 2023, 478, 147363. [Google Scholar] [CrossRef]
- Wang, R.; Xia, G.; Zhong, W.; Chen, L.; Chen, L.; Wang, Y.; Min, Y.; Li, K. Direct transformation of lignin into fluorescence-switchable graphene quantum dots and their application in ultrasensitive profiling of a physiological oxidant. Green Chem. 2019, 21, 3343–3352. [Google Scholar] [CrossRef]
- Liukko, S.; Tasapuro, V.; Liitiä, T. Fluorescence spectroscopy for chromophore studies on bleached kraft pulps. Holzforschung 2007, 61, 509–515. [Google Scholar] [CrossRef]
- He, B.; Zhang, J.; Zhang, J.; Zhang, H.; Wu, X.; Chen, X.; Kei, K.H.S.; Qin, A.; Sung, H.H.Y.; Lam, J.W.Y.; et al. Clusteroluminescence from Cluster Excitons in Small Heterocyclics Free of Aromatic Rings. Adv. Sci. (Weinh) 2021, 8, 2004299. [Google Scholar] [CrossRef]
- Ye, R.; Liu, Y.; Zhang, H.; Su, H.; Zhang, Y.; Xu, L.; Hu, R.; Kwok, R.T.K.; Wong, K.S.; Lam, J.W.Y.; et al. Non-conventional fluorescent biogenic and synthetic polymers without aromatic rings. Polym. Chem. 2017, 8, 1722–1727. [Google Scholar] [CrossRef]
- Zhao, Z.; Cai, Y.; Zhang, Q.; Li, A.; Zhu, T.; Chen, X.; Yuan, W.Z. Photochromic luminescence of organic crystals arising from subtle molecular rearrangement. Nat Commun 2024, 15, 5054. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, A.K.; Barman, S.; Siddhanta, S. Unravelling the Mechanism of Cluster-Triggered Emission in Carboxy Nanocellulose and Modulation through the Conjugation of Plasmonic Nanoparticles for Analyte Detection. J. Phys. Chem. C 2025. [Google Scholar] [CrossRef]
- Zhao, E.; Lam, J.W.Y.; Meng, L.; Hong, Y.; Deng, H.; Bai, G.; Huang, X.; Hao, J.; Tang, B.Z. Poly [(maleic anhydride)- alt -(vinyl acetate)]: A Pure Oxygenic Nonconjugated Macromolecule with Strong Light Emission and Solvatochromic Effect. Macromolecules 2015, 48, 64–71. [Google Scholar] [CrossRef]
- Lai, Y.; Zhao, Z.; Zheng, S.; Yuan, W.Z. Polymorphism-Dependent Emission of Nonaromatic Luminophores. Acta Chimica Sinica 2021, 79, 93. [Google Scholar] [CrossRef]
- Murphy, K.R.; Stedmon, C.A.; Graeber, D.; Bro, R. Fluorescence spectroscopy and multi-way techniques. PARAFAC. Analytical Methods 2013, 5, 6557. [Google Scholar] [CrossRef]
- Murphy, K.R.; Stedmon, C.A.; Wenig, P.; Bro, R. OpenFluor– an online spectral library of auto-fluorescence by organic compounds in the environment. Analytical Methods 2014, 6, 658–661. [Google Scholar] [CrossRef]
- Bro, R. PARAFAC. Tutorial and applications. Chemometrics and Intelligent Laboratory Systems 1997, 38, 149–171. [Google Scholar] [CrossRef]
- Schneide, P.-A.; Bro, R.; Gallagher, N.B. Shift-invariant tri-linearity—A new model for resolving untargeted gas chromatography coupled mass spectrometry data. J. Chemometrics 2023, 37. [Google Scholar] [CrossRef]



| Factor | Shift | Substance | Ref. | |
|---|---|---|---|---|
| Chemical changes in the structural heterogeneity | Thermal ageing | Red | Proteins | [73] |
| Thermal degradation (200 to 400 °C) | Red | Poly(acrylic acid) | [74] | |
| Ageing by lifetime and photoageing | Red | Skin (mouse) | [75] | |
| Glycation (Maillard reaction) and oxidation | Red | Proteins, advanced glycation end products | [76,77,78] | |
| Photodegradation | Red | Wood | [20] | |
| Introduction of amino groups into an oxygenic clustering system | Red | Lignin | [79], [80] | |
| Introduction of N and S atoms into an oxygenic clustering system | Red | Aliphatic polyesters | [81], [82] | |
| Hydrothermal treatment | Red | Lignin | [83], [84] | |
| Increased variety of monomers used for copolymerisation | Red | Dehydrogenated polymer from 100 % coniferyl alcohol compared to 50 % coniferyl alc. with 50 % sinapyl alc. | [34] | |
| H2O2 bleaching (= reduction of carbonyl groups) | Blue | Mechanical pulp | [16], [85] | |
| Removal of impurities | Blue | Dithiosuccinimide | [86] | |
| Changes in interactions between existing cluster entities | Change of secondary structure (helix to straight to planar folded) | Red | Aliphatic polyesters | [58] |
| Increase of degree of polymerisation | Red | poly [(maleic anhydride-alt-vinyl) pyrrolidone] | [56] | |
| Increase of degree of polymerisation | Red | Oligo-L-alinine vs. poly-L-alanine | [87] | |
| Reversible molecular rearrangement (by light) | Red | Dimethyl terephthalate | [88] | |
| Ball milling from nanofibers to particles | Red | Cellulose nanofibers and nanoparticles | [28] | |
| Increase of pH (maximum Em at pH10) | Red | Carboxy-nanocellulose | [89] | |
| Transfer to solvents with electron-rich atoms | Red | Poly [(maleic anhydride)-alt-(vinyl acetate) | [90] | |
| Crystallisation from different solvent (polymorph) | Red/blue | Furan-maleic anhydride and furan-maleimide | [91] | |
| Dissolution of solids | Blue | Rice, starch, cellulose | [37] | |
| Dissolution of solids | Blue | Gelatin | [52] | |
| Dissolution of solids | Blue | Maleimide and succinimide | [86] | |
| Dissolution of solids | Blue | Aliphatic polyesters | [58] | |
| Steam explosion | Blue | Various lignocellulosics | [34] | |
| Moisture swelling | Blue | Pinus sylvestris wood | [21] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
