Submitted:
22 June 2025
Posted:
24 June 2025
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Materials and Methods
2.1. Chemical Preparation
2.2. Maintenance and Egg Production of Zebrafish
2.3. Metyltetraprole Exposure Regime
2.4. Reactive Oxygen Species
2.5. Real-Time PCR
2.6. Locomotor Activity
2.7. Statistical Analysis
3. Results
3.1. Survival and Deformity
3.2. Reactive Oxygen Species
3.3. Mitochondrial- and Oxidative Stress-Related Transcripts
3.4. Behavioral Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, C., et al., Ecotoxicology of strobilurin fungicides. Science of the Total Environment, 2020. 742: p. 140611. [CrossRef]
- Li, X.Y., et al., Relative comparison of strobilurin fungicides at environmental levels: Focus on mitochondrial function and larval activity in early staged zebrafish (Danio rerio). Toxicology, 2021. 452: p. 152706. [CrossRef]
- Wang, Q., W.-y. Zhong, and S. Huang, Determination of azoxystrobin residues in surface water by HPLC with solid-phase extraction. Anhui Med Pharm J, 2009. 13: p. 611-612.
- Wightwick, A.M., et al., Environmental fate of fungicides in surface waters of a horticultural-production catchment in southeastern Australia. Archives of Environmental Contamination and Toxicology, 2012. 62: p. 380-390. [CrossRef]
- Mimbs IV, W.H., et al., Occurrence of current-use fungicides and bifenthrin in Rainwater Basin wetlands. Chemosphere, 2016. 159: p. 275-281. [CrossRef]
- Usgs, Estimated annual agricultural pesticide use. 2018, Azoxystrobin Lawrenceville.
- Yang, L., et al., Evaluation and comparison of the mitochondrial and developmental toxicity of three strobilurins in zebrafish embryo/larvae. Environmental Pollution, 2021. 270: p. 116277. [CrossRef]
- Li, H., et al., Residual analysis of QoI fungicides in multiple (six) types of aquatic organisms by UPLC-MS/MS under acutely toxic conditions. Environ Sci Pollut Res Int, 2023. 30(5): p. 12075-12084. [CrossRef]
- Yang, L., et al., Evaluation and comparison of the mitochondrial and developmental toxicity of three strobilurins in zebrafish embryo/larvae. Environ Pollut, 2021. 270: p. 116277. [CrossRef]
- Huang, T., et al., Behavioral and developmental toxicity assessment of the strobilurin fungicide fenamidone in zebrafish embryos/larvae (Danio rerio). Ecotoxicol Environ Saf, 2021. 228: p. 112966. [CrossRef]
- Wang, X., et al., A comprehensive review of strobilurin fungicide toxicity in aquatic species: Emphasis on mode of action from the zebrafish model. Environ Pollut, 2021. 275: p. 116671. [CrossRef]
- Matsuzaki, Y., et al., Discovery of metyltetraprole: Identification of tetrazolinone pharmacophore to overcome QoI resistance. Bioorganic & Medicinal Chemistry, 2020. 28(1): p. 115211. [CrossRef]
- Suemoto, H., Y. Matsuzaki, and F. Iwahashi, Metyltetraprole, a novel putative complex III inhibitor, targets known QoI-resistant strains of Zymoseptoria tritici and Pyrenophora teres. Pest Manag Sci, 2019. 75(4): p. 1181-1189.
- de Esch, C., et al., Zebrafish as potential model for developmental neurotoxicity testing: a mini review. Neurotoxicol Teratol, 2012. 34(6): p. 545-53.
- Huang, T., et al., Behavioral and developmental toxicity assessment of the strobilurin fungicide fenamidone in zebrafish embryos/larvae (Danio rerio). Ecotoxicology and Environmental Safety, 2021. 228: p. 112966. [CrossRef]
- Westerfield, M., A guide for the laboratory use of zebrafish (Danio rerio). (No Title), 2000.
- Cao, F., et al., Developmental neurotoxicity of maneb: Notochord defects, mitochondrial dysfunction and hypoactivity in zebrafish (Danio rerio) embryos and larvae. Ecotoxicology and Environmental Safety, 2019. 170: p. 227-237. [CrossRef]
- Perez-Rodriguez, V., et al., Tebuconazole reduces basal oxidative respiration and promotes anxiolytic responses and hypoactivity in early-staged zebrafish (Danio rerio). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2019. 217: p. 87-97. [CrossRef]
- Kimmel, C.B., et al., Stages of embryonic development of the zebrafish. Developmental dynamics, 1995. 203(3): p. 253-310. [CrossRef]
- Huang, T., et al., Exposure to acetochlor impairs swim bladder formation, induces heat shock protein expression, and promotes locomotor activity in zebrafish (Danio rerio) larvae. Ecotoxicology and Environmental Safety, 2021. 228: p. 112978. [CrossRef]
- Ivantsova, E., et al., Molecular and behavioral toxicity assessment of tiafenacil, a novel PPO-inhibiting herbicide, in zebrafish embryos/larvae. Environ Toxicol Pharmacol, 2023. 98: p. 104084. [CrossRef]
- Duggan, A.T., et al., Coordination of cytochrome c oxidase gene expression in the remodelling of skeletal muscle. Journal of Experimental Biology, 2011. 214(11): p. 1880-1887. [CrossRef]
- Marín-Juez, R., et al., GLUT2-mediated glucose uptake and availability are required for embryonic brain development in zebrafish. Journal of Cerebral Blood Flow & Metabolism, 2015. 35(1): p. 74-85. [CrossRef]
- McCurley, A.T. and G.V. Callard, Characterization of housekeeping genes in zebrafish: male-female differences and effects of tissue type, developmental stage and chemical treatment. BMC molecular biology, 2008. 9: p. 1-12. [CrossRef]
- Sarkar, S., et al., Low dose of arsenic trioxide triggers oxidative stress in zebrafish brain: expression of antioxidant genes. Ecotoxicology and environmental safety, 2014. 107: p. 1-8. [CrossRef]
- Wang, X.H., et al., Paraquat affects mitochondrial bioenergetics, dopamine system expression, and locomotor activity in zebrafish (Danio rerio). Chemosphere, 2018. 191: p. 106-117. [CrossRef]
- Liang, X., et al., Biological effects of the benzotriazole ultraviolet stabilizers UV-234 and UV-320 in early-staged zebrafish (Danio rerio). Environmental pollution, 2019. 245: p. 272-281. [CrossRef]
- Wang, X., et al., A comprehensive review of strobilurin fungicide toxicity in aquatic species: emphasis on mode of action from the zebrafish model. Environmental Pollution, 2021. 275: p. 116671. [CrossRef]
- Jia, W., et al., Effects of two strobilurins (azoxystrobin and picoxystrobin) on embryonic development and enzyme activities in juveniles and adult fish livers of zebrafish (Danio rerio). Chemosphere, 2018. 207: p. 573-580. [CrossRef]
- Kumar, N., et al., Developmental toxicity in embryo-larval zebrafish (Danio rerio) exposed to strobilurin fungicides (azoxystrobin and pyraclostrobin). Chemosphere, 2020. 241: p. 124980. [CrossRef]
- Mao, L., et al., Embryonic development and oxidative stress effects in the larvae and adult fish livers of zebrafish (Danio rerio) exposed to the strobilurin fungicides, kresoxim-methyl and pyraclostrobin. Sci Total Environ, 2020. 729: p. 139031. [CrossRef]
- Li, H., et al., Developmental toxicity, oxidative stress and immunotoxicity induced by three strobilurins (pyraclostrobin, trifloxystrobin and picoxystrobin) in zebrafish embryos. Chemosphere, 2018. 207: p. 781-790. [CrossRef]
- Li, H., et al., Mitochondrial dysfunction-based cardiotoxicity and neurotoxicity induced by pyraclostrobin in zebrafish larvae. Environmental Pollution, 2019. 251: p. 203-211. [CrossRef]
- Jiang, J., et al., Mitochondrial dysfunction, apoptosis and transcriptomic alterations induced by four strobilurins in zebrafish (Danio rerio) early life stages. Environmental Pollution, 2019. 253: p. 722-730. [CrossRef]
- Qin, Y., et al., Developmental toxicity of fenbuconazole in zebrafish: effects on mitochondrial respiration and locomotor behavior. Toxicology, 2022. 470: p. 153137. [CrossRef]
- Zhu, B., et al., Assessment of trifloxystrobin uptake kinetics, developmental toxicity and mRNA expression in rare minnow embryos. Chemosphere, 2015. 120: p. 447-455. [CrossRef]
- Lüffe, T.M., et al., Increased locomotor activity via regulation of GABAergic signalling in foxp2 mutant zebrafish—implications for neurodevelopmental disorders. Translational Psychiatry, 2021. 11(1): p. 529. [CrossRef]
- Liang, X., et al., Butylated hydroxytoluene induces hyperactivity and alters dopamine-related gene expression in larval zebrafish (Danio rerio). Environmental Pollution, 2020. 257: p. 113624. [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
