Submitted:
18 June 2025
Posted:
19 June 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction (Should Increase the Length of Introduction by Including a More Thorough Background Overview and a Detailed Analysis of Importance of TEI Effect)
2. Small RNA Functions and Mechanisms (Should Added More Reference to the Table Included, Should Added One or More Graph)
| 1 | Small RNA mechanism | Example |
| piRNA | Ranging from 24-32 nucleotides in length, piRNA expresses in several types from PIWI1 to PIWI4 in mammals. Work with the argonaut protein (AGO) regulating the mammal epigenetic. Forming piRISC to recognize the mutating transposons and distinguishing between self and non-self-transposons. | Moore et al.[8] Aravin et al. [23] |
| siRNA | siRNA is a 21-23 nt long double-stranded RNA molecule, the siRNA complex arising when dsRNA is cleaved by Dicer, a member of the RNAase III family. The siRNA induced in RNA-induced silencing complex (RISC) interacts with Argonaut 2 component, resulting in duplex unwinding and degradation of passenger strand. | Posner et al.[24] Xu et al. [25] |
| miRNA | miRNA has approximated 22 nucleotides in length deriving from the longer primary miRNA transcripts. The primary miRNA will under cleavage of the RNase III Dicer, producing miRNA interacting with the Argonaut protein family. Collaborating with the Argonaut protein, miRNA will bind with the complementary DNA strands that function to repress the transcription process. | Crisóstomo et al.[26] Baldini et al. [27] |
| snoRNA | snoRNA is small RNA that widely presents in the nucleoli of the eukaryotic cells, ranging from 60-300 nt. snoRNA has several different types like H/ACA box snoRNA, C/D box snoRNA, small cajal RNAs. snoRNA forms the small nucleolar ribonucleoproteins (snoRNPs) by binding with structures like Cbf5p, Gar1p, and Nop58p. 2’-O-methylation and pseudouridylation will be normally involved in the functioning mechanism |
Ma et al. [28] Liu et al. [29] Sarker et al. [30] |
2.1. Piwi Interacting-RNA (piRNA)
2.2 Small Interfering RNA (siRNA)
2.3. MicroRNA (miRNA)
2.4 Small Nuclear RNA and Small tRNA (snoRNA & tsRNA)
3. Mammal Experiments
3.1. Mammal Experiments Problem and Difficulty
3.2. Important Mammal Experiment Comparison and Analysis
3.2.1. Mice Related Experiment (Should Increase the Content in Mice Related Experiment)
3.2.2. Human Related Experiment & Research (Also Included Data Analysis from Human Related Experiment and Research)
3.3. Different Kinds of Environmental Stress
4. Discussion (Should Increase the Content in Discussion, Should Include Some Basic Data Analysis)
5. Conclusions
References
- Waddington, C.H. The epigenotype. 1942. Int J Epidemiol 2012, 41, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Newman, S.A.; Forgacs, G.; Muller, G.B. Before programs: The physical origination of multicellular forms. The International Journal of Developmental Biology 2006, 50, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Khatib, H.; Townsend, J.; Konkel, M.A.; Conidi, G.; Hasselkus, J.A. Calling the question: what is mammalian transgenerational epigenetic inheritance? Epigenetics 2024, 19. [Google Scholar] [CrossRef]
- Moore, R.S.; Kaletsky, R.; Murphy, C.T. Piwi/PRG-1 Argonaute and TGF-β Mediate Transgenerational Learned Pathogenic Avoidance. Cell 2019, 177, 1827–1841.e1812. [Google Scholar] [CrossRef]
- Copenhaver, G.P.; Sengupta, T.; St. Ange, J.; Kaletsky, R.; Moore, R.S.; Seto, R.J.; Marogi, J.; Myhrvold, C.; Gitai, Z.; Murphy, C.T. A natural bacterial pathogen of C. elegans uses a small RNA to induce transgenerational inheritance of learned avoidance. PLOS Genetics 2024, 20. [Google Scholar] [CrossRef]
- Kaletsky, R.; Moore, R.S.; Vrla, G.D.; Parsons, L.R.; Gitai, Z.; Murphy, C.T. C. elegans interprets bacterial non-coding RNAs to learn pathogenic avoidance. Nature 2020, 586, 445–451. [Google Scholar] [CrossRef]
- Marogi, J.G.; Murphy, C.T.; Myhrvold, C.; Gitai, Z. Pseudomonas aeruginosa modulates both Caenorhabditis elegans attraction and pathogenesis by regulating nitrogen assimilation. Nature Communications 2024, 15. [Google Scholar] [CrossRef]
- Moore, R.S.; Kaletsky, R.; Lesnik, C.; Cota, V.; Blackman, E.; Parsons, L.R.; Gitai, Z.; Murphy, C.T. The role of the Cer1 transposon in horizontal transfer of transgenerational memory. Cell 2021, 184, 4697–4712.e4618. [Google Scholar] [CrossRef]
- Burns, J.G.; Mery, F. Transgenerational memory effect of ageing in Drosophila. Journal of Evolutionary Biology 2010, 23, 678–686. [Google Scholar] [CrossRef]
- Risal, S.; Li, C.; Luo, Q.; Fornes, R.; Lu, H.; Eriksson, G.; Manti, M.; Ohlsson, C.; Lindgren, E.; Crisosto, N.; et al. Transgenerational transmission of reproductive and metabolic dysfunction in the male progeny of polycystic ovary syndrome. Cell Reports Medicine 2023, 4. [Google Scholar] [CrossRef]
- Yu, R.; Wang, X.; Moazed, D. Epigenetic inheritance mediated by coupling of RNAi and histone H3K9 methylation. Nature 2018, 558, 615–619. [Google Scholar] [CrossRef] [PubMed]
- Cong, W.; Miao, Y.; Xu, L.; Zhang, Y.; Yuan, C.; Wang, J.; Zhuang, T.; Lin, X.; Jiang, L.; Wang, N.; et al. Transgenerational memory of gene expression changes induced by heavy metal stress in rice (Oryza sativa L.). BMC Plant Biology 2019, 19. [Google Scholar] [CrossRef]
- Zhang, Q.; Tian, Y. Molecular insights into the transgenerational inheritance of stress memory. Journal of Genetics and Genomics 2022, 49, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Bottom, R.T.; Kozanian, O.O.; Rohac, D.J.; Erickson, M.A.; Huffman, K.J. Transgenerational Effects of Prenatal Ethanol Exposure in Prepubescent Mice. Frontiers in Cell and Developmental Biology 2022, 10. [Google Scholar] [CrossRef]
- Heard, E.; Martienssen, R.A. Transgenerational epigenetic inheritance: myths and mechanisms. Cell 2014, 157, 95–109. [Google Scholar] [CrossRef] [PubMed]
- Pecinka, A.; Mittelsten Scheid, O. Stress-induced chromatin changes: a critical view on their heritability. Plant Cell Physiol 2012, 53, 801–808. [Google Scholar] [CrossRef]
- Lee, J.S.; Oh, Y.; Lee, J.S.; Kim, H.S. Acute toxicity, oxidative stress, and apoptosis due to short-term triclosan exposure and multi- and transgenerational effects on in vivo endpoints, antioxidant defense, and DNA damage response in the freshwater water flea Daphnia magna. Sci Total Environ 2023, 864, 160925. [Google Scholar] [CrossRef]
- Slaughter, A.; Daniel, X.; Flors, V.; Luna, E.; Hohn, B.; Mauch-Mani, B. Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol 2012, 158, 835–843. [Google Scholar] [CrossRef]
- Kim, M.; Costello, J. DNA methylation: an epigenetic mark of cellular memory. Exp Mol Med 2017, 49, e322. [Google Scholar] [CrossRef]
- Boskovic, A.; Rando, O.J. Transgenerational Epigenetic Inheritance. Annu Rev Genet 2018, 52, 21–41. [Google Scholar] [CrossRef]
- Ozata, D.M.; Gainetdinov, I.; Zoch, A.; O'Carroll, D.; Zamore, P.D. PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet 2019, 20, 89–108. [Google Scholar] [CrossRef] [PubMed]
- Shang, R.; Lee, S.; Senavirathne, G.; Lai, E.C. microRNAs in action: biogenesis, function and regulation. Nat Rev Genet 2023, 24, 816–833. [Google Scholar] [CrossRef] [PubMed]
- Aravin, A.A.; Sachidanandam, R.; Bourc'his, D.; Schaefer, C.; Pezic, D.; Toth, K.F.; Bestor, T.; Hannon, G.J. A piRNA Pathway Primed by Individual Transposons Is Linked to De Novo DNA Methylation in Mice. Molecular Cell 2008, 31, 785–799. [Google Scholar] [CrossRef]
- Posner, R.; Toker, I.A.; Antonova, O.; Star, E.; Anava, S.; Azmon, E.; Hendricks, M.; Bracha, S.; Gingold, H.; Rechavi, O. Neuronal Small RNAs Control Behavior Transgenerationally. Cell 2019, 177, 1814–1826.e1815. [Google Scholar] [CrossRef]
- Xu, J.; He, M.; Wang, W.; Hou, J.; Chen, X.; Ding, X.; Zhang, J. siRNA-mediated Eppin testicular silencing causes changes in sperm motility and calcium currents in mice. Reprod Biol 2021, 21, 100485. [Google Scholar] [CrossRef] [PubMed]
- Crisóstomo, L.; Bourgery, M.; Rato, L.; Raposo, J.F.; Batterham, R.L.; Kotaja, N.; Alves, M.G. Testicular “Inherited Metabolic Memory” of Ancestral High-Fat Diet Is Associated with Sperm sncRNA Content. Biomedicines 2022, 10. [Google Scholar] [CrossRef]
- Baldini, L.; Charpentier, B.; Labialle, S. Emerging Data on the Diversity of Molecular Mechanisms Involving C/D snoRNAs. Non-Coding RNA 2021, 7. [Google Scholar] [CrossRef]
- Ma, Z.; Tang, N.; Zhang, R.; Deng, H.; Chen, K.; Liu, Y.; Ding, Z. Ribonuclease Inhibitor 1 (RNH1) Regulates Sperm tsRNA Generation for Paternal Inheritance through Interacting with Angiogenin in the Caput Epididymis. Antioxidants 2024, 13. [Google Scholar] [CrossRef]
- Liu, B.; Cao, J.; Wang, X.; Guo, C.; Liu, Y.; Wang, T. Deciphering the tRNA-derived small RNAs: origin, development, and future. Cell Death Dis 2021, 13, 24. [Google Scholar] [CrossRef]
- Sarker, G.; Sun, W.; Rosenkranz, D.; Pelczar, P.; Opitz, L.; Efthymiou, V.; Wolfrum, C.; Peleg-Raibstein, D. Maternal overnutrition programs hedonic and metabolic phenotypes across generations through sperm tsRNAs. Proceedings of the National Academy of Sciences 2019, 116, 10547–10556. [Google Scholar] [CrossRef]
- Grundy, E.E.; Diab, N.; Chiappinelli, K.B. Transposable element regulation and expression in cancer. FEBS J 2022, 289, 1160–1179. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ramat, A.; Simonelig, M.; Liu, M.F. Emerging roles and functional mechanisms of PIWI-interacting RNAs. Nat Rev Mol Cell Biol 2023, 24, 123–141. [Google Scholar] [CrossRef] [PubMed]
- Siomi, M.C.; Sato, K.; Pezic, D.; Aravin, A.A. PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol 2011, 12, 246–258. [Google Scholar] [CrossRef]
- Roovers, Elke F.; Rosenkranz, D.; Mahdipour, M.; Han, C.-T.; He, N.; Chuva de Sousa Lopes, Susana M.; van der Westerlaken, Lucette A.J.; Zischler, H.; Butter, F.; Roelen, Bernard A.J.; et al. Piwi Proteins and piRNAs in Mammalian Oocytes and Early Embryos. Cell Reports 2015, 10, 2069–2082. [Google Scholar] [CrossRef]
- Klattenhoff, C.; Theurkauf, W. Biogenesis and germline functions of piRNAs. Development 2008, 135, 3–9. [Google Scholar] [CrossRef]
- Du, L.; Chen, W.; Zhang, D.; Cui, Y.; He, Z. The functions and mechanisms of piRNAs in mediating mammalian spermatogenesis and their applications in reproductive medicine. Cellular and Molecular Life Sciences 2024, 81. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, E.; Caudy, A.A.; Hammond, S.M.; Hannon, G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001, 409, 363–366. [Google Scholar] [CrossRef]
- Gu, W.; Lee, H.-C.; Chaves, D.; Youngman, E.M.; Pazour, G.J.; Conte, D.; Mello, C.C. CapSeq and CIP-TAP Identify Pol II Start Sites and Reveal Capped Small RNAs as C. elegans piRNA Precursors. Cell 2012, 151, 1488–1500. [Google Scholar] [CrossRef]
- Tyebji, S.; Hannan, A.J.; Tonkin, C.J. Pathogenic Infection in Male Mice Changes Sperm Small RNA Profiles and Transgenerationally Alters Offspring Behavior. Cell Reports 2020, 31. [Google Scholar] [CrossRef]
- Gou, L.T.; Kang, J.Y.; Dai, P.; Wang, X.; Li, F.; Zhao, S.; Zhang, M.; Hua, M.M.; Lu, Y.; Zhu, Y.; et al. Ubiquitination-Deficient Mutations in Human Piwi Cause Male Infertility by Impairing Histone-to-Protamine Exchange during Spermiogenesis. Cell 2017, 169, 1090–1104. [Google Scholar] [CrossRef]
- Zhao, S.; Gou, L.-T.; Zhang, M.; Zu, L.-D.; Hua, M.-M.; Hua, Y.; Shi, H.-J.; Li, Y.; Li, J.; Li, D.; et al. piRNA-Triggered MIWI Ubiquitination and Removal by APC/C in Late Spermatogenesis. Developmental Cell 2013, 24, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Alshaer, W.; Zureigat, H.; Al Karaki, A.; Al-Kadash, A.; Gharaibeh, L.; Hatmal, M.M.; Aljabali, A.A.A.; Awidi, A. siRNA: Mechanism of action, challenges, and therapeutic approaches. Eur J Pharmacol 2021, 905, 174178. [Google Scholar] [CrossRef]
- Cecere, G. Small RNAs in epigenetic inheritance: from mechanisms to trait transmission. FEBS Letters 2021, 595, 2953–2977. [Google Scholar] [CrossRef]
- Tatiparti, K.; Sau, S.; Kashaw, S.; Iyer, A. siRNA Delivery Strategies: A Comprehensive Review of Recent Developments. Nanomaterials 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Seroussi, U.; Lugowski, A.; Wadi, L.; Lao, R.X.; Willis, A.R.; Zhao, W.; Sundby, A.E.; Charlesworth, A.G.; Reinke, A.W.; Claycomb, J.M. A comprehensive survey of C. elegans argonaute proteins reveals organism-wide gene regulatory networks and functions. Elife 2023, 12. [Google Scholar] [CrossRef] [PubMed]
- Tam, O.H.; Aravin, A.A.; Stein, P.; Girard, A.; Murchison, E.P.; Cheloufi, S.; Hodges, E.; Anger, M.; Sachidanandam, R.; Schultz, R.M.; et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 2008, 453, 534–538. [Google Scholar] [CrossRef]
- Watanabe, T.; Totoki, Y.; Toyoda, A.; Kaneda, M.; Kuramochi-Miyagawa, S.; Obata, Y.; Chiba, H.; Kohara, Y.; Kono, T.; Nakano, T.; et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 2008, 453, 539–543. [Google Scholar] [CrossRef]
- Phillips, C.M.; Almeida, M.V.; de Jesus Domingues, A.M.; Ketting, R.F. Maternal and zygotic gene regulatory effects of endogenous RNAi pathways. PLOS Genetics 2019, 15. [Google Scholar] [CrossRef]
- Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 2014, 15, 509–524. [Google Scholar] [CrossRef]
- Pasquinelli, A.E.; Reinhart, B.J.; Slack, F.; Martindale, M.Q.; Kuroda, M.I.; Maller, B.; Hayward, D.C.; Ball, E.E.; Degnan, B.; Muller, P.; et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 2000, 408, 86–89. [Google Scholar] [CrossRef]
- Czech, B.; Hannon, G.J. Small RNA sorting: matchmaking for Argonautes. Nature Reviews Genetics 2010, 12, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Das, P.P.; Bagijn, M.P.; Goldstein, L.D.; Woolford, J.R.; Lehrbach, N.J.; Sapetschnig, A.; Buhecha, H.R.; Gilchrist, M.J.; Howe, K.L.; Stark, R.; et al. Piwi and piRNAs Act Upstream of an Endogenous siRNA Pathway to Suppress Tc3 Transposon Mobility in the Caenorhabditis elegans Germline. Molecular Cell 2008, 31, 79–90. [Google Scholar] [CrossRef]
- Champroux, A.; Tang, Y.; Dickson, D.A.; Meng, A.; Harrington, A.; Liaw, L.; Marzi, M.; Nicassio, F.; Schlaeger, T.M.; Feig, L.A. Transmission of reduced levels of miR-34/449 from sperm to preimplantation embryos is a key step in the transgenerational epigenetic inheritance of the effects of paternal chronic social instability stress. Epigenetics 2024, 19, 2346694. [Google Scholar] [CrossRef]
- Chen, T.-H.; Chen, J.-A. Multifaceted roles of microRNAs: From motor neuron generation in embryos to degeneration in spinal muscular atrophy. eLife 2019, 8. [Google Scholar] [CrossRef] [PubMed]
- Benito, E.; Kerimoglu, C.; Ramachandran, B.; Pena-Centeno, T.; Jain, G.; Stilling, R.M.; Islam, M.R.; Capece, V.; Zhou, Q.; Edbauer, D.; et al. RNA-Dependent Intergenerational Inheritance of Enhanced Synaptic Plasticity after Environmental Enrichment. Cell Reports 2018, 23, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.H.; Du, Y.P.; Wen, J.T.; Lu, B.F.; Zhao, Y. snoRNAs: functions and mechanisms in biological processes, and roles in tumor pathophysiology. Cell Death Discov 2022, 8, 259. [Google Scholar] [CrossRef]
- Bortolin, M.L.; Ganot, P.; Kiss, T. Elements essential for accumulation and function of small nucleolar RNAs directing site-specific pseudouridylation of ribosomal RNAs. EMBO J 1999, 18, 457–469. [Google Scholar] [CrossRef]
- Bergstrand, S.; O’Brien, E.M.; Coucoravas, C.; Hrossova, D.; Peirasmaki, D.; Schmidli, S.; Dhanjal, S.; Pederiva, C.; Siggens, L.; Mortusewicz, O.; et al. Small Cajal body-associated RNA 2 (scaRNA2) regulates DNA repair pathway choice by inhibiting DNA-PK. Nature Communications 2022, 13. [Google Scholar] [CrossRef]
- Rogelj, B.; Božič, J.; Bratkovič, T. Functional diversity of small nucleolar RNAs. Nucleic Acids Research 2020, 48, 1627–1651. [Google Scholar] [CrossRef]
- Jin, G.; Xu, M.; Zou, M.; Duan, S. The Processing, Gene Regulation, Biological Functions, and Clinical Relevance of N4-Acetylcytidine on RNA: A Systematic Review. Molecular Therapy - Nucleic Acids 2020, 20, 13–24. [Google Scholar] [CrossRef]
- Philippe Ganot, M.-L.B., and Tama ́ s Kiss. Site-Specific Pseudouridine Formation in Preribosomal RNA Is Guided by Small Nucleolar RNAs. 1997.
- Zong, T.; Yang, Y.; Zhao, H.; Li, L.; Liu, M.; Fu, X.; Tang, G.; Zhou, H.; Aung, L.H.H.; Li, P.; et al. tsRNAs: Novel small molecules from cell function and regulatory mechanism to therapeutic targets. Cell Prolif 2021, 54, e12977. [Google Scholar] [CrossRef] [PubMed]
- Tao, E.W.; Cheng, W.Y.; Li, W.L.; Yu, J.; Gao, Q.Y. tiRNAs: A novel class of small noncoding RNAs that helps cells respond to stressors and plays roles in cancer progression. Journal of Cellular Physiology 2019, 235, 683–690. [Google Scholar] [CrossRef]
- Elkordy, A.; Mishima, E.; Niizuma, K.; Akiyama, Y.; Fujimura, M.; Tominaga, T.; Abe, T. Stress-induced tRNA cleavage and tiRNA generation in rat neuronal PC12 cells. Journal of Neurochemistry 2018, 146, 560–569. [Google Scholar] [CrossRef]
- Canan Kuscu, P.K., MANJARI KIRAN, ZHANGLI SU, ASRAR MALIK, and ANINDYA DUTTA. tRNA fragments (tRFs) guide Ago to regulate gene expression post-transcriptionally in a Dicer-independent manner. 2018. [CrossRef]
- 10.1261/rna.066126.called.
- Burton, A.C.; Beirne, C.; Gaynor, K.M.; Sun, C.; Granados, A.; Allen, M.L.; Alston, J.M.; Alvarenga, G.C.; Calderon, F.S.A.; Amir, Z.; et al. Mammal responses to global changes in human activity vary by trophic group and landscape. Nat Ecol Evol 2024, 8, 924–935. [Google Scholar] [CrossRef] [PubMed]
- Brembs, B.; Kikusui, T.; Nakanishi, K.; Nakagawa, R.; Nagasawa, M.; Mogi, K.; Okanoya, K. Cross Fostering Experiments Suggest That Mice Songs Are Innate. PLoS ONE 2011, 6. [Google Scholar] [CrossRef]
- Latorre-Pellicer, A.; Moreno-Loshuertos, R.; Lechuga-Vieco, A.V.; Sánchez-Cabo, F.; Torroja, C.; Acín-Pérez, R.; Calvo, E.; Aix, E.; González-Guerra, A.; Logan, A.; et al. Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature 2016, 535, 561–565. [Google Scholar] [CrossRef]
- Wu, L.L.; Russell, D.L.; Wong, S.L.; Chen, M.; Tsai, T.-S.; St John, J.C.; Norman, R.J.; Febbraio, M.A.; Carroll, J.; Robker, R.L. Mitochondrial dysfunction in oocytes of obese mothers: transmission to offspring and reversal by pharmacological endoplasmic reticulum stress inhibitors. Development 2015, 142, 681–691. [Google Scholar] [CrossRef]
- Arai, J.A.; Li, S.; Hartley, D.M.; Feig, L.A. Transgenerational Rescue of a Genetic Defect in Long-Term Potentiation and Memory Formation by Juvenile Enrichment. The Journal of Neuroscience 2009, 29, 1496–1502. [Google Scholar] [CrossRef] [PubMed]
- Curley, J.P. Social enrichment during postnatal development induces transgenerational effects on emotional and reproductive behavior in mice. Frontiers in Behavioral Neuroscience 2009, 3. [Google Scholar] [CrossRef]
- Gapp, K.; Bohacek, J.; Grossmann, J.; Brunner, A.M.; Manuella, F.; Nanni, P.; Mansuy, I.M. Potential of Environmental Enrichment to Prevent Transgenerational Effects of Paternal Trauma. Neuropsychopharmacology 2016, 41, 2749–2758. [Google Scholar] [CrossRef]
- McGreevy, K.R.; Tezanos, P.; Ferreiro-Villar, I.; Palle, A.; Moreno-Serrano, M.; Esteve-Codina, A.; Lamas-Toranzo, I.; Bermejo-Alvarez, P.; Fernandez-Punzano, J.; Martin-Montalvo, A.; et al. Intergenerational transmission of the positive effects of physical exercise on brain and cognition. Proc Natl Acad Sci U S A 2019, 116, 10103–10112. [Google Scholar] [CrossRef] [PubMed]
- Cintado, E.; Tezanos, P.; De Las Casas, M.; Muela, P.; McGreevy, K.R.; Fontan-Lozano, A.; Sacristan-Horcajada, E.; Pignatelli, J.; de Ceballos, M.L.; Del Hierro, M.J.; et al. Grandfathers-to-Grandsons Transgenerational Transmission of Exercise Positive Effects on Cognitive Performance. J Neurosci 2024, 44. [Google Scholar] [CrossRef]
- Grayson, B.; Leger, M.; Piercy, C.; Adamson, L.; Harte, M.; Neill, J.C. Assessment of disease-related cognitive impairments using the novel object recognition (NOR) task in rodents. Behav Brain Res 2015, 285, 176–193. [Google Scholar] [CrossRef]
- Takahashi, Y.; Morales Valencia, M.; Yu, Y.; Ouchi, Y.; Takahashi, K.; Shokhirev, M.N.; Lande, K.; Williams, A.E.; Fresia, C.; Kurita, M.; et al. Transgenerational inheritance of acquired epigenetic signatures at CpG islands in mice. Cell 2023, 186, 715–731.e719. [Google Scholar] [CrossRef]
- Benatti, R.O.; Melo, A.M.; Borges, F.O.; Ignacio-Souza, L.M.; Simino, L.A.P.; Milanski, M.; Velloso, L.A.; Torsoni, M.A.; Torsoni, A.S. Maternal high-fat diet consumption modulates hepatic lipid metabolism and microRNA-122 (miR-122) and microRNA-370 (miR-370) expression in offspring. British Journal of Nutrition 2014, 111, 2112–2122. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.A.; Deasy, W.; Hayes, A.; Cooke, M.B. High fat diet and associated changes in the expression of micro-RNAsin tissue: Lessons learned from animal studies. Molecular Nutrition & Food Research 2017, 61. [Google Scholar] [CrossRef]
- tZhao, X.; Chen, Z.; Zhou, Z.; Li, Y.; Wang, Y.; Zhou, Z.; Lu, H.; Sun, C.; Chu, X. High-throughput sequencing of small RNAs and analysis of differentially expressed microRNAs associated with high-fat diet-induced hepatic insulin resistance in mice. Genes & Nutrition 2019, 14. [Google Scholar] [CrossRef]
- Zheng, X.; Li, Z.; Wang, G.; Wang, H.; Zhou, Y.; Zhao, X.; Cheng, C.Y.; Qiao, Y.; Sun, F. Sperm epigenetic alterations contribute to inter- and transgenerational effects of paternal exposure to long-term psychological stress via evading offspring embryonic reprogramming. Cell Discovery 2021, 7. [Google Scholar] [CrossRef]
- Yin, X.; Anwar, A.; Wang, Y.; Hu, H.; Liang, G.; Zhang, C. Paternal environmental exposure-induced spermatozoal small noncoding RNA alteration meditates the intergenerational epigenetic inheritance of multiple diseases. Front Med 2022, 16, 176–184. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Z.P.; Hu, H.; Lei, J.; Zhou, Z.; Yao, B.; Chen, L.; Liang, G.; Zhan, S.; Zhu, X.; et al. Sperm microRNAs confer depression susceptibility to offspring. Sci Adv 2021, 7. [Google Scholar] [CrossRef]
- Skinner, M.K.; Ben Maamar, M.; Sadler-Riggleman, I.; Beck, D.; Nilsson, E.; McBirney, M.; Klukovich, R.; Xie, Y.; Tang, C.; Yan, W. Alterations in sperm DNA methylation, non-coding RNA and histone retention associate with DDT-induced epigenetic transgenerational inheritance of disease. Epigenetics & Chromatin 2018, 11. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, Z.; Gu, Y.; Zhang, R.; Huang, J.; Li, F.; He, Y.; Lu, S.; Wu, Y.; Zeng, W.; et al. Inter- and trans-generational impacts of real-world PM(2.5) exposure on male-specific primary hypogonadism. Cell Discov 2024, 10, 44. [Google Scholar] [CrossRef]
- Zeng, L.; Zhou, J.; Zhang, Y.; Wang, X.; Wang, M.; Su, P. Differential Expression Profiles and Potential Intergenerational Functions of tRNA-Derived Small RNAs in Mice After Cadmium Exposure. Front Cell Dev Biol 2021, 9, 791784. [Google Scholar] [CrossRef]
- Yeshurun, S.; Hannan, A.J. Transgenerational epigenetic influences of paternal environmental exposures on brain function and predisposition to psychiatric disorders. Molecular Psychiatry 2018, 24, 536–548. [Google Scholar] [CrossRef] [PubMed]
- Martos, S.N.; Tang, W.Y.; Wang, Z. Elusive inheritance: Transgenerational effects and epigenetic inheritance in human environmental disease. Prog Biophys Mol Biol 2015, 118, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Lumey, L.H.; Stein, A.D.; Susser, E. Prenatal famine and adult health. Annu Rev Public Health 2011, 32, 237–262. [Google Scholar] [CrossRef] [PubMed]
- Pembrey, M.; Saffery, R.; Bygren, L.O. Human transgenerational responses to early-life experience: potential impact on development, health and biomedical research. Journal of Medical Genetics 2014, 51, 563–572. [Google Scholar] [CrossRef]
- Monaco, A.P. An epigenetic, transgenerational model of increased mental health disorders in children, adolescents and young adults. Eur J Hum Genet 2021, 29, 387–395. [Google Scholar] [CrossRef]
- Locasale, J.W.; Nätt, D.; Kugelberg, U.; Casas, E.; Nedstrand, E.; Zalavary, S.; Henriksson, P.; Nijm, C.; Jäderquist, J.; Sandborg, J.; et al. Human sperm displays rapid responses to diet. PLOS Biology 2019, 17. [Google Scholar] [CrossRef]
- Gaspari, L.; Haouzi, D.; Gennetier, A.; Granes, G.; Soler, A.; Sultan, C.; Paris, F.; Hamamah, S. Transgenerational Transmission of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) Effects in Human Granulosa Cells: The Role of MicroRNAs. Int J Mol Sci 2024, 25. [Google Scholar] [CrossRef]
- Marczylo, E.L.; Amoako, A.A.; Konje, J.C.; Gant, T.W.; Marczylo, T.H. Smoking induces differential miRNA expression in human spermatozoa: a potential transgenerational epigenetic concern? Epigenetics 2012, 7, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Dickson, D.A.; Paulus, J.K.; Mensah, V.; Lem, J.; Saavedra-Rodriguez, L.; Gentry, A.; Pagidas, K.; Feig, L.A. Reduced levels of miRNAs 449 and 34 in sperm of mice and men exposed to early life stress. Translational Psychiatry 2018, 8. [Google Scholar] [CrossRef]
- Oliva Trejo, J.A.; Tanida, I.; Suzuki, C.; Kakuta, S.; Tada, N.; Uchiyama, Y. Characterization of starvation-induced autophagy in cerebellar Purkinje cells of pHluorin-mKate2-human LC3B transgenic mice. Scientific Reports 2020, 10. [Google Scholar] [CrossRef]
- Huypens, P.; Sass, S.; Wu, M.; Dyckhoff, D.; Tschop, M.; Theis, F.; Marschall, S.; Hrabe de Angelis, M.; Beckers, J. Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nat Genet 2016, 48, 497–499. [Google Scholar] [CrossRef] [PubMed]
- Fullston, T.; Palmer, N.O.; Owens, J.A.; Mitchell, M.; Bakos, H.W.; Lane, M. Diet-induced paternal obesity in the absence of diabetes diminishes the reproductive health of two subsequent generations of mice. Hum Reprod 2012, 27, 1391–1400. [Google Scholar] [CrossRef]
- Crisóstomo, L.; Jarak, I.; Rato, L.P.; Raposo, J.F.; Batterham, R.L.; Oliveira, P.F.; Alves, M.G. Inheritable testicular metabolic memory of high-fat diet causes transgenerational sperm defects in mice. Scientific Reports 2021, 11. [Google Scholar] [CrossRef] [PubMed]
- Haberman, M.; Menashe, T.; Cohen, N.; Kisliouk, T.; Yadid, T.; Marco, A.; Meiri, N.; Weller, A. Paternal high-fat diet affects weight and DNA methylation of their offspring. Scientific Reports 2024, 14. [Google Scholar] [CrossRef]
- Rodgers, A.B.; Morgan, C.P.; Bronson, S.L.; Revello, S.; Bale, T.L. Paternal Stress Exposure Alters Sperm MicroRNA Content and Reprograms Offspring HPA Stress Axis Regulation. The Journal of Neuroscience 2013, 33, 9003–9012. [Google Scholar] [CrossRef]
- Gapp, K.; van Steenwyk, G.; Germain, P.L.; Matsushima, W.; Rudolph, K.L.M.; Manuella, F.; Roszkowski, M.; Vernaz, G.; Ghosh, T.; Pelczar, P.; et al. Alterations in sperm long RNA contribute to the epigenetic inheritance of the effects of postnatal trauma. Molecular Psychiatry 2018, 25, 2162–2174. [Google Scholar] [CrossRef]
- Klosin, A.; Casas, E.; Hidalgo-Carcedo, C.; Vavouri, T.; Lehner, B. Transgenerational transmission of environmental information in C. elegans. Science 2017, 356, 320–323. [Google Scholar] [CrossRef]
- Dias, B.G.; Ressler, K.J. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nature Neuroscience 2013, 17, 89–96. [Google Scholar] [CrossRef]
- tNakamura, N.; Yoshida, N.; Suwa, T. Three major reasons why transgenerational effects of radiation are difficult to detect in humans. Int J Radiat Biol 2024, 100, 1297–1311. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Singh, P. Detection of transgenerational spermatogenic inheritance of adult male acquired CNS gene expression characteristics using a Drosophila systems model. PLoS One 2009, 4, e5763. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Zhang, Y.; Tan, D.; Zhang, X.; Yan, M.; Zhang, Y.; Franklin, R.; Shahbazi, M.; Mackinlay, K.; Liu, S.; et al. PANDORA-seq expands the repertoire of regulatory small RNAs by overcoming RNA modifications. Nat Cell Biol 2021, 23, 424–436. [Google Scholar] [CrossRef]
- Guérin, T.M.; Palladino, F.; Robert, V.J. Transgenerational functions of small RNA pathways in controlling gene expression inC. elegans. Epigenetics 2013, 9, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Ow, M.C.; Hall, S.E. Inheritance of Stress Responses via Small Non-Coding RNAs in Invertebrates and Mammals. Epigenomes 2023, 8. [Google Scholar] [CrossRef]
- Al Jowf, G.I.; Snijders, C.; Rutten, B.P.F.; de Nijs, L.; Eijssen, L.M.T. The Molecular Biology of Susceptibility to Post-Traumatic Stress Disorder: Highlights of Epigenetics and Epigenomics. International Journal of Molecular Sciences 2021, 22. [Google Scholar] [CrossRef]
- Perez, M.F.; Lehner, B. Intergenerational and transgenerational epigenetic inheritance in animals. Nature Cell Biology 2019, 21, 143–151. [Google Scholar] [CrossRef]
- Sharma, A. Transgenerational epigenetics: Integrating soma to germline communication with gametic inheritance. Mech Ageing Dev 2017, 163, 15–22. [Google Scholar] [CrossRef]
- Daxinger, L.; Whitelaw, E. Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nature Reviews Genetics 2012, 13, 153–162. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).