Submitted:
13 June 2025
Posted:
13 June 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Early Phase (1997–2004): The Neurotoxin Model and Visual Contrast Sensitivity
3. Formative Phase (2005–2010): Multisystem Biomarker Validation and Structured Case Definitions
4. Imaging and Neuroimmune Refinement (2010–2014)
5. Transcriptomic Era Begins (2015–2017): From RNA-Seq to Targeted Expression Profiling
6. Systems Integration (2017–2020): Diagnostic Convergence in Clinical Practice
7. Environmental Genomics and Causation (2021-22)
8. Transcriptomic Expansion and Neuroimmune Risk Signaling (2023–2024)
9. Ongoing Validation and Future Research (2025– )
10. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Graves, B. S.; Patel, M.; Newgent, H.; Parvathy, G.; Nasri, A.; Moxam, J.; Gill, G. S.; Sawhney, V.; Gupta, M. , Chronic Fatigue Syndrome: Diagnosis, Treatment, and Future Direction. Cureus 2024, 16, e70616. [Google Scholar] [CrossRef] [PubMed]
- Dooley, M.; Vukelic, A.; Jim, L. , Chronic inflammatory response syndrome: a review of the evidence of clinical efficacy of treatment. Ann Med Surg (Lond) 2024, 86, 7248–7254. [Google Scholar] [CrossRef] [PubMed]
- Shoemaker, R. C.; Heyman, A.; Mancia, A.; Ryan, J. C. , Inflammation Induced Chronic Fatiguing Illnesses: A steady march towards understanding mechanisms and identifying new biomarkers and therapies. Intern Med Rev 2017, 3, 1–30. [Google Scholar]
- Grach, S. L.; Seltzer, J.; Chon, T. Y.; Ganesh, R. , Diagnosis and Management of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Mayo Clin Proc 2023, 98, 1544–1551. [Google Scholar] [CrossRef]
- Okamoto, L. E.; Urechie, V.; Rigo, S.; Abner, J. J.; Giesecke, M.; Muldowney, J. A. S.; Furlan, R.; Shibao, C. A.; Shirey-Rice, J. K.; Pulley, J. M.; Diedrich, A.; Biaggioni, I. , Hyperadrenergic Postural Tachycardia Syndrome: Clinical Biomarkers and Response to Guanfacine. Hypertension 2024, 81, 2237–2247. [Google Scholar] [CrossRef] [PubMed]
- Clarke, K. S. P.; Kingdon, C. C.; Hughes, M. P.; Lacerda, E. M.; Lewis, R.; Kruchek, E. J.; Dorey, R. A.; Labeed, F. H. , The search for a blood-based biomarker for Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome (ME/CFS): from biochemistry to electrophysiology. J Transl Med 2025, 23, 149. [Google Scholar] [CrossRef]
- Johnson, L.; Shapiro, M.; Needell, D.; Stricker, R. B. , Optimizing Exclusion Criteria for Clinical Trials of Persistent Lyme Disease Using Real-World Data. Healthcare (Basel) 2024, 13. [Google Scholar] [CrossRef]
- Tsamou, M.; Kremers, F. A. C.; Samaritakis, K. A.; Roggen, E. L., Identifying microRNAs Possibly Implicated in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Fibromyalgia: A Review. Int J Mol Sci 2024, 25, (17).
- Sun, Y.; Zhang, Z.; Qiao, Q.; Zou, Y.; Wang, L.; Wang, T.; Lou, B.; Li, G.; Xu, M.; Wang, Y.; Zhang, Z.; Hou, X.; Chen, L.; Zhao, R. , Immunometabolic changes and potential biomarkers in CFS peripheral immune cells revealed by single-cell RNA sequencing. J Transl Med 2024, 22, 1–22. [Google Scholar] [CrossRef]
- Maya, J. , Surveying the Metabolic and Dysfunctional Profiles of T Cells and NK Cells in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Int J Mol Sci 2023, 24. [Google Scholar] [CrossRef]
- Elahi, S.; Rezaeifar, M.; Osman, M.; Shahbaz, S. , Exploring the role of galectin-9 and artemin as biomarkers in long COVID with chronic fatigue syndrome: links to inflammation and cognitive function. Front Immunol 2024, 15, 1443363. [Google Scholar] [CrossRef]
- Azcue, N.; Tijero-Merino, B.; Acera, M.; Perez-Garay, R.; Fernandez-Valle, T.; Ayo-Mentxakatorre, N.; Ruiz-Lopez, M.; Lafuente, J. V.; Gomez Esteban, J. C.; Del Pino, R. , Plasma Neurofilament Light Chain: A Potential Biomarker for Neurological Dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Biomedicines 2024, 12. [Google Scholar] [CrossRef] [PubMed]
- Davis, L.; Higgs, M.; Snaith, A.; Lodge, T. A.; Strong, J.; Espejo-Oltra, J. A.; Kujawaki, S.; Zalewski, P.; Pretorius, E.; Hoerger, M.; Morten, K. J. , Dysregulation of lipid metabolism, energy production, and oxidative stress in myalgic encephalomyelitis/chronic fatigue syndrome, Gulf War Syndrome and fibromyalgia. Front Neurosci 2025, 19. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Lidbury, B. A.; Thomas, N.; Gooley, P. R.; Armstrong, C. W. , Machine learning and multi-omics in precision medicine for ME/CFS. J Transl Med 2025, 23, 68. [Google Scholar] [CrossRef]
- Xiong, R.; Aiken, E.; Caldwell, R.; Vernon, S. D.; Kozhaya, L.; Gunter, C.; Bateman, L.; Unutmaz, D.; Oh, J. , BioMapAI: Artificial Intelligence Multi-Omics Modeling of Myalgic Encephalomyelitis / Chronic Fatigue Syndrome. bioRxiv 2025. [Google Scholar]
- Yagin, F.; Alkhateeb, A.; Raza, A.; Samee, N.; Mahmoud, N.; Colak, C.; Yagin, B. , An Explainable Artificial Intelligence Model Proposed for the Prediction of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and the Identification of Distinctive Metabolites. Diagnostics 2023, 13, 3495. [Google Scholar] [CrossRef]
- Thomas, N.; Chau, T.; Tantanis, D.; Huang, K.; Scheinberg, A.; Gooley, P. R.; Josev, E. K.; Knight, S. J.; Armstrong, C. W. , Serial Paediatrics Omics Tracking in Myalgic Encephalomyelitis (SPOT-ME): protocol paper for a multidisciplinary, observational study of clinical and biological markers of paediatric myalgic encephalomyelitis/chronic fatigue syndrome in Australian adolesc. BMJ Open 2024, 14, e089038. [Google Scholar]
- Smyth, N. J.; Blitshteyn, S. , Language Matters: What Not to Say to Patients with Long COVID, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome, and Other Complex Chronic Disorders. Int J Environ Res Public Health 2025, 22. [Google Scholar] [CrossRef]
- Nunes, M.; Vlok, M.; Proal, A.; Kell, D. B.; Pretorius, E. , Data-independent LC-MS/MS analysis of ME/CFS plasma reveals a dysregulated coagulation system, endothelial dysfunction, downregulation of complement machinery. Cardiovasc Diabetol 2024, 23, 254. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; A, G. C. d. S.; Thomas, N.; Phair, R. D.; Gooley, P. R.; Ascher, D. B.; Armstrong, C. W. , Discriminating Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and comorbid conditions using metabolomics in UK Biobank. Commun Med (Lond) 2024, 4, 248. [Google Scholar] [CrossRef]
- Shoemaker, R. C.; Johnson, K.; Jim, L.; Berry, Y.; Dooley, M.; Ryan, J. C.; McMahon, S. W. , Diagnostic Process for Chronic Inflammatory Response Syndrome (CIRS): A Consensus Statement Report of the Consensus Committee of Surviving Mold. Intern Med Rev 2018, 4, 1–47. [Google Scholar]
- McMahon, S. W. , An Evaluation of Alternate Means to Diagnose Chronic Inflammatory Response Syndrome and Determine Prevalence. Med Res Arch 2017, 5, 1–17. [Google Scholar] [CrossRef]
- Shoemaker, R. C.; Hudnell, H. K. , Possible Estuary-Associated Syndrome: Symptoms, Vision, and Treatment. Environ Health Perspect 2001, 109, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Shoemaker, R. C.; Rash, J. M.; Simon, E. W., Sick Building Syndrome in water-damaged buildings: Generalization of the chronic biotoxin-associated illness paradigm to indoor toxigenic fungi. In Bioaerosols, Fungi. Bacteria, Mycotoxins and Human Health; Johanning, E. Ed; Boyd Printing: Albany, NY 2005; pp 66-67. Albany.
- Shoemaker, R. C.; House, D. E. , Sick building syndrome (SBS) and exposure to water-damaged buildings: time series study, clinical trial and mechanisms. Neurotoxicol Teratol 2006, 28, 573–88. [Google Scholar] [CrossRef]
- Shoemaker, R. C. , Surviving Mold: Life in the Era of Dangerous Buildings; Otter Bay Books, LLC: Baltimore, MD, 2010. [Google Scholar]
- Shoemaker, R. C.; House, D.; Ryan, J. C. , Vasoactive intestinal polypeptide (VIP) corrects chronic inflammatory response syndrome (CIRS) acquired following exposure to water-damaged buildings. Health 2013, 05, 396–401. [Google Scholar] [CrossRef]
- Shoemaker, R. C.; House, D.; Ryan, J. C. , Structural brain abnormalities in patients with inflammatory illness acquired following exposure to water-damaged buildings: a volumetric MRI study using NeuroQuant(R). Neurotoxicol Teratol 2014, 45, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Ryan, J. C.; Wu, Q.; Shoemaker, R. C. , Transcriptomic signatures in whole blood of patients who acquire a chronic inflammatory response syndrome (CIRS) following an exposure to the marine toxin ciguatoxin. BMC Med Genomics 2015, 8, 15. [Google Scholar] [CrossRef]
- Ryan, J. C.; Shoemaker, R. C. , RNA-Seq on patients with chronic inflammatory response syndrome (CIRS) treated with vasoactive intestinal peptide (VIP) shows a shift in metabolic state and innate immune functions that coincide with healing. Med Res Arch 2016, 4, 1–10. [Google Scholar]
- McMahon, S. W.; Shoemaker, R. C.; Ryan, J. C. , Reduction in Forebrain Parenchymal and Cortical Grey Matter Swelling Across Treatment Groups in patients with inflammatory illness. J Neurosci Clin Res 2016, 1, 1–4. [Google Scholar]
- Shoemaker, R. C.; McMahon, S. W.; Heyman, A.; Lark, D.; M, v. d. W.; Ryan, J. C. , Treatable metabolic and inflammatory abnormalities in Post COVID Syndrome (PCS) define the transcriptomic basis for persistent symptoms: Lessons from CIRS. Med Res Arch 2021, 9, 1–18. [Google Scholar] [CrossRef]
- Shoemaker, R. C.; Katz, D.; Ackerly, M.; Rapaport, S.; McMahon, S. W.; Berndtson, K.; Ryan, J. C. , Intranasal VIP safely restores volume to multiple grey matter nuclei in patients with CIRS. Intern Med Rev 2017, 3, 1–14. [Google Scholar] [CrossRef]
- Shoemaker, R. C. , Metabolism, molecular hypometabolism and inflammation: Complications of proliferative physiology include metabolic acidosis, pulmonary hypertension, T reg cell deficiency, insulin resistance and neuronal injury. Trends Diabetes Metab 2020, 3. [Google Scholar] [CrossRef]
- Shoemaker, R. C.; Neil, V.; Heyman, A.; van der Westhuizen, M.; McMahon, S. W.; Lark, D. , New Molecular Methods Bring New Insight into Human- And Building -Health Risk Assessments from Water-Damaged Buildings: Defining Exposure and Reacity, the Two Sides of Causation of CIRS-WDB Illness. Med Res Arch 2021, 9, 1–36. [Google Scholar] [CrossRef]
- Shoemaker, R.; Heyman, A.; Lark, D. , TUBB1, TUBA4A and MAPK as Indicators of Die-Back Degenerative Central Nervous System Disease in Patients Sickened by Specific Exposure to the Interior Environment of Water- Damaged Buildings. Med Res Arch 2023, 11. [Google Scholar] [CrossRef]
- Shoemaker, R. C.; Heyman, A.; Lark, D. , Exposure to the Interior Environment of Water-Damaged Buildings Can Activate HIF 1A, Induce Proliferative Physiology and Impair Mitochondrial Metabolism. Med Res Arch 2024, 12, 1–11. [Google Scholar] [CrossRef]
- Shoemaker, R. C.; Ryan, J. C.; Heyman, A.; Dorninger, E.; McMahon, S. W.; Lark, D. , A Transcriptomic Fingerprint for Parkinsons Disease Found in Patients with Chronic Inflammatory Response Syndrome: Implications for Diagnosis, Treatment and Prevention. Med Res Arch 2024, 12, 1–9. [Google Scholar] [CrossRef]
- Shoemaker, R. C. , Diagnosis of Pfiesteria-human illness syndrome. Md Med J 1997, 1997, 521–523. [Google Scholar]
- Grattan, L. M.; Oldach, D.; Perl, T. M.; Lowitt, M. H.; Matuszak, D. L.; Dickson, C.; Parrott, C.; Shoemaker, R. C.; Kauffman, C. L.; Wasserman, M. P.; Hebel, J. R.; Charache, P.; Morris, J. G. , Jr. Learning and memory difficulties after environmental exposure to waterways containing toxin-producing Pfiesteria or Pfiesteria-like dinoflagellates. Lancet (London, England) 1998, 352, 532-9. [Google Scholar] [CrossRef]
- Shoemaker, R. C. , Residential and Recreational Acquisition of Possible Estuary-Associated Syndrome: A New Approach to Successful Diagnosis and Treatment. Environ Health Perspect 2001, 109, 791–796. [Google Scholar]
- U.S. Government Accountability Office. Indoor Mold: Better Coordination of Research on Health Effects and More Consistent Guidance Would Improve Federal Efforts; Report to the Chairman, Committee on Health, Education, Labor, and Pensions, U.S. Senate. GAO-08-980; GAO: Washington, DC, 2008.
- Hosainzadegan, H.; Khalilov, R.; Gholizadeh, P. , The necessity to revise Koch's postulates and its application to infectious and non-infectious diseases: a mini-review. Eur J Clin Microbiol Infect Dis 2020, 39, 215–218. [Google Scholar] [CrossRef]
- Shoemaker, R. C.; House, D. E. , A time-series study of sick building syndrome: chronic, biotoxin-associated illness from exposure to water-damaged buildings. Neurotoxicol Teratol 2005, 27, 29–46. [Google Scholar] [CrossRef]
- Shoemaker, R. C.; Heyman, A.; Lark, D. , Transcriptomics and Brain Volumetrics Define the Causes of Cognitive Impairment in Patients with CIRS and Support the use of VIP in Treatment. Med Res Arch 2023, 11, 1–7. [Google Scholar]
- Bouquet, J.; Soloski, M. J.; Swei, A.; Cheadle, C.; Federman, S.; Billaud, J.-N.; Rebman, A. W.; Kabre, B.; Halpert, R.; Boorgula, M.; Aucott, J. N.; Chiu, C. Y. , Longitudinal Transcriptome Analysis Reveals a Sustained Differential Gene Expression Signature in Patients Treated for Acute Lyme Disease. mBio 2016, 7, e00100–16. [Google Scholar] [CrossRef] [PubMed]
- Shoemaker, R. C.; Lark, D. , Screening for Biomarkers of Actinobacteria Associated with Water- Damaged Buildings – Part 1. Med Res Arch 2021, 10, 1–21. [Google Scholar] [CrossRef]
- Shoemaker, R. C.; Meinhardt, J.; Heyman, A.; Lark, D. , Exposure to Actinobacteria resident in water-damaged buildings and resultant immune injury in Chronic Inflammatory Response Syndrome. Med Res Arch 2021, 9, 1–28. [Google Scholar] [CrossRef]
- Shoemaker, R. C.; Heyman, A.; Lark, D. , Transcriptomics and Brain Volumetrics Define the Causes of Cognitive Impairment in Patients with CIRS and Support the use of VIP in Treatment. Med Res Arch 2023, 11, 1–7. [Google Scholar]
| Biomarker/Concept | Category | First Publication | Diagnostic Relevance |
| VCS (Visual Contrast Sensitivity) | Functional / Screening | Environmental Health Perspectives 2001 [23] | Earliest objective test used in neurotoxic illness; confirmed reproducible in PEAS and CIRS-WDB |
| HLA DR/DQ haplotypes | Genetic susceptibility | Bioaerosols 2005 [24] | Used to determine risk for biotoxin illness across mold, Lyme, and dinoflagellate exposures |
| MSH | Neuroendocrine | Bioaerosols 2005 [24] | Key regulatory peptide; consistently low in CIRS patients |
| MMP-9 | Inflammatory | Bioaerosols 2005 [24] | Elevated in inflammatory response; used to monitor response to treatment |
| MARCoNS | Infectious / Inflammatory | Bioaerosols 2005 [24] | Associated with low MSH, persistent inflammation, and biofilm formation; eradication improves clinical and biomarker outcomes |
| Leptin | Metabolic | Bioaerosols 2005 [24] | Elevated in CIRS; drops with therapy |
| ACTH/Cortisol | Neuroendocrine | Bioaerosols 2005 [24] | HPA axis dysregulation |
| ADH/Osmolality | Hormonal/Fluid Balance | Bioaerosols 2005 [24] | Volume dysregulation in MSH-deficient states |
| First formal case definition (CBAI) | Diagnostic Framework | Bioaerosols 2005 [24] | Exposure + symptoms + biomarkers + response |
| VEGF | Perfusion / Hypoxia | Neurotoxicology and Teratology 2006 [25] | Biphasic; abnormal regulation indicates hypoxia, low capillary perfusion |
| C4a | Complement activation | Surviving Mold 2010 [26] | Innate immune activation marker; rises with re-exposure |
| VIP | Neuroendocrine | Surviving Mold 2010 [26] | Key regulatory peptide |
| TGF-β1 | Fibrosis / Cytokine | Surviving Mold 2010 [26] | Pro-fibrotic cytokine; key inflammatory marker in CIRS |
| VIP | Neuropeptide / Therapeutic | Health 2013 [27] | Restores immune regulation; corrects many CIRS abnormalities |
| NeuroQuant MRI | Neuroimaging | Neurotoxicology and Teratology 2014 [28] | Quantifies grey matter changes (e.g., caudate atrophy); reversible with treatment |
| Caudate, Hippocampus, Thalamus, Pallidum, Putamen, Cerebellum | Neuroimaging / Volumetric | Neurotoxicology and Teratology 2014 [28] | NeuroQuant volumetric targets used to track structural brain changes associated with CIRS; reversible with VIP treatment |
| Transcriptomic fingerprint (microarray) | Transcriptomics | BMC Med Genomics 2015 [29] | First transcriptomic classification of CIRS (ciguatera); clear gene pattern |
| RNA-Seq post-VIP | Transcriptomics / Response | Medical Research Archives 2016 [30] | Showed downregulation of ribosomal and mitochondrial genes after VIP |
| NeuroQuant reversal with treatment | Neuroimaging / Response | Journal of Neuroscience & Clinical Research 2016 [31] | Grey matter and forebrain swelling reversed with treatment |
| Symptom Clusters (13) | Clinical Screening | Internal Medicine Review 2017 [32] | Diagnostic tool; ≥8/13 clusters predictive of CIRS |
| VIP-integrated imaging/lab study | Therapeutic Systems Integration | Internal Medicine Review 2017 [33] | Showed lab normalization, grey matter volume restoration, and gene shift |
| Translocase | Transcriptomic / Metabolic | Trends in Diabetes and Metabolism 2020 [34] | Downregulated in proliferative physiology; contributes to altered pyruvate handling and reduced mitochondrial ATP production |
| IRS2 | Transcriptomic / Metabolic | Trends in Diabetes and Metabolism 2020 [34] | Upregulated in proliferative physiology; indicates intracellular insulin resistance and altered glucose metabolism |
| Molecular Hypometabolism (MHM) | Transcriptomics / Diagnostic Classifier | Trends in Diabetes and Metabolism 2020 [34] | Ribosomal and mitochondrial gene suppression; a core transcriptomic pattern in CIRS |
| GENIE Causation Model | Causation / Transcriptomic Staging | Medical Research Archives 2021 [35] | Defines stage-based diagnostic thresholds using GENIE + environmental exposure |
| IKZF1 and VIPR1 | Transcriptomic / Regulatory | Medical Research Archives 2021 [35] | Downregulation linked to poor response to VIP and increased grey matter atrophy |
| Actinobacteria | Environmental Trigger (NGS) | Medical Research Archives 2021 [35] | First paper to link Actinobacterial presence in WDB environments with human transcriptomic signatures of inflammation (e.g., MAPK1, TGFBR1); supports gene-environment causation framework in CIRS |
| PCS vs CIRS GENIE | Transcriptomic Comparison | Medical Research Archives 2021 [32] | Post-COVID patients with CIRS features showed MHM, CD3D suppression, TGFBR upregulation |
| Actino Skin® andActino Plasma® | Translational / Diagnostic | Commercial product; patent pending≈2022 | Skin - qPCR-based test for HH Actinobacteria on skin; supports exposure assessment in CIRSPlasma - Quantifies immune reactivity to Actinobacterial mycolic acids; reflects systemic response in CIRS |
| TUBB1, TUBA4A, MAPK | Transcriptomic / Neurodegeneration | Medical Research Archives 2023 [36] | Proposed markers for CNS injury (caudate atrophy) in CIRS |
| HIF 1A | Transcriptomic / Metabolic | Medical Research Archives 2024 [37] | Upregulated following WDB exposure; reflects proliferative physiology marked by impaired mitochondrial metabolism, increased glycolysis, and heightened inflammatory signaling in CIRS. |
| Clusterin (CLU), GP6, GP9, PF4, ITGA2B | Transcriptomic / Neuroimmune-Coagulation | Medical Research Archives 2024[38] | Co-expression of these genes defines the “triple-positive neuroimmune risk profile” in CIRS, associated with caudate atrophy, cytoskeletal disruption, and poor VIP response; overlaps with Parkinson’s disease transcriptomic signatures. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
