Submitted:
11 June 2025
Posted:
12 June 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
3.1. Anti-Inflammatory Potential of α- and β-Amyrins
| Disease | Cell Line (Receptors) |
Duration | Doses of α- and β-Amyrins |
Assay | References |
|---|---|---|---|---|---|
| Periodontal | TNF-α | 24 hours | 5 - 10 mg/kg | Vivo | [24] |
|
P
ersistent
I
nflammatory
and neuropathic hyperalgesia |
CB1, CB2 | 12 hours | 30 mg/kg | Vivo | [25] |
| C olitis | COX-2, VEGF, NF-κB | 72 hours | 3 mg/kg | Vivo | [26] |
| C olitis | ICAM-1, VCAM-1, PCAM-1, β2-integrin, CD68, and P-selectin | 0-7 days | 1, 3 and 10 mg/kg | Vivo | [27] |
| Acute pancreatitis | (TNF-α), (IL-6) | 24 hours | 10, 30 and 100 mg/kg | Vivo | [28] |
3.2. Anti-Diabetes Potential of α- and β-Amyrins
3.3. Anti-Atherosclerosis of α- and β-Amyrins
3.4. The Antinociceptive Effect of α- and β-Amyrins
3.5. Anti-Gout of α- and β-Amyrins
3.6. Positive Effects of α- and β-Amyrins on Nerves
3.7. Anti-Parkinsonian Effects of α- and β-Amyrins
3.8. Anticancer Potential of α- and β-Amyrins
3.9. The Potential Antibacterial of α- and β-Amyrins
3.10. The Potential Anti-HIV of α- and β-Amyrins
3.11. The Isolation α- and β-Amyrins
4. Discussion
| Disease | Cell Line (Receptors) |
Duration | Doses of α- and β-Amyrins |
Assay | References |
|---|---|---|---|---|---|
| Parkingson | 6-OHDA | 72 hours | 5, 10, 15, 30 µM | Vitro | [54] |
| Parkingson | LGG-1 | 12 hours | 5-30µM | Vitro | [55] |
| Parkingson | LGG-1 | - | - | Vitro | [57] |
| Parkingson | LGG-1 | - | - | Vitro | [58] |
| Parkingson | LDL-C | - | - | Vitro | [59] |
| Disease | Cell Line (Receptors) |
Duration | Doses of α- and β-Amyrins |
Assay | References |
|---|---|---|---|---|---|
| Liver cancer | Hepatocellular | - | -9.36 - 8.90 kcal/mol | Docking | [60] |
| Breast cancer | MCF-7, ATCC-HTB22 | 72 hours | 2.35-2.48 µg/ml | Vitro | [61] |
| Liver cancer | Hep-G2 | - | 25 µM | Vitro | [62] |
| Colon cancer | VEGF, MMP-9, IL-10 | 30 days | 100 mg/kg | Vivo | [63] |
|
Prostate carcinom cancer |
PC3, HL60 | 72 hours | 13,9-25,4% | Vitro | [64] |
| L eukemia cancer | HL-60, MDAMB-435, SF-295 and HCT-8 | - | 1.8 - 3 μM | Vitro | [65] |
| C ervical cancer | HeLa | - | 10-200 μM | Vitro | [66] |
| Breast cancer | MCF-7 | - | 28.45 μM | Vitro | [67] |
| Skin cancer | KB-oral | - | 18.01 μM | Vitro | [68,69] |
| Lung cancer | NCI-H187 | 18.42 μM | Vitro | [68,69] | |
| Colon cancer | HCT116 | - | - | Vitro | [70] |
| L eukemia cancer | Kasumi-1 | 1 year | - | Nano | [71] |
| Bacterial | Receptors | Doses of α- and β-Amyrins |
Assay | References |
|---|---|---|---|---|
|
Escherichia coli, Staphylococcus aureus |
NorA, MepA | - | Docking | [72] |
| Klebsiella, Pragia, Serratia, Enterobacter, Providencia, and E. coli. | Inhibition zones | 0.093 µg/ml | Vitro | [73] |
| E. coli, S. aureus, H. pylori | Inhibition zones | 3.4 mg/mL | Vitro | [74] |
| Disease |
Research Subject (Receptors) |
Doses of α- and β-Amyrins |
Assay | References |
| HIV | NMR spectral- | 1.4 μM | Vitro | [75] |
| HIV | SAR of HIV-1 PR inhibitors | 0.34 μM | Vitro | [76] |
| HIV | HR-EI/FAB-MS and 1D and 2D NMR | - | Vitro | [77] |
| HIV | A549 | 0.6–4.8 μM | Vitro | [78] |
| HIV | 1D and 2D NMR | 4.08, 4.18, 1.70 μM | Vivo | [79] |
| HIV | C-3 pharmacophore | 0.0006 μM | Vitro | [80] |
| Source of Extraction | Extraction Efficiency (g/kg dry weight) |
References |
|---|---|---|
| Protium kleinii | 2.40 | [81] |
| Symplocos cochinchinensis | 1.70 | [82] |
| Swertia longifolia | 2.0 | [83] |
| Melastoma malabathricum | 0.60 | [84] |
| Swertia longifolia | 1.00 | [85] |
| Canarium tramdenum | 1.52 | [86] |
| Celastrus hindsii | 10.75 | [23] |
| New Cases of Cancer | Cancer Deaths | ||
|---|---|---|---|
| Type of Cancer | Number of People | Type of Cancer | Number of People |
| Breast | 2.26 million | Lung | 1.80 million |
| Lung | 2.21 million | Colon and rectum | 916 000 |
| Colon and rectum | 1.93 million | Liver | 830 000 |
| Prostate | 1.41 million | Stomach | 769 000 |
| Skin | 1.20 million | Breast | 685 000 |
| Stomach | 1.09 million | ||
| Related Diseases | Type of Bacteria | Reference |
|---|---|---|
| Respiratory | Staphylococcus | [185] |
| Pneumococcus | [186] | |
| Diphtheria | [187] | |
| Streptococcus | [188] | |
| Pus bacillus | [189] | |
| Digestive tract | E. coli | [190] |
| Dysentery | [191] | |
| Typhoid | [192] | |
| Cholera | [193] | |
| Genitourinary tract | E. coli | [194] |
| Proteus | [195] | |
| Mycoplasma | [196] | |
| Chlamydia | [197] | |
| Gonorrhea | [198] | |
| Skin | Blue pus bacillus | [199] |
| Syphilis | [200] |
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aus der Beek, T.; Weber, F. A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A. Pharmaceuticals in the environment Global occurrences and perspectives. Environ. Toxicol. Chem. 2016, 35, 823–835. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J. C.; Schellack, N.; Stokes, J.; Lancaster, R.; Zeeman, H.; Defty, D.; Steel, G. Ongoing initiatives to improve the quality and efficiency of medicine use within the public healthcare system in South Africa; a preliminary study. Front. Pharmacol. 2017, 8, 751. [Google Scholar] [CrossRef]
- Ding, B. Pharma Industry 4.0: Literature review and research opportunities in sustainable pharmaceutical supply chains. Process Saf. Environ. Prot. 2018, 119, 115–130. [Google Scholar] [CrossRef]
- Seyhan, A. A. Lost in translation: the valley of death across preclinical and clinical divide–identification of problems and overcoming obstacles. Transl. Med. Commun. 2019, 4, 1–19. [Google Scholar] [CrossRef]
- Algorri, M.; Abernathy, M. J.; Cauchon, N. S.; Christian, T. R.; Lamm, C. F.; Moore, C. M. Re-envisioning pharmaceutical manufacturing: increasing agility for global patient access. J. Pharm. Sci. 2022, 111, 593–607. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, L.; Bachheti, R. K.; Garlapati, V. K.; Chandel, A. K. Third generation biorefineries: a sustainable platform for food, clean energy, and nutraceuticals production. Biomass Convers. Biorefin. 2022, 12, 4215–4230. [Google Scholar] [CrossRef]
- Dadhich, A.; Dhiman, M.; Sharma, L.; Kumar, R.; Jain, R.; Sharma, M. M. Unveiling the Interaction of Divergent Abiotic Stresses and Their Consequences in Terms of Bacosides in Bacopa monnieri (L.) Wettst. Journal of JARMAP. 2022, 100423. [Google Scholar]
- Martelletti, P.; Schwedt, T. J.; Lanteri-Minet, M.; Quintana, R.; Carboni, V.; Diener, H. C.; Vo, P. My Migraine Voice survey: a global study of disease burden among individuals with migraines for whom preventive treatments have failed. PAIN. 2018, 19, 1–10. [Google Scholar] [CrossRef]
- Bassetti, C. L.; Heldner, M. R.; Adorjan, K.; Albanese, E.; Allali, G.; Arnold, M.; Remonda, L. The Swiss Brain Health Plan 2023–2033. Clin. Transl. Neurosci. 2023, 7, 38. [Google Scholar] [CrossRef]
- Terwee, C. B.; Prinsen, C. A.; Chiarotto, A.; Westerman, M. J.; Patrick, D. L.; Alonso, J.; Mokkink, L. B. COSMIN methodology for evaluating the content validity of patient-reported outcome measures: a Delphi study. Qual. Life Res. 2018, 27, 1159–1170. [Google Scholar] [CrossRef]
- Esterwood, E.; Saeed, S. A. Past epidemics, natural disasters, COVID19, and mental health: learning from history as we deal with the present and prepare for the future. Psychiatr. Q. 2020, 91, 1121–1133. [Google Scholar] [CrossRef]
- Dalal, P. K.; Roy, D.; Choudhary, P.; Kar, S. K.; Tripathi, A. Emerging mental health issues during the COVID-19 pandemic: An Indian perspective. Indian J Psychiatry. 2020, 62, 354. [Google Scholar] [CrossRef]
- Gossling, S.; Scott, D.; Hall, C. M. Pandemics, tourism, and global change: a rapid assessment of COVID-19. . Sustain. Tour. 2020, 29, 1–20. [Google Scholar] [CrossRef]
- Newman, D. J.; Cragg, G. M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Roy, A.; Saraf, S. Limonoids: overview of significant bioactive triterpenes distributed in plants kingdom. Biol. Pharm. Bull. 2006, 29, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.; Sharma, R. , Dey, P. ; Kundu, A.; Kim, H. S.; Bhakta, T.; Kumar, A. Analysis of triterpenes and triterpenoids. In ASAP. 2020, 393–426. [Google Scholar]
- Augustin, J. M.; Kuzina, V.; Andersen, S. B.; Bak, S. Molecular activities, biosynthesis, and evolution of triterpenoid saponins. Phytochem. 2011, 72, 435–457. [Google Scholar] [CrossRef]
- Nguyen, N. H.; Ha, T. K. Q.; Yang, J. L.; Pham, H. T. T.; Oh, W. K. Triterpenoids from the genus Gynostemma: Chemistry and pharmacological activities. J. Ethnopharmacol. 2021, 268, 113574. [Google Scholar] [CrossRef]
- Mahato, S. B.; Sen, S. Advances in triterpenoid research, 1990–1994. Phytochemistry itself. 1997, 44, 1185–1236. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Li, L.; Song, W.; Li, M.; Hua, X.; Xue, Z. Natural products of pentacyclic triterpenoids: from discovery to heterologous biosynthesis. Nat. Prod. Rep. 2023, 40, 1303–1353. [Google Scholar] [CrossRef]
- Luchnikova, N. A.; Grishko, V. V.; Ivshina, I. B. Biotransformation of oleanane and ursane triterpenic acids. Molecules. 2020, 25, 5526. [Google Scholar] [CrossRef]
- Morita, M.; Shibuya, M.; Kushiro, T.; Masuda, K.; Ebizuka, Y. Molecular cloning and functional expression of triterpene synthases from pea (Pisum sativum) New α-amyrin-producing enzyme is a multifunctional triterpene synthase. Eur. J. Biochem. 2000, 267, 3453–3460. [Google Scholar] [CrossRef] [PubMed]
- Viet, T. D.; Xuan, T. D.; Anh, L. H. α-Amyrin and β-amyrin isolated from Celastrus hindsii leaves and their antioxidant, anti-xanthine oxidase, and anti-tyrosinase potentials. Molecules. 2021, 26, 7248. [Google Scholar] [CrossRef]
- Holanda Pinto, S. A.; Pinto, L. M. S.; Cunha, G. M. A.; Chaves, M. H.; Santos, F. A.; Rao, V. S. Anti-inflammatory effect of α, β-Amyrin, a pentacyclic triterpene from Protium heptaphyllum in rat model of acute periodontitis. Inflammopharmacology. 2008, 16, 48–52. [Google Scholar] [CrossRef]
- Da Silva, K. A. S.; Paszcuk, A. F.; Passos, G. F.; Silva, E. S.; Bento, A. F. , Meotti, F. C., & Calixto, J. B. Activation of cannabinoid receptors by the pentacyclic triterpene α, β-amyrin inhibits inflammatory and neuropathic persistent pain in mice. J Pain. 2011, 152, 1872–1887. [Google Scholar]
- Vitor, C. E.; Figueiredo, C. P.; Hara, D. B.; Bento, A. F.; Mazzuco, T. L.; Calixto, J. B. Therapeutic action and underlying mechanisms of a combination of two pentacyclic triterpenes, α-and β-amyrin, in a mouse model of colitis. Br. J. Pharmacol. 2009, 157, 1034–1044. [Google Scholar] [CrossRef]
- Matos, I.; Bento, A. F.; Marcon, R.; Claudino, R. F.; Calixto, J. B. Preventive and therapeutic oral administration of the pentacyclic triterpene α, β-amyrin ameliorates dextran sulfate sodium-induced colitis in mice: the relevance of cannabinoid system. Mol. Immunol. 2013, 54(3-4), 482-492. [CrossRef] [PubMed]
- Melo, C. M.; Carvalho, K. M. M. B.; de Sousa Neves, J. C.; Morais, T. C.; Rao, V. S.; Santos, F. A.; Chaves, M. H. α, β-amyrin, a natural triterpenoid ameliorates L-arginine-induced acute pancreatitis in rats. WJG or World J Gastroenterol. 2010, 16, 4272. [Google Scholar] [CrossRef]
- Santos, F. A.; Frota, J. T.; Arruda, B. R.; de Melo, T. S.; da Silva, A. A. D. C. A.; Brito, G. A. D. C.; Rao, V. S. Antihyperglycemic and hypolipidemic effects of α, β-amyrin, a triterpenoid mixture from Protium heptaphyllum in mice. Lipids Health Dis. 2012, 11, 1–8. [Google Scholar] [CrossRef]
- Nair, S. A.; Sabulal, B.; Radhika, J.; Arunkumar, R.; Subramoniam, A. Promising anti-diabetes mellitus activity in rats of β-amyrin palmitate isolated from Hemidesmus indicus roots. Eur. J. Pharmacol. 2014, 734, 77–82. [Google Scholar] [CrossRef]
- Tamfu, A. N.; Munvera, A. M.; Botezatu, A. V. D.; Talla, E.; Ceylan, O.; Fotsing, M. T.; Dinica, R. M. Synthesis of benzoyl esters of β-amyrin and lupeol and evaluation of their antibiofilm and antidiabetic activities. Results Chem. 2022, 4, 100322. [Google Scholar] [CrossRef]
- Giacoman-Martínez, A.; Alarcón-Aguilar, F. J.; Zamilpa, A.; Huang, F.; Romero-Nava, R.; Román-Ramos, R.; Almanza-Pérez, J. C. α-Amyrin induces GLUT4 translocation mediated by AMPK and PPARδ/γ in C2C12 myoblasts. Can. J. Physiol. Pharmacol. 2021, 99, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zhang, H.; Zhang, Q.; Xu, J. β-Amyrin ameliorates diabetic nephropathy in mice and regulates the miR-181b-5p/HMGB2 axis in high glucose-stimulated HK-2 cells. Environ. Toxicol. 2021, 37, 637–649. [Google Scholar] [CrossRef] [PubMed]
- Rathinavel, T.; Ammashi, S.; andGnanendra Shanmugam, S. T. Identification of anti-diabetic phytocompounds from Ficus racemosa and its validation through in silico molecular modeling. IJASE. 2019, 5, 1085–1098. [Google Scholar]
- Zhu, Q. J.; Lang, L. J.; Wang, Y.; Zhang, D. Q.; Jiang, B.; Xiao, C. J. Triterpenoids from the fruits of wild species of Crataegus scabrifolia and their lipid-lowering activities. Russ. J. Bioorg. Chem. 2022, 48, 1291–1298. [Google Scholar]
- Ding, Y.; Nguyen, H. T.; Kim, S. I.; Kim, H. W.; Kim, Y. H. The regulation of inflammatory cytokine secretion in macrophage cell line by the chemical constituents of Rhus sylvestris. Bioorg. Med. Chem. Lett. 2009, 19, 3607–3610. [Google Scholar] [CrossRef]
- De Lima, R. P.; Nunes, P. I. G.; Viana, A. F. S. C.; de Oliveira, F. T. B.; Silva, R. A. C.; Alves, A. P. N. N.; Santos, F. A. α, ß-Amyrin prevents steatosis and insulin resistance in a high-fat diet-induced mouse model of NAFLD via the AMPK-mTORC1-SREBP1 signaling mechanism. Braz. j. med. biol. Res. 2021, e11391–e11391. [Google Scholar] [CrossRef]
- Shih, M. F.; Cherng, J. Y. Reduction of adhesion molecule production and alteration of eNOS and endothelin-1 mRNA expression in endothelium by Euphorbia hirta L. through its beneficial β-amyrin molecule. Molecules. 2014, 19, 10534–10545. [Google Scholar] [CrossRef]
- Ishii, M.; Nakahara, T.; Ikeuchi, S.; Nishimura, M. β-Amyrin induces angiogenesis in vascular endothelial cells through the Akt/endothelial nitric oxide synthase signaling pathway. Biochem. Biophys. Res. Commun. 2015, 467, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Santos, F. A.; Carvalho, K. M. M. B.; Batista-Lima, F. J.; Nunes, P. I. G.; Viana, A. F. S. C.; de Carvalho Almeida da Silva, A. A.; de Brito, T. S. The triterpenoid alpha, beta-amyrin prevents the impaired aortic vascular reactivity in high-fat diet-induced obese mice. N-S ARCH PHARMACOL. 2017, 390, 1029–1039. [Google Scholar] [CrossRef]
- Pinto, S. H.; Pinto, L. M. S.; Guedes, M. A.; Cunha, G. M. A.; Chaves, M. H.; Santos, F. A.; Rao, V. S. Antinoceptive effect of triterpenoid α, β-amyrin in rats on orofacial pain induced by formalin and capsaicin. Phytomedicine. 2008, 15, 630–634. [Google Scholar] [CrossRef]
- Otuki, M. F.; Ferreira, J.; Lima, F. V.; Meyre-Silva, C.; Malheiros, A.; Muller, L. A.; Calixto, J. B. Antinociceptive properties of mixture of α-amyrin and β-amyrin triterpenes: evidence for participation of protein kinase C and protein kinase A pathways. J. Pharmacol. Exp. Ther. 2005, 313, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Soldi, C.; Pizzolatti, M. G.; Luiz, A. P.; Marcon, R.; Meotti, F. C.; Mioto, L. A.; Santos, A. R. (2008). Synthetic derivatives of the α-and β-amyrin triterpenes and their antinociceptive properties. Bioorg. Med. Chem. 2008, 16, 3377–3386. [Google Scholar] [CrossRef] [PubMed]
- Chicca, A.; Marazzi, J.; Gertsch, J. (2012). The antinociceptive triterpene β-amyrin inhibits 2-arachidonoylglycerol (2-AG) hydrolysis without directly targeting cannabinoid receptors. Br. J. Pharmacol. 2012, 167, 1596–1608. [Google Scholar] [CrossRef]
- Ferraz-Filha, Z. S.; Araújo, M. C. D. P. M.; Ferrari, F. C.; Dutra, I. P. A. R. Tabebuia roseoalba: in vivo hypouricemic and anti-inflammatory effects of its ethanolic extract and constituents. Planta Med. 2016, 82, 1395–1402. [Google Scholar] [CrossRef]
- Hernandez-Vázquez, L.; Palazón Barandela, J.; Navarro-Ocaña, A. The pentacyclic triterpenes α, β-amyrins: A review of sources and biological activities. IntechOpen. 2012, 487–502. [Google Scholar]
- Lin, K. W.; Huang, A. M.; Tu, H. Y.; Lee, L. Y.; Wu, C. C.; Hour, T. C.; Lin, C. N. Xanthine oxidase inhibitory triterpenoid and phloroglucinol from guttiferaceous plants inhibit growth and induced apoptosis in human NTUB1 cells through a ROS-dependent mechanism. J. Agric. Food Chem. 2011, 59, 407–414. [Google Scholar] [CrossRef]
- Jeon, S. J.; Park, H. J.; Gao, Q.; Lee, H. E.; Park, S. J.; Hong, E.; Ryu, J. H. Positive effects of β-amyrin on pentobarbital-induced sleep-in mice via GABAergic neurotransmitter system. Behav. Brain Res. 2015, 291, 232–236. [Google Scholar] [CrossRef]
- F Aragao, G.; MV Carneiro, L.; PF Juniora, A.; N Bandeira, P.; LG Lemos, T. ; S de B Viana. Evidence for excitatory and inhibitory amino acids participation in the neuropharmacological activity of alpha-and beta-amyrin acetate. Open Pharm. Sci. 2009.
- Oliveira, F. A.; Costa, C. L.; Chaves, M. H.; Almeida, F. R.; Cavalcante, Í. J.; Lima, A. F.; Rao, V. S. (2005). Attenuation of capsaicin-induced acute and visceral nociceptive pain by α-and β-amyrin, a triterpene mixture isolated from Protium heptaphyllum resin in mice. J. Life Sci. 2005, 77, 2942–2952. [Google Scholar] [CrossRef]
- Subarnas, A. N. A. S.; Tadano, T.; Oshima, Y.; Kisara, K.; Ohizumi, Y. Pharmacological properties of β-amyrin palmitate, a novel centrally acting compound, isolated from Lobelia inflata leaves. J. Pharm. Pharmacol. 1993, 45, 545–550. [Google Scholar] [CrossRef]
- Park, H. J.; Kwon, H.; Lee, J. H.; Cho, E.; Lee, Y. C.; Moon, M.; Jung, J. W. β-Amyrin ameliorates Alzheimer’s disease-like aberrant synaptic plasticity in the mouse hippocampus. Biomol Ther. 2020, 28, 74. [Google Scholar] [CrossRef]
- Frota Aragão, G.; Oliveira Nogueira, A.; Félix Xavier Júnior, F. A.; Azul Monteiro Evangelista, J. S.; Nogueira Bandeira, P.; Fernandes, C.; Sampaio Assreuy, A. M. Acute toxicity study of the isomeric mixture of alpha and beta amyrin from Protium heptaphyllum (Aubl.) Marchand. Acta Sci. Biol. Sci. 2023, 45. [Google Scholar]
- Wei, C. C.; Chang, C. H.; Liao, V. H. C. Anti-Parkinsonian effects of β-amyrin are regulated via LGG-1 involved autophagy pathway in Caenorhabditis elegans. Phytomedicine. 2017, 36, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Liu, R.; Chang, M.; Jin, Q.; Zhang, H.; Wang, X. Health benefits of 4, 4-dimethyl phytosterols: An exploration beyond 4-desmethyl phytosterols. FOOD FUNCT. 2020, 11, 93–110. [Google Scholar] [CrossRef]
- Giordano, S.; Darley-Usmar, V.; Zhang, J. Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease. Redox Biol. 2014, 2, 82–90. [Google Scholar] [CrossRef]
- Sigmond. ; Tímea.; János Barna.; Márton L. Tóth.; Krisztina Takács-Vellai.; Gabriella Pásti.; Attila L. Kovács.; and Tibor Vellai. "Autophagy in Caenorhabditis elegans." Methods Enzymol. 2008, 451, 521–540.
- Braak, H.; Del Tredici, K. Invited Article: Nervous system pathology in sporadic Parkinson disease. J Neurol. 2008, 70(20), 1916-1925. [CrossRef]
- Huang, X.; Chen, H.; Miller, W. C.; Mailman, R. B.; Woodard, J. L.; Chen, P. C.; Poole, C. Lower low-density lipoprotein cholesterol levels are associated with Parkinson's disease. J. Mov. Disord. 2007, 22, 377–381. [Google Scholar] [CrossRef]
- Kamaraj, M.; Olikkavi, K.; Vennila, L.; Bose, S. S.; Raj, S. M. In silico docking and anti-cancer activity of the isolated compounds (Alpha and Beta Amyrin) from methanolic bark extract of Shorea robusta. Int. J. Pure Med. Res. 2019, 4, 11–15. [Google Scholar]
- Lima, E. M.; Nascimento, A. M.; Lenz, D.; Scherer, R.; Meyrelles, S. S.; Boëchat, G. A.; Endringer, D. C. Triterpenes from the Protium heptaphyllum resin-chemical composition and cytotoxicity. Rev. Bras. Farmacogn. 2014, 24, 399–407. [Google Scholar] [CrossRef]
- Wen, S.; Gu, D.; Zeng, H. Antitumor effects of beta-amyrin in Hep-G2 liver carcinoma cells are mediated via apoptosis induction, cell cycle disruption and activation of JNK and P38 signalling pathways. J. BUON. 2018, 23, 965–970. [Google Scholar]
- Zahid, S.; Malik, A.; Waqar, S.; Zahid, F.; Tariq, N.; Khawaja, A. I.; Ali, Q. Countenance and implication of Β-sitosterol, Β-amyrin and epiafzelechin in nickel exposed Rat: in-silico and in-vivo approach. Sci Rep. 2023, 13, 21351. [Google Scholar] [CrossRef] [PubMed]
- Victor, M. M.; David, J. M.; dos Santos, M. A.; Barreiros, A. L.; Barreiros, M. L.; Andrade, F. S.; Pessoa, C. Synthesis and evaluation of cytotoxic effects of amino-ester derivatives of natural α, β-amyrin mixture. Bioorg. Med. Chem. 2017, 28, 2155–2162. [Google Scholar] [CrossRef]
- Barros, F. W.; Bandeira, P. N.; Lima, D. J.; Meira, A. S.; de Farias, S. S.; Albuquerque, M. R. J.; do Ó Pessoa, C. Amyrin esters induce cell death by apoptosis in HL-60 leukemia cells. Bioorg. Med. Chem. 2011, 19, 1268–1276. [Google Scholar] [CrossRef] [PubMed]
- Anburaj, J.; Tamilselvi, E.; Swapna, S.; Amuthavalli, K. β-Amyrin Modulates P38 MAPK and Jnk Pathway to Inhibit Cell Proliferation and Induce ROS-mediated Apoptosis in HeLa Cells. Indian Journal of Pharmaceutical Sciences 2020, 82(3).
- Park, S.; Hwang, K.; Na, J. R.; Lee, K.; Jeong, E. S.; Kim, S. Triterpenoids from the leaves of Dendropanax morbifera Léveille and its cytotoxic activity toward breast MCF-7 and lung A549 cancer cells. J. Food Sci. Preserv. 2018, 25, 471–481. [Google Scholar] [CrossRef]
- Keawsa-Ard, S.; Liawruangrath, B.; Kongtaweelert, S. Bioactive compounds from Mesua ferrea stems. CHIANG MAI J SCI. 2015, 42, 185–955. [Google Scholar]
- Hernández-Vázquez, L.; Palazón Barandela, J.; Navarro-Ocaña, A. (2012). The pentacyclic triterpenes α, β-amyrins: A review of sources and biological activities. ISBN. 2012, 487-502.
- Asif, M.; Al-Mansoub, M. A.; Khan, M. S. S.; Yehya, A. H. S.; Ezzat, M. O.; Oon, C. E.; Majid, A. M. S. A. Molecular mechanisms responsible for programmed cell death-inducing attributes of terpenes from Mesua ferrea stem bark towards human colorectal carcinoma HCT 116 cells. J. Appl. Biomed. 2017, 15, 71–80. [Google Scholar] [CrossRef]
- Neto, S. F.; Prada, A. L.; Achod, L. D. R.; Torquato, H. F. V.; Lima, C. S.; Paredes-Gamero, E. J.; Amado, J. R. R. α-amyrin-loaded nanocapsules produce selective cytotoxic activity in leukemic cells. Biomedicine & Pharmacotherapy. 2021, 139, 111656. [Google Scholar]
- Oliveira, R. C.; Bandeira, P. N.; Lemos, T. L.; Dos Santos, H. S.; Scherf, J. R.; Rocha, J. E.; Teixeira, A. M. In silico and in vitro evaluation of efflux pumps inhibition of α, β-amyrin. J. Biomol. Struct. Dyn. 2022, 40, 12785–12799. [Google Scholar] [CrossRef]
- Bata, M. M.; Adeshina, G. O.; Onaolapo, J. A.; Musa, A. M.; Mshelia, E. H.; Salihu, M. S. ; Dauda, G (2023). Antibacterial Activity of A and Β Amyrin Isolated from Morinda Lucida Against Some Multidrug Resistant Enterobacteriaceae. M. lucida. 2023.
- Choi, J. W.; Cho, E. J.; Lee, D. G.; Choi, K.; Ku, J.; Park, K. W.; Lee, S. Antibacterial activity of triterpenoids from Clerodendron trichotomum. J. Appl. Biol. Chem. 2012, 55, 169–172. [Google Scholar] [CrossRef]
- Chen, D. F.; Zhang, S. X.; Wang, H. K.; Zhang, S. Y.; Sun, Q. Z.; Cosentino, L. M.; Lee, K. H. Novel anti-HIV lancilactone C and related triterpenes from Kadsura lancilimba. J. Nat. Prod. 1999, 62, 94–97. [Google Scholar] [CrossRef]
- Lee, J. Triterpene esters from Uncaria rhynchophylla hooks as potent HIV-1 protease inhibitors and their molecular docking study. Scientific Reports, 2024, 14, 31576. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Ma, C. M.; Chen, D. Y.; Hattori, M. Anti-HIV-1 protease triterpenoids from Stauntonia obovatifoliola Hayata subsp. intermedia. Phytochemistry. 2008, 69, 1875–1879. [Google Scholar] [CrossRef] [PubMed]
- Kongkum, N.; Tuchinda, P.; Pohmakotr, M.; Reutrakul, V.; Piyachaturawat, P.; Jariyawat, S.; Napaswad, C. Cytotoxic, antitopoisomerase IIα, and anti-HIV-1 activities of triterpenoids isolated from leaves and twigs of Gardenia carinata. J. Nat. Prod. 2013, 76, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Callies, O.; Bedoya, L. M.; Beltrán, M.; Muñoz, A.; Calderón, P. O.; Osorio, A. A.; Bazzocchi, I. L. Isolation, structural modification, and HIV inhibition of pentacyclic lupane-type triterpenoids from Cassine xylocarpa and Maytenus cuzcoina. J. Nat. Prod. 2015, 78, 1045–1055. [Google Scholar] [CrossRef]
- Qian, K.; Kuo, R. Y.; Chen, C. H.; Huang, L.; Morris-Natschke, S. L.; Lee, K. H. Anti-AIDS agents 81. Design, synthesis, and structure− activity relationship study of betulinic acid and moronic acid derivatives as potent HIV maturation inhibitors. J. Med. Chem. 2010, 53, 3133–3141. [Google Scholar] [CrossRef]
- Otuki, M.F.; Ferreira, J.; Lima, F.V.; Meyre-Silva, C.; Malheiros, A.; Muller, L.A.; Calixto, J.B. Antinociceptive properties of mixture of α-amyrin and β-amyrin triterpenes: Evidence for participation of protein kinase C and protein kinase A pathways. J. Pharmacol. Exp. Ther. 2005, 313, 310–318. [Google Scholar] [CrossRef]
- Sunil, C.; Irudayaraj, S.S.; Duraipandiyan, V.; Al-Dhabi, N.A.; Agastian, P.; Ignacimuthu, S. Antioxidant and free radical scavenging effects of β-amyrin isolated from Symplocos cochinchinensis Moore. leaves. Ind. Crops Prod. 2014, 61, 510–516. [Google Scholar] [CrossRef]
- Okoye, N.N.; Ajaghaku, D.L.; Okeke, H.N.; Ilodigwe, E.E.; Nworu, C.S.; Okoye, F.B.C. Beta-amyrin and alpha-amyrin acetate isolated from the stem bark of Alstonia boonei display profound anti-inflammatory activity. Pharm. Biol. 2014, 52, 1478–1486. [Google Scholar] [CrossRef]
- Sirat, H.M.; Susanti, D.; Ahmad, F.; Takayama, H.; Kitajima, M. Amides, triterpene, and flavonoids from the leaves of Melastoma malabathricum L. J. Nat. Med. 2010, 64, 492–495. [Google Scholar] [CrossRef]
- Saeidnia, S.; Ara, L.; Hajimehdipoor, H.; Read, R.W.; Arshadi, S.; Nikan, M. Chemical constituents of Swertia longifolia Boiss. with α-amylase inhibitory activity. Res. Pharm. Sci. 2016, 11, 23–32. [Google Scholar]
- Quan, N.V.; Xuan, T.D.; Tran, H.D.; Thuy, N.T.D.; Trang, L.T.; Huong, C.T.T.; Tuyen, P.T. Antioxidant, α-amylase and α-glucosidase inhibitory activities and potential constituents of Canarium tramdenum bark. Molecules 2019, 24, 605. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, C.T.; Pavan, F.R.; Leite, C.Q.F.; Sannomiya, M.; Vilegas, W.; Leite, S.R.D.A.; Sato, D.N. Triterpenes and antitubercular activity of Byrsonima crassa. Quim. Nova 2008, 31, 1719–1721. [Google Scholar] [CrossRef]
- Marques, C. M.; Moniz, S.; de Sousa, J. P.; Barbosa-Povoa, A. P.; Reklaitis, G. (2020). Decision-support challenges in the chemical-pharmaceutical industry: Findings and future research directions. Comput. Chem. Eng. 2020, 134, 106672. [Google Scholar] [CrossRef]
- Samal, K.; Mahapatra, S.; Ali, M. H. Pharmaceutical wastewater as Emerging Contaminants (EC): Treatment technologies, impact on environment and human health. EN. 2022, 6, 100076. [Google Scholar] [CrossRef]
- Kesselheim, A. S.; Sinha, M. S.; Avorn, J.; Sarpatwari, A. Pharmaceutical policy in the United States in 2019: An overview of the landscape and avenues for improvement. Stan. L. & Pol'y Rev. 2019, 30, 421. [Google Scholar]
- Gonzalez Peña, O. I.; López Zavala, M. Á.; Cabral Ruelas, H. Pharmaceuticals market, consumption trends and disease incidence are not driving the pharmaceutical research on water and wastewater. nt. J. Environ. Res. Public Health. 2021, 18, 2532. [Google Scholar] [CrossRef]
- McMahon, S. B.; Dargan, P.; Lanas, A.; Wiffen, P. The burden of musculoskeletal pain and the role of topical non-steroidal anti-inflammatory drugs (NSAIDs) in its treatment. Ten underpinning statements from a global pain faculty. CMRO. 2021, 37, 287–292. [Google Scholar] [CrossRef]
- Tichy, E. M.; Hoffman, J. M.; Suda, K. J.; Rim, M. H.; Tadrous, M.; Cuellar, S.; Schumock, G. T. National trends in prescription drug expenditures and projections for 2022. AJHP. 2022, 79, 1158–1172. [Google Scholar] [CrossRef]
- Haider, R. H. R. Pharmaceutical Market: An Overview. IJIS. 2023, 2, 2087–2104. [Google Scholar] [CrossRef]
- Wang, N. Determinants of therapeutic inertia in people receiving initial ultra low-quadruple dose combination therapy and standard dose monotherapy: results from the QUARTET trial. CVP-BP-CL. 2023, 420.
- ElSayed, N. A.; Aleppo, G.; Aroda, V. R.; Bannuru, R. R.; Brown, F. M. , Bruemmer, D.; Gabbay, R. A. 10. Cardiovascular disease and risk management: standards of care in diabetes—2023. DM. 2023, 46, 158–190. [Google Scholar]
- Mars, B.; Heron, J.; Kessler, D.; Davies, N. M.; Martin, R. M.; Thomas, K. H.; Gunnell, D. Influences on antidepressant prescribing trends in the UK: 1995–2011. SPPE. 2017, 52, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Alshehri, S.; Alshammari, R.; Alyamani, M.; Dabbagh, R.; Almalki, B.; Aldosari, O.; Shakeel, F. Current and future prospective of pharmaceutical manufacturing in Saudi Arabia. SPJ. 2023, 31, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Nandi, A.; Pecetta, S.; Bloom, D. E. Global antibiotic use during the COVID-19 pandemic: analysis of pharmaceutical sales data from 71 countries, 2020–2022. EclinicalMedicine. 2023, 57. [Google Scholar] [CrossRef] [PubMed]
- Coccia, M. Optimal levels of vaccination to reduce COVID-19 infected individuals and deaths: A global analysis. Environ. Res. 2022, 204, 112314. [Google Scholar] [CrossRef]
- Oliveira, R. C.; Bandeira, P. N.; Lemos, T. L.; Dos Santos, H. S.; Scherf, J. R.; Rocha, J. E.; Teixeira, A. M. In silico and in vitro evaluation of efflux pumps inhibition of α, β-amyrin. J. Biomol. Struct. Dyn. 2022, 40, 12785–12799. [Google Scholar] [CrossRef]
- Yadav, V. R.; Prasad, S.; Sung, B.; Kannappan, R.; Aggarwal, B. B. Targeting inflammatory pathways by triterpenoids for prevention and treatment of cancer. Toxins. 2010, 2, 2428–2466. [Google Scholar] [CrossRef]
- Oboh, M.; Govender, L.; Siwela, M.; Mkhwanazi, B. N. Anti-diabetic potential of plant-based pentacyclic triterpene derivatives: Progress made to improve efficacy and bioavailability. Molecules. 2021, 26, 7243. [Google Scholar] [CrossRef]
- Placha, D.; Jampilek, J. Chronic inflammatory diseases, anti-inflammatory agents and their delivery nanosystems. Pharmaceutics. 2021, 13, 64. [Google Scholar] [CrossRef]
- Yu, H.; Gao, R.; Liu, Y.; Fu, L.; Zhou, J.; Li, L. Stimulus-Responsive Hydrogels as Drug Delivery Systems for Inflammation Targeted Therapy. Adv. Sci. 2024, 11, 2306152. [Google Scholar] [CrossRef]
- Robb, C. T.; Regan, K. H.; Dorward, D. A.; Rossi, A. G. Key mechanisms governing resolution of lung inflammation. Semin. Immunopathol. 2016, 38, 425–448. [Google Scholar] [CrossRef]
- Suhana, M. I.; Farha, A.; Hassan, B. M. Inflammation of the Gums. Malays. Fam. Physician. 2020, 15, 71. [Google Scholar]
- Turner, J. D.; Naylor, A. J.; Buckley, C.; Filer, A.; Tak, P. P. Fibroblasts and osteoblasts in inflammation and bone damage. LSC. 2018, 37–54. [Google Scholar]
- Dantzer, R.; Capuron, L. Inflammation-associated depression: evidence, mechanisms and implications. Springer. 2017, 356. [Google Scholar]
- Cristofori, F.; Dargenio, V. N.; Dargenio, C.; Miniello, V. L.; Barone, M.; Francavilla, R. Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: a door to the body. Front. Immunol. 2021, 12, 578386. [Google Scholar] [CrossRef]
- Rezus, E.; Cardoneanu, A.; Burlui, A.; Luca, A.; Codreanu, C.; Tamba, B. I.; Rezuș, C. The link between inflammaging and degenerative joint diseases. Int. J. Mol. Sci. 2019, 20, 614. [Google Scholar] [CrossRef] [PubMed]
- Henein, M. Y.; Vancheri, S.; Longo, G.; Vancheri, F. The role of inflammation in cardiovascular disease. Int. J. Mol. Sci. 2022, 23, 12906. [Google Scholar] [CrossRef]
- Munn, L. L. Cancer and inflammation. Wiley Interdiscip. Rev. Syst. Biol. Med. 2017, 9, e1370. [Google Scholar] [CrossRef]
- Ditmer, M.; Gabryelska, A.; Turkiewicz, S.; Białasiewicz, P.; Małecka-Wojciesko, E.; Sochal, M. Sleep problems in chronic inflammatory diseases: prevalence, treatment, and new perspectives: a narrative review. J. Clin. Med. 2021, 11, 67. [Google Scholar] [CrossRef]
- Da Silva Júnior, W. F.; Bezerra de Menezes, D. L.; de Oliveira, L. C.; Koester, L. S.; Oliveira de Almeida, P. D.; Lima, E. S.; Neves de Lima, Á. A. Inclusion complexes of β and HPβ-cyclodextrin with α, β amyrin and in vitro anti-inflammatory activity. Biomolecules. 2019, 9, 241. [Google Scholar] [CrossRef]
- Mukhtar, Y.; Galalain, A.; Yunusa, U. A modern overview on diabetes mellitus: a chronic endocrine disorder. Eur. J. Biol. 2020, 5, 1–14. [Google Scholar] [CrossRef]
- Rahman, M. S.; Hossain, K. S.; Das, S.; Kundu, S.; Adegoke, E. O.; Rahman, M. A.; Pang, M. G. (2021). Role of insulin in health and disease: an update. Int. J. Mol. Sci. 2021, 22, 6403. [Google Scholar] [CrossRef]
- Mohajan, D.; Mohajan, H. K. Hyperglycaemia among Diabetes Patients: A Preventive Approach. STI. 2023, 2, 27–33. [Google Scholar] [CrossRef]
- Pecoits-Filho, R.; Abensur, H.; Betonico, C. C.; Machado, A. D.; Parente, E. B.; Queiroz, M.; Vencio, S. Interactions between kidney disease and diabetes: dangerous liaisons. Diabetol. metab. syndr. 2016, 8, 1–21. [Google Scholar] [CrossRef]
- Alicic, R. Z.; Rooney, M. T.; Tuttle, K. R. Diabetic kidney disease: challenges, progress, and possibilities. CJASN. 2017, 12, 2032–2045. [Google Scholar] [CrossRef]
- Umpierrez, G. E. Hyperglycemic crises: diabetic ketoacidosis and hyperglycemic hyperosmolar state. DCRD. 2020, 595–614. [Google Scholar]
- Bharucha, A. E.; Kudva, Y. C.; Prichard, D. O. Diabetic gastroparesis. Endocr Rev. 2019, 40, 1318–1352. [Google Scholar] [CrossRef]
- Katakami, N. Mechanism of development of atherosclerosis and cardiovascular disease in diabetes mellitus. Atheroscler Thromb. 2018, 25, 27–39. [Google Scholar] [CrossRef]
- Edmonds, M.; Kesavan, R.; Bal, A. Evaluation and Examination of the Diabetic Foot. MDT. 2023, 107–131. [Google Scholar]
- Armstrong, D. G.; Tan, T. W.; Boulton, A. J.; Bus, S. A. Diabetic foot ulcers: a review. Jama. 2023, 330, 62–75. [Google Scholar] [CrossRef]
- Libianto, R.; Batu, D.; MacIsaac, R. J.; Cooper, M. E.; Ekinci, E. I. Pathophysiological links between diabetes and blood pressure. Can. J. Cardiol. 2018, 34, 585–594. [Google Scholar] [CrossRef]
- Andamari, I.; Thio, H. B.; Soebono, H. Potential skin problems of diabetes mellitus patients: a review. JMedSci. 2022, 54. [Google Scholar] [CrossRef]
- Bruschi, L. K. M.; da Rocha, D. A.; Gesteira Filho, E. L.; Barboza, N. D. M. P.; Frisanco, P. A. B.; Callegaro, R. M.; Arbex, A. K. Diabetes mellitus and diabetic peripheral neuropathy. OJEMD. 2017, 7, 12–21. [Google Scholar] [CrossRef]
- Kropp, M.; Golubnitschaja, O.; Mazurakova, A.; Koklesova, L.; Sargheini, N.; Vo, T. T. K. S.; Thumann, G. Diabetic retinopathy as the leading cause of blindness and early predictor of cascading complications—risks and mitigation. EPMA J. 2023, 14, 21–42. [Google Scholar] [CrossRef]
- Standl, E.; Khunti, K.; Hansen, T. B.; Schnell, O. The global epidemics of diabetes in the 21st century: Current situation and perspectives. Eur J Prev Cardiol. 2019, 26, 7–14. [Google Scholar] [CrossRef]
- Kakadiya, J. Causes, symptoms, pathophysiology and diagnosis of atherosclerosis–a review. PharmacologyOnline. 2009, 3, 420–442. [Google Scholar]
- Badimon, L.; Padró, T.; Vilahur, G. Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease. EHJ-ACVC. 2012, 1, 60–74. [Google Scholar] [CrossRef]
- Swirski, F. K.; Nahrendorf, M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science. 2013, 339, 161–166. [Google Scholar] [CrossRef]
- Mendelson, S. J.; Prabhakaran, S. Diagnosis and management of transient ischemic attack and acute ischemic stroke: a review. Jama. 2021, 325, 1088–1098. [Google Scholar] [CrossRef]
- Garg, P. K.; O'Neal, W. T.; Mok, Y.; Heiss, G.; Coresh, J.; Matsushita, K. Life's simple 7 and peripheral artery disease risk: the atherosclerosis risk in community study. Am J Prev Med. 2018, 55, 642–649. [Google Scholar] [CrossRef]
- Valdivielso, J. M.; Rodríguez-Puyol, D.; Pascual, J.; Barrios, C.; Bermúdez-López, M.; Sánchez-Niño, M. D.; Ortiz, A. Atherosclerosis in chronic kidney disease: more, less, or just different? ATVB. 2019, 39, 1938–1966. [Google Scholar] [CrossRef]
- Cortelli, P.; Giannini, G.; Favoni, V.; Cevoli, S.; Pierangeli, G. (2013). Nociception and autonomic nervous system. Neurol. Sci. 2013, 34, 41–46. [Google Scholar] [CrossRef]
- Poulsen, I.; Balle, M.; Givard, K. L. (2019). Nociception coma scale–revised: nurses’ experience in clinical practice. Pain Manag Nurs. 2019, 20, 592–598. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, H.; Guo, F.; Wu, Y.; Li, Y. Antinociceptive and anti-inflammatory activities of a standardizedextract of bis-iridoids from Pterocephalus hookeri. J. Ethnopharmacol. 2018, 216, 233–238. [Google Scholar] [CrossRef]
- Lin, C. C. J.; Chen, W. N.; Chen, C. J.; Lin, Y. W.; Zimmer, A.; Chen, C. C. An antinociceptive role for substance P in acid-induced chronic muscle pain. Proc Natl Acad Sci USA. 2012, 109, E76–E83. [Google Scholar] [CrossRef]
- Araujo, I. W. F.; Chaves, H. V.; Pachêco, J. M.; Val, D. R.; Vieira, L. V.; Santos, R.; Benevides, N. M. B. Role of central opioid on the antinociceptive effect of sulfated polysaccharide from the red seaweed Solieria filiformis in induced temporomandibular joint pain. Int. Immunopharmacol. 2017, 44, 160–167. [Google Scholar] [CrossRef]
- Diwan, A. D.; Melrose, J. Intervertebral disc degeneration and how it leads to low back pain. Jor Spine. 2023, 6, e1231. [Google Scholar] [CrossRef] [PubMed]
- Yamamotova, A. Endogenous antinociceptive system and potential ways to influence It. Physiol. Res. 2019, 68. [Google Scholar] [CrossRef]
- Zhang, W.; Suo, M.; Yu, G.; Zhang, M. Antinociceptive and anti-inflammatory effects of cryptotanshinone through PI3K/Akt signaling pathway in a rat model of neuropathic pain. Chem. Biol. Interact. 2019, 305, 127–133. [Google Scholar] [CrossRef]
- Sulaiman, M. R.; Hussain, M. K.; Zakaria, Z. A.; Somchit, M. N.; Moin, S.; Mohamad, A. S.; Israf, D. A. Evaluation of the antinociceptive activity of Ficus deltoidea aqueous extract. Fitoterapia. 2008, 79(7-8), 557-561. [CrossRef]
- Baldo, B. A.; Pham, N. H.; Baldo, B. A.; Pham, N. H. NSAID 2021, 439-471. ,.
- Santenna, C.; Kumar, S.; Balakrishnan, S.; Jhaj, R.; Ahmed, S. N. A comparative experimental study of analgesic activity of a novel non-steroidal anti-inflammatory molecule–zaltoprofen, and a standard drug–piroxicam, using murine models. J. Exp. Pharmacol. 2019, 85–91. [Google Scholar] [CrossRef]
- Freo, U.; Ruocco, C.; Valerio, A.; Scagnol, I.; Nisoli, E. Paracetamol: a review of guideline recommendations. J. Clin. Med. 2021, 10, 3420. [Google Scholar] [CrossRef]
- Kaur, M. Mechanism of Action, Kinetics and a Bioactive Metabolites AM404 of Paracetamol. J Clin Med Res. 2020, 1, 1–9. [Google Scholar]
- Ragab, G. , Elshahaly, M., & Bardin, T. Gout: An old disease in new perspective–A review. J. Adv. Res. 2017, 8, 495–511. [Google Scholar]
- Perez-Ruiz, F.; Dalbeth, N.; Bardin, T. A review of uric acid, crystal deposition disease, and gout. Adv. Ther. 2015, 32, 31–41. [Google Scholar] [CrossRef]
- Malhotra, M.; Tandon, P.; Wadhwa, K.; Melkani, I.; Singh, A. P.; Singh, A. P. The complex pathophysiology of urolithiasis (kidney stones) and the effect of combinational drugs 2022, 12(5-S), 194-204. JDDT.
- Pattamapaspong, N.; Vuthiwong, W.; Kanthawang, T.; Louthrenoo, W. Value of ultrasonography in the diagnosis of gout in patients presenting with acute arthritis. Skeletal Radiol. 2017, 46, 759–767. [Google Scholar] [CrossRef]
- Oh, Y. J.; Moon, K. W. Presence of tophi is associated with a rapid decline in the renal function in patients with gout. Sci. Rep. 2021, 11, 5684. [Google Scholar]
- Parthasarathy, P.; Vivekanandan, S. Urate crystal deposition, prevention and various diagnosis techniques of GOUT arthritis disease: a comprehensive review. Health Inf. Sci. Syst. 2018, 6, 1–13. [Google Scholar] [CrossRef]
- Anaizi, N. The impact of uric acid on human health: Beyond gout and kidney stones. Ibnosina j. m. bio. sci. 2023,45,158-169. [Google Scholar] [CrossRef]
- Borghi, C.; Agabiti-Rosei, E.; Johnson, R. J.; Kielstein, J. T.; Lurbe, E. , Mancia, G.;Tsioufis, K. P. Hyperuricaemia and gout in cardiovascular, metabolic and kidney disease. Eur. J. Intern. Med. 2020, 80, 1–11. [Google Scholar] [CrossRef]
- Dehlin, M. , Jacobsson, L., & Roddy, E. Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors. Eur. J. Rheumatol. 2020, 16, 380–390. [Google Scholar]
- Cipolletta, E.; Tata, L. J.; Nakafero, G. , Avery, A. J.; Mamas, M. A.; Abhishek, A. Association between gout flare and subsequent cardiovascular events among patients with gout. Jama. 2022, 328, 440–450. [Google Scholar] [CrossRef]
- Singh, J. A. Any sleep is a dream far away: a nominal group study assessing how gout affects sleep. Rheumatology. 2018, 57, 1925–1932. [Google Scholar] [CrossRef]
- Pascual, E.; Addadi, L.; Andrés, M.; Sivera, F. (2015). Mechanisms of crystal formation in gout—a structural approach. Nat. Rev. Rheumatol. 2015, 11, 725–730. [Google Scholar] [CrossRef]
- Lee, Y. H.; Song, G. G. Uric acid level, gout and bone mineral density: a Mendelian randomization study. Eur J Clin Invest. 2019, 49, e13156. [Google Scholar] [CrossRef]
- Akeju, O.; Brown, E. N. Neural oscillations demonstrate that general anesthesia and sedative states are neurophysiologically distinct from sleep. Curr. Opin. Neurobiol. 2017, 44, 178–185. [Google Scholar] [CrossRef]
- Devi, C. B. P.; Samreen, S. , Kumari, N. K.; Sharma, J. V. C. A review on insomnia: The sleep disorder. Pharma Innov. J. 2018, 7, 227–230. [Google Scholar]
- Morin, C. M.; Drake, C. L.; Harvey, A. G.; Krystal, A. D.; Manber, R. , Riemann, D.; Spiegelhalder, K. Insomnia disorder. Nat Rev Dis Primers. 2015, 1, 1–18. [Google Scholar] [CrossRef]
- Bloem, B. R.; Okun, M. S.; Klein, C. Parkinson's disease. The Lancet. 2021, 397, 2284–2303. [Google Scholar] [CrossRef]
- Akbar, U.; McQueen, R. B.; Bemski, J.; Carter, J.; Goy, E. R.; Kutner, J.; Kluger, B. Prognostic predictors relevant to end-of-life palliative care in Parkinson’s disease and related disorders: a systematic review. J Neurol Neurosurg Psychiatry. 2021, 92, 629–636. [Google Scholar] [CrossRef]
- Hinson, V. K.; Bergmann, K. J.; Revuelta, G. J.; Vaughan, C. L. A primer on Parkinson’s disease. J Mov Disord. 2014, 25, 812–833. [Google Scholar]
- Mattiuzzi, C.; Lippi, G. Current cancer epidemiology. J. Epidemiol. Glob. Health. 2019, 9, 217–222. [Google Scholar] [CrossRef]
- Rumgay, H.; Arnold, M.; Ferlay, J.; Lesi, O.; Cabasag, C. J.; Vignat, J.; Soerjomataram, I. Global burden of primary liver cancer in 2020 and predictions to 2040. J Hepatol. 2022, 77, 1598–1606. [Google Scholar] [CrossRef]
- Bray, F.; Parkin, D. M.; Gnangnon, F.; Tshisimogo, G.; Peko, J. F.; Adoubi, I.; Chingonzoh, T. Cancer in sub-Saharan Africa in 2020: a review of current estimates of the national burden, data gaps, and future needs. Lancet Oncol. 2022, 23, 719–728. [Google Scholar] [CrossRef]
- Shayan, N. A.; Rahimi, A.; Özcebe, H. Cancer prevalence, incidence, and mortality rates in Afghanistan in 2020: A review study. CCR. 2023, 6, e1873. [Google Scholar] [CrossRef]
- Huang, J.; Lok, V.; Ngai, C. H.; Chu, C.; Patel, H. K.; Thoguluva Chandraseka, V.; Wong, M. C. Disease burden, risk factors, and recent trends of liver cancer: a global country-level analysis. HCC. 2021, 10, 330–345. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: CA Cancer J Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Tramper-Stranders, G.; Ambrożej, D.; Arcolaci, A.; Atanaskovic-Markovic, M.; Boccabella, C.; Bonini, M.; EAACI Task Force on Conscious and Rational use of Antibiotics in Allergic Diseases. Dangerous liaisons: Bacteria, antimicrobial therapies, and allergic diseases. Allergy. 2021, 76, 3276–3291. [Google Scholar] [CrossRef]
- Zhang, Y. J.; Li, S.; Gan, R. Y.; Zhou, T.; Xu, D. P.; Li, H. B. Impacts of gut bacteria on human health and diseases. Int. J. Mol. Sci. 2015, 6, 7493–7519. [Google Scholar] [CrossRef]
- Soni, J.; Sinha, S.; Pandey, R. Understanding bacterial pathogenicity: a closer look at the journey of harmful microbes. Front. Microbiol. 2024, 15, 1370818. [Google Scholar] [CrossRef]
- Vouga, M. , & Greub, G. (2016). Emerging bacterial pathogens: the past and beyond. Clinical Microbiology and Infection 22(1), 12-21.
- Poulain, B.; Popoff, M. R. Why are botulinum neurotoxin-producing bacteria so diverse and botulinum neurotoxins so toxic? Toxins. 2019, 11, 34. [Google Scholar] [CrossRef]
- Dugan, P. R. (2022). Bacteria. Inf. Res. Immun. 2022, 283–318. [Google Scholar]
- Samul, D. ; Worsztynowicz, P; Leja, K; Grajek, W. Beneficial and harmful roles of bacteria from the Clostridium genus. Acta Biochim. Pol. 2013, 60(4).
- Jin, T.; Mohammad, M.; Pullerits, R.; Ali, A. Bacteria and host interplay in staphylococcus aureus septic arthritis and sepsis. Pathogens. 2021, 10, 158. [Google Scholar] [CrossRef]
- Gierke, R.; Wodi, A. P.; Kobayashi, M. Pneumococcal disease. EPVPD. 2021, 279–296. [Google Scholar]
- Mattos-Guaraldi, A. L.; Moreira, L. O.; Damasco, P. V.; Hirata Júnior, R. Diphtheria remains a threat to health in the developing world: an overview. Mem. Inst. Oswaldo Cruz. 2003, 98, 987–993. [Google Scholar] [CrossRef]
- Barnett, T. C.; Bowen, A. C.; Carapetis, J. R. The fall and rise of Group A Streptococcus disease. Epidemiol. Infect. 2019, 147. [Google Scholar]
- La Jeon, Y.; Yang, J. J.; Kim, M. J.; Lim, G.; Cho, S. Y.; Park, T. S.; Lee, H. J. Combined Bacillus licheniformis and Bacillus subtilis infection in a patient with oesophageal perforation. Med. Microbiol. 2012, 61, 1766–1769. [Google Scholar] [CrossRef]
- Smith, J. L. , & Fratamico, P. M. (2017). Escherichia coli as a Pathogen. In Foodborne diseases (pp. 189–208). Academic Press.
- Alvarez-Ordóñez, A.; Martínez-Lobo, F. J.; Arguello, H.; Carvajal, A.; Rubio, P. Swine dysentery: aetiology, pathogenicity, determinants of transmission and the fight against the disease. IJERPH. 2013, 10, 1927–1947. [Google Scholar] [CrossRef]
- Obaro, S. K.; Iroh Tam, P. Y.; Mintz, E. D. The unrecognized burden of typhoid fever. Expert Rev. Vaccines. 2017, 16, 249–260. [Google Scholar] [CrossRef]
- Sharma, D. K.; Shah, U.; Mawli, A. H.; Gupta, V.; Saxena, K.; Varun, A. (2014). Diarrheal Diseases Routine Microbiological Surveillance: An Answer to Recognize the Specific Diarrheal Outbreaks. NJCM. 2014, 5, 302–305. [Google Scholar]
- Geng, S.; Li, Q.; Zhou, X.; Zheng, J.; Liu, H.; Zeng, J.; Qi, B. Gut commensal E. coli outer membrane proteins activate the host food digestive system through neural-immune communication. CHM. 2022, 30, 1401–1416. [Google Scholar] [CrossRef]
- Schaffer, J. N.; Pearson, M. M. Proteus mirabilis and urinary tract infections. Mol. Pathog. 2017, 383–433. [Google Scholar]
- Lis, R.; Rowhani-Rahbar, A.; Manhart, L. E. Mycoplasma genitalium infection and female reproductive tract disease: a meta-analysis. CID. 2015, 61, 418–426. [Google Scholar] [CrossRef]
- Ziklo, N.; Huston, W. M.; Hocking, J. S.; Timms, P. Chlamydia trachomatis genital tract infections: when host immune response and the microbiome collide. Trends Microbiol. 2016, 24, 750–765. [Google Scholar] [CrossRef]
- Bautista, C. T.; Wurapa, E.; Sateren, W. B.; Morris, S.; Hollingsworth, B.; Sanchez, J. L. Bacterial vaginosis: a synthesis of the literature on etiology, prevalence, risk factors, and relationship with chlamydia and gonorrhea infections. Mil. Med. Res. 2016, 3, 1–10. [Google Scholar] [CrossRef]
- Fiscarelli, E. V. The colours of bacteria and fungi. MM. 2019, 34. [Google Scholar] [CrossRef]
- Cruz, A. R.; Ramirez, L. G.; Zuluaga, A. V.; Pillay, A.; Abreu, C.; Valencia, C. A.; Salazar, J. C. Immune evasion and recognition of the syphilis spirochete in blood and skin of secondary syphilis patients: two immunologically distinct compartments. PLoS Negl Trop Dis. 2012, 6, e1717. [Google Scholar] [CrossRef]
- Paul, J. Respiratory Tract Infections. Pathogens. 2024, 99–148. [Google Scholar]
- Segata, N.; Haake, S. K.; Mannon, P.; Lemon, K. P.; Waldron, L.; Gevers, D.; Izard, J. (2012). Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol. 2012, 13, 1–18. [Google Scholar] [CrossRef]
- Obum-Nnadi, C. N.; Amaechi, D.; Ezenwa, C. M.; Nduibisi, C. J.; David, A. S. Antibiotics Susceptibility Pattern of different Bacteria Associated with female Genital tract Infection in Rural Communities in North central Nigeria. Curr. Res. Interdiscip. Stud. 2022, 1, 17–29. [Google Scholar]
- Watkins, R. R.; David, M. Z. Approach to the patient with a skin and soft tissue infection. Infect. Dis. Clin. 2021, 35, 1–48. [Google Scholar] [CrossRef]
| Disease | Cell Line (Receptors) |
Duration | Doses of α- and β-Amyrins |
Assay | References |
|---|---|---|---|---|---|
|
D
iabetes,
C ardiovascular |
Beta cell | 12 hours | 10, 30, and 100 mg/kg | Vivo | [29] |
| D iabetes | Beta cell | 24 hours | 50 µg/kg | Vivo | [30] |
| D iabetes | - | - | 10 µg/mL | Vitro | [31] |
| D iabetes | 3T3-L1 | 24 hours | 1,10,100 µg/mL | Vivo | [32] |
| D iabetes | HK-2 | 24 hours | 100µg/kg | Vivo | [33] |
| - | - | 19.50 µg/mL | Vitro | [34] |
| Disease | Cell Line (Receptors) |
Duration | Doses of α- and β-Amyrins |
Assay | References |
|---|---|---|---|---|---|
| A therosclerosis | HepG2 | - | 200 μmol/L | Vitro | [35] |
| T ype II diabetes, and atherosclerosis | IL-6, TNF-α |
- | 0.01 μM | Vitro | [36] |
| Nonalcoholic fatty liver | Lipid levels | 15 weeks | 10, 20, 50 mg/kg | Vivo | [37] |
|
V
ascular
disorders |
SVEC4-10 | - | 0,6 và 0,3 µM | Vitro | [38] |
| V ascular | HUVECs | 24–72 h | 0.025–10 μM) | Vitro | [39] |
| Obesity- | PHE,ACh,SNP | 15 days | 20 mg/kg | Vivo | [40] |
| Disease | Cell Line (Receptors) |
Duration | Doses of α- and β-Amyrins |
Assay | References |
|---|---|---|---|---|---|
| A ntinociceptive | Capsaicin, naloxone | 10–20 min | 10, 30, and 100 mg/kg | Vivo | [41] |
| Antinociceptive | Protein kinase A, protein kinase C |
- | 0.1–100 mg/kg) | Vivo | [42] |
| V isceral pain | KBr pellets, Bruker AC | - | 45-90% | Vitro | [43] |
|
N
ovel
analgesic |
CHO-K1 cell, Cannabinoid CB1 and CB2 receptors |
- | > 10µM | Vitro | [44] |
| Disease | Cell Line (Receptors) |
Duration | Doses of α- and β-Amyrins |
Assay | References |
|---|---|---|---|---|---|
| Gout | XO | - | 258.22 µg/mL | Vitro | [23] |
| Gout | XO, Urate crystals | - | - | Vivo | [45,46] |
| Gout | NTUB1 | 24 hours | - | Vitro | [47] |
| Disease | Cell Line (Receptors) |
Duration | Doses of α- and β-Amyrins |
Assay | References |
|---|---|---|---|---|---|
| Insomnia | GABAergic | 12 hours | 1, 3, or 10 mg/kg | Vivo | [48] |
| Convulsant, Sedative, Anxiolytic | Glutamate, Aspartate, taurine | 12 hours | 2.5; 5; 10; 25 µg/mL | Vitro | [49] |
| Analgesia | TRPV1, Opioid | 12 hours | 3 - 100 mg/kg | Vivo | [50] |
| Sedative, Depressant | TRPV1, Ruthenium red | 15 hours | 5, 10, 20 mg/kg | Vivo | [51] |
| Alzheimer | pPI3K, PI3K, pAkt, Akt | 24 hours | 4 µg/mL | Vitro | [52] |
| Protective central and peripheral nervous systems | Triglycerides | - | 2000 mg/kg | Vivo | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
