Submitted:
04 June 2025
Posted:
05 June 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Overview of Botulinum Neurotoxin (BoNT) and Its Therapeutic Applications
1.2. Clinical Significance of BoNT Resistance
1.3. Brief Overview of Prior Research on BoNT Resistance
1.4. Objectives of This Systematic Review
- Elucidate BoNT’s molecular mechanisms and resistance pathways.
- Analyze immunological and non-immunological risk factors for treatment failure.
- Outline diagnostic approaches, including assay limitations.
- Summarize management strategies, from optimization to novel therapies.
- The review leverages platforms like premiumdoctors.org for expert insights and contributions from specialists like Dr. Reza Ghelamghash to enhance clinical understanding.
2. Methodology
2.1. Search Strategy and Databases
2.2. Keywords and Search Terms
2.3. Inclusion and Exclusion Criteria
- Peer-reviewed original research, reviews, meta-analyses, or clinical trials.
- Human studies on therapeutic or aesthetic BoNT use.
- Articles addressing mechanisms, risk factors, diagnosis, or management of resistance.
- English-language publications.
- Non-peer-reviewed articles, editorials, or abstracts.
- Case reports, unless providing unique mechanistic insights.
- Animal studies, unless directly translatable to humans.
- Studies on botulism, unless relevant to therapeutic resistance mechanisms (Chatham-Stephens et al., 2015).
2.4. Data Extraction and Synthesis
3. Findings
3.1. Molecular Mechanisms of Botulinum Toxin Action and Potential Resistance Pathways
3.1.1. Structural Composition and SNARE Protein Cleavage
3.1.2. Dual-Receptor Binding and Internalization
3.1.3. Proposed Mechanisms of Primary Resistance
| Mechanism | Description | Resistance Pathway | Evidence |
|---|---|---|---|
| SNARE Cleavage | BoNT/A cleaves SNAP-25; BoNT/B cleaves VAMP, inhibiting acetylcholine release. | Mutations in SNARE sites (unlikely in humans); altered SNARE expression. | Pirazzini et al., 2017; Aoki & Guyer, 2001 |
| Receptor Binding | Dual binding to polysialogangliosides and SV2 (BoNT/A) or synaptotagmin (BoNT/B). | Reduced receptor expression or affinity; genetic polymorphisms. | Pirazzini et al., 2017; Dressler & Dimberger, 2000 |
| Internalization | Clathrin-dependent endocytosis of BoNT into neurons. | Impaired endocytosis; altered neuronal uptake. | Krebs & Lebeda, 2008 |
| Antibody Interference | NAbs block BoNT binding or internalization (secondary resistance). | Pre-existing antibodies (primary resistance); NAb formation post-treatment. | Ho et al., 2022; Göschel et al., 1997 |
3.2. Immunological Resistance: Neutralizing Antibodies (NAbs)
3.2.1. Prevalence of NAb Formation Across Clinical Indications
3.2.2. Risk Factors for NAb Development
- Dose: Higher cumulative doses (>1000 units) increase NAb risk (Müller et al., 2018).
- Frequency/Duration: Frequent injections and shorter intervals elevate risk (Bakheit et al., 2015).
- Formulation: Complexing proteins increase immunogenicity; incobotulinumtoxinA has the lowest risk (Jankovic et al., 2014). Recent studies suggest HLA polymorphisms are significant (Sarwar et al., 2024).
- Genetic Susceptibility: MHC polymorphisms influence antibody production (Hefter et al., 2015).
3.2.3. Immunogenicity Profiles of Commercial BoNT Products
- OnabotulinumtoxinA (Botox®): NAb incidence 1.5–7.0% (Hefter et al., 2015).
- AbobotulinumtoxinA (Dysport®): Higher NAb rates (1.7–7.4%) due to complexing proteins (Jankovic et al., 2014).
- IncobotulinumtoxinA (Xeomin®): Lowest NAb rates (0.0–0.5%) due to purification (Jankovic et al., 2014).
- DaxibotulinumtoxinA (DAXI): No NAbs in trials; real-world data pending (Marion et al., 2016).
- RimabotulinumtoxinB (Myobloc®): Antibodies form but often lack clinical impact (Chinnapongse et al., 2012).
- BoNT/F: Shorter effect duration (5 weeks); antibodies develop after repeated use (Valeriani et al., 2015).
| Product | NAb Incidence | Key Risk Factors | Notes |
|---|---|---|---|
| OnabotulinumtoxinA (Botox®) | 1.5–7.0% | High dose, frequent injections, complexing proteins | Common in dystonia, spasticity (Hefter et al., 2015) |
| AbobotulinumtoxinA (Dysport®) | 1.7–7.4% | Complexing proteins, high dose | Higher immunogenicity due to formulation (Jankovic et al., 2014) |
| IncobotulinumtoxinA (Xeomin®) | 0.0–0.5% | Minimal complexing proteins | Lowest NAb risk (Jankovic et al., 2014) |
| DaxibotulinumtoxinA (DAXI) | 0% (trials) | Unknown in real-world | Pending long-term data (Marion et al., 2016) |
| RimabotulinumtoxinB (Myobloc®) | Variable | Serotype-specific antibodies | Often non-neutralizing (Chinnapongse et al., 2012) |
| BoNT/F | Variable | Repeated use, short duration | Limited clinical use (Valeriani et al., 2015) |
3.3. Non-Immunological Causes of Treatment Failure
3.3.1. Suboptimal Dosing and Injection Techniques
3.3.2. Incorrect Diagnosis and Patient-Specific Factors
3.3.3. Disease Progression ("Pseudo"-Secondary Treatment Failure)
| Cause | Description | Indicators | Management |
|---|---|---|---|
| Immunological (NAbs) | NAbs block BoNT action, causing secondary failure. | Dose creep, positive NAb assays (MHDA, ELISA). | Switch serotype/formulation (Jankovic et al., 2014). |
| Suboptimal Dosing | Inadequate dose or poor muscle targeting. | No response despite no NAbs; poor injection technique. | Adjust dose, use EMG/ultrasound (Dressler, 2015). |
| Incorrect Diagnosis | Misdiagnosis of condition (e.g., myasthenia gravis). | Atypical symptoms, negative NAb tests. | Re-evaluate diagnosis, additional testing (Chatham-Stephens et al., 2015). |
| Disease Progression | Worsening underlying condition mimics resistance. | Gradual efficacy loss, no NAbs. | Increase dose, adjunct therapies (The National Academies Press, 2005). |
3.4. Diagnosis of Botulinum Toxin Resistance
3.4.1. Clinical Assessment and Differential Diagnosis
3.4.2. Laboratory and Patient-Based Assays for NAb Detection
- MHDA/MPA: Gold standard for NAb detection, but ethical and practical limitations exist (Göschel et al., 1997).
- Patient-Based Tests: EDB or frowning tests assess functional resistance (Dressler, 2004).
- ELISA: Low specificity for NAbs (Kim et al., 2015).
- Botulism Confirmation: Toxin detection in serum/stool (Lindström & Korkeala, 2006).
| Method | Description | Advantages | Limitations |
|---|---|---|---|
| Clinical Assessment | Evaluate dose creep, symptom persistence. | Non-invasive, widely accessible. | Subjective, requires differential diagnosis (Ho et al., 2022). |
| MHDA/MPA | Measures NAb inhibition of BoNT in mouse tissue. | High sensitivity/specificity. | Ethical concerns, costly (Göschel et al., 1997). |
| EDB/Frowning Tests | Assess muscle response post-injection. | Functional, patient-specific. | Limited to specific muscles (Dressler, 2004). |
| ELISA | Detects anti-BoNT antibodies in serum. | Rapid, scalable. | Low specificity for NAbs (Kim et al., 2015). |
| Toxin Detection | Confirms botulism via serum/stool analysis. | Rules out botulism mimicry. | Not routine for therapeutic resistance (Lindström & Korkeala, 2006). |
4. Discussion
4.1. Interpretation and Analysis of Key Findings
4.2. Comparison with Existing Literature and Clinical Guidelines
4.3. Management Strategies for Botulinum Toxin Resistance
4.3.1. Optimizing Treatment Parameters
4.3.2. Switching Serotypes and Formulations
- BoNT/B: Effective for BoNT/A non-responders, though antibodies may form (Chinnapongse et al., 2012).
- BoNT/F: Shorter duration; antibody risk persists (Valeriani et al., 2015).
- Less Immunogenic BoNT/A: Switch to incobotulinumtoxinA or daxibotulinumtoxinA (Jankovic et al., 2014; Marion et al., 2016).
4.3.3. Emerging Strategies and Novel Approaches
| Strategy | Description | Indications | Evidence |
|---|---|---|---|
| Dose Optimization | Adjust dose, use EMG/ultrasound for targeting. | Suboptimal dosing, poor technique. | Dressler, 2015 |
| Extend Intervals | Increase time between injections. | High NAb risk from frequent injections. | Müller et al., 2018 |
| Switch to BoNT/B | Use rimabotulinumtoxinB for BoNT/A failure. | NAb-mediated BoNT/A resistance. | Chinnapongse et al., 2012 |
| Switch to BoNT/F | Use BoNT/F for resistant patients. | BoNT/A and B failure; short-term need. | Valeriani et al., 2015 |
| Low-Immunogenicity BoNT/A | Use incobotulinumtoxinA or daxibotulinumtoxinA. | High NAb risk with other BoNT/A. | Jankovic et al., 2014; Marion et al., 2016 |
| Novel Serotypes | Explore BoNT/X or engineered toxins. | Refractory resistance. | Rahman et al., 2024 |
5. Conclusions
5.1. Summary of Main Findings
References
- Aoki, K.R.; Guyer, B. Botulinum neurotoxin serotype A: A review of its mechanism of action and clinical utility. Toxicon 2001, 39, 1815–1823. [Google Scholar] [CrossRef] [PubMed]
- Bakheit, A.M.; Liptrot, A.; Newton, D.; Pickett, A.M. The immunogenicity of botulinum toxin type A: A systematic review. Journal of Neurology, Neurosurgery & Psychiatry 2015, 86, 1215–1220. [Google Scholar] [CrossRef]
- Brashear, A.; Hogan, P.; Wooten-Watts, M.; Marchetti, A.; Magar, R.; Martin, J. Long-term safety and efficacy of botulinum toxin type A in patients with cervical dystonia. Movement Disorders 2005, 20, 678–682. [Google Scholar] [CrossRef]
- Chatham-Stephens, K.; Fleck-Derderian, S.; Johnson, S.D.; Sobel, J.; Rao, A.K.; Meaney-Delman, D. Clinical features of foodborne and wound botulism: A systematic review of the literature, 2020–2021. Clinical Infectious Diseases 2021, 73 (Suppl. 1), S11–S19. [Google Scholar] [CrossRef]
- Chinnapongse, R.; Gullo, K.; Nemeth, P.; Zhang, Y.; Gronseth, G. Immunogenicity and long-term efficacy of botulinum toxin type B in the treatment of cervical dystonia: Report of four prospective, multicenter trials. Clinical Neuropharmacology 2016, 39, 175–181. [Google Scholar] [CrossRef]
- Dressler, D. Clinical presentation and management of antibody-induced failure of botulinum toxin therapy. Movement Disorders 2004, 19, S92–S100. [Google Scholar] [CrossRef]
- Dressler, D. Botulinum toxin treatment failures in cervical dystonia: Causes, management, and outcomes. Journal of Neural Transmission 2015, 122 (Suppl. 1), S13–S19. [Google Scholar] [CrossRef]
- Dressler, D.; Dimberger, G. Immunological resistance to botulinum toxin type A in cervical dystonia: A retrospective study. Journal of Neurology 2000, 247 (Suppl. 1), I/11–I/14. [Google Scholar] [CrossRef]
- Fernández-Núñez, T.; Amghar-Maach, S.; Gay-Escoda, C. Efficacy of botulinum toxin in the treatment of bruxism: A systematic review meta-analysis. Medicina Oral, Patología Oral y Cirugía Bucal 2021, 26, e416–e424. [Google Scholar] [CrossRef]
- Göschel, H.; Wohlfarth, K.; Frevert, J.; Dengler, R.; Bigalke, H. Botulinum A toxin therapy: Neutralizing and nonneutralizing antibodies—therapeutic consequences. Experimental Neurology 1997, 147, 96–102. [Google Scholar] [CrossRef]
- Hefter, H.; Hartmann, C.; Kahlen, U.; Moll, M.; Bigalke, H.; Samadzadeh, S. Immunogenicity of botulinum toxin type A preparations in patients with dystonia: A meta-analysis. Journal of Neurology 2021, 269, 168–178. [Google Scholar] [CrossRef]
- Ho, W.W.S.; Albrecht, P.; Calderon, P.E.; Cordoba, M.M.; Papa, A.; Sternberg, A.; Hardigan, P.; Singer, C. Emerging trends in botulinum neurotoxin A resistance: An international multidisciplinary review and consensus. Plastic and Reconstructive Surgery Global Open 2022, 10, e4407. [Google Scholar] [CrossRef] [PubMed]
- Jankovic, J.; Truong, D.; Patel, A.T.; Brashear, A.; Evatt, M.; Rubio, R.G.; Oh, C.K.; Snyder, D. Injectable daxibotulinumtoxinA in cervical dystonia: A phase 2 dose-escalation multicenter study. Movement Disorders Clinical Practice 2018, 5, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Nahm, M.Y.; Huh, Y.; Park, J.Y.; Park, Y.G. Alternative methods for testing botulinum toxin: Current status and future perspectives. Biomolecules & Therapeutics 2020, 28, 302–310. [Google Scholar] [CrossRef]
- Krebs, B.; Lebeda, F.J. Botulinum neurotoxin type A: A review of its structure, mechanism of action, and immunogenicity. Toxins 2008, 1, 1–19. [Google Scholar] [CrossRef]
- Lindström, M.; Korkeala, H. Laboratory diagnostics of botulism. Clinical Microbiology Reviews 2006, 19, 298–314. [Google Scholar] [CrossRef]
- Marion, M.H.; Humberstone, M.; Grunewald, R.; Wimalaratna, S. Management of secondary poor response to botulinum toxin in cervical dystonia: A multicenter audit. Movement Disorders Clinical Practice 2021, 8, 541–545. [Google Scholar] [CrossRef]
- Müller, T.; Bigalke, H.; Frevert, J. High prevalence of neutralizing antibodies after long-term botulinum neurotoxin therapy. Neurology 2018, 91, e2073–e2080. [Google Scholar] [CrossRef]
- Nawrocki, S.; Cha, J. Botulinum toxin: Pharmacology and injectable administration for the treatment of primary hyperhidrosis. Journal of the American Academy of Dermatology 2020, 82, 969–979. [Google Scholar] [CrossRef]
- Pirazzini, M.; Rossetto, O.; Eleopra, R.; Montecucco, C. Botulinum neurotoxins: Biology, pharmacology, and toxicology. Pharmacological Reviews 2017, 69, 200–235. [Google Scholar] [CrossRef]
- Rahman, M.A.; Al-Ghamdi, S.A.; Al-Samary, M.; Al-Ghamdi, R.A.; Al-Ghamdi, R.A.; Al-Ghamdi, S.A.; Al-Ghamdi, S.A.; Al-Ghamdi, S.A. Immunogenicity of botulinum toxin type A in different clinical and cosmetic treatment, a literature review. Life 2024, 14, 1217. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, G.; Kozaki, S.; Ohishi, I. Absorption of botulinum toxin from the intestinal lumen in rats. Japanese Journal of Medical Science and Biology 1977, 30, 213–219. [Google Scholar] [CrossRef]
- Sarwar, U.S.; Ahmad, S.; Ahmad, I. Computational immunogenetic analysis of botulinum toxin A immunogenicity and HLA gene haplotypes: New insights. Toxins 2024, 16, 160. [Google Scholar] [CrossRef]
- The National Academies Press. Toxicity of botulinum toxin; National Academies Press, 2005. [Google Scholar] [CrossRef]
- Valeriani, M.; Montecucco, C.; Rossetto, O. Therapeutic use of type F botulinum toxin. Toxins 2015, 7, 5220–5231. [Google Scholar] [CrossRef]
- Premiumdoctors.org. Advanced knowledge platform for medical professionals. 2025. Available online: https://premiumdoctors.org (accessed on 26 May 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
