Submitted:
04 May 2025
Posted:
30 May 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results
2.1. Aspirin and Colorectal Cancer
2.2. Oral Anticoagulation and Colorectal Cancer
2.3. Metformin and Colorectal Cancer
2.4. Corticosteroids and Colorectal Cancer
2.4. Statins, Beta-Blockers and Colorectal Cancer
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CRC | Colorectal cancer |
| GIB | Gastrointestinal bleeding |
| OAC | Oral anticoagulation |
| COX | Cyclooxygenase |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 2024, 74, 229–63. [Google Scholar] [CrossRef] [PubMed]
- Grymonprez, M.; Simoens, C.; Steurbaut, S.; De Backer, T.L.; Lahousse, L. Worldwide trends in oral anticoagulant use in patients with atrial fibrillation from 2010 to 2018: a systematic review and meta-analysis. EP Europace 2022, 24, 887–98. [Google Scholar] [CrossRef] [PubMed]
- Stuntz, M.; Bernstein, B. Recent trends in the prevalence of low-dose aspirin use for primary and secondary prevention of cardiovascular disease in the United States, 2012–2015. Preventive Medicine Reports 2017, 5, 183–6. [Google Scholar] [CrossRef] [PubMed]
- Antithrombotic Trialists, C.; Baigent, C.; Blackwell, L.; Collins, R.; Emberson, J.; Godwin, J.; et al. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet 2009, 373, 1849–60. [Google Scholar]
- Kune, G.A.; Kune, S.; Watson, L.F. Colorectal Cancer Risk, Chronic Illnesses, Operations, and Medications: Case Control Results from the Melbourne Colorectal Cancer Study1. Cancer Research 1988, 48, 4399–404. [Google Scholar] [CrossRef]
- Lam, A.; Hao, Z.; Yiu, K.; Chan, S.; Chan, F.; Sung, J.; et al. Long-term use of low-dose aspirin for cancer prevention: A 20-year longitudinal cohort study of 1,506,525 Hong Kong residents. Int J Cancer 2025, 156, 2330–9. [Google Scholar] [CrossRef]
- Skriver, C.; Maltesen, T.; Dehlendorff, C.; Skovlund, C.W.; Schmidt, M.; Sørensen, H.T.; et al. Long-term aspirin use and cancer risk: a 20-year cohort study. JNCI: Journal of the National Cancer Institute 2023, 116, 530–8. [Google Scholar] [CrossRef]
- Shahrivar, M.; Weibull, C.E.; Ekström Smedby, K.; Glimelius, B.; Syk, I.; Matthiessen, P.; et al. Low-dose aspirin use and colorectal cancer survival in 32,195 patients—A national cohort study. Cancer Medicine 2023, 12, 315–24. [Google Scholar] [CrossRef]
- Shami, J.J.P.; Zhao, J.; Pathadka, S.; Wan, E.Y.F.; Blais, J.E.; Vora, P.; et al. Safety and effectiveness of low-dose aspirin for the prevention of gastrointestinal cancer in adults without atherosclerotic cardiovascular disease: a population-based cohort study. BMJ Open 2022, 12, e050510. [Google Scholar] [CrossRef]
- Tsoi, K.K.F.; Chan, F.C.H.; Hirai, H.W.; Sung, J.J.Y. Risk of gastrointestinal bleeding and benefit from colorectal cancer reduction from long-term use of low-dose aspirin: A retrospective study of 612 509 patients. Journal of Gastroenterology and Hepatology 2018, 33, 1728–36. [Google Scholar] [CrossRef]
- Cao, Y.; Nishihara, R.; Wu, K.; Wang, M.; Ogino, S.; Willett, W.C.; et al. Population-wide Impact of Long-term Use of Aspirin and the Risk for Cancer. JAMA Oncol 2016, 2, 762–9. [Google Scholar] [CrossRef] [PubMed]
- Cook, N.R.; Lee, I.M.; Zhang, S.M.; Moorthy, M.V.; Buring, J.E. Alternate-Day, Low-Dose Aspirin and Cancer Risk: Long-Term Observational Follow-up of a Randomized Trial. Annals of Internal Medicine 2013, 159, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Lochhead, P.; Nishihara, R.; Morikawa, T.; Kuchiba, A.; Yamauchi, M.; et al. Aspirin Use, Tumor PIK3CA Mutation, and Colorectal-Cancer Survival. New England Journal of Medicine 2012, 367, 1596–606. [Google Scholar] [CrossRef]
- Rothwell, P.M.; Fowkes, F.G.R.; Belch, J.F.F.; Ogawa, H.; Warlow, C.P.; Meade, T.W. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. The Lancet 2011, 377, 31–41. [Google Scholar] [CrossRef]
- Rothwell, P.M.; Wilson, M.; Elwin, C.-E.; Norrving, B.; Algra, A.; Warlow, C.P.; et al. Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. The Lancet 2010, 376, 1741–50. [Google Scholar] [CrossRef]
- Chan, A.T.; Ogino, S.; Fuchs, C.S. Aspirin use and survival after diagnosis of colorectal cancer. Jama 2009, 302, 649–58. [Google Scholar] [CrossRef]
- Thun Michael, J.; Namboodiri Mohan, M.; Heath Clark, W. Aspirin Use and Reduced Risk of Fatal Colon Cancer. New England Journal of Medicine 1991, 325, 1593–6. [Google Scholar] [CrossRef]
- McNeil John, J.; Nelson Mark, R.; Woods Robyn, L.; Lockery Jessica, E.; Wolfe, R.; Reid Christopher, M.; et al. Effect of Aspirin on All-Cause Mortality in the Healthy Elderly. New England Journal of Medicine 2018, 379, 1519–28. [Google Scholar] [CrossRef] [PubMed]
- Cook, N.R.; Lee, I.-M.; Gaziano, J.M.; Gordon, D.; Ridker, P.M.; Manson, J.E.; et al. Low-Dose Aspirin in the Primary Prevention of CancerThe Women’s Health Study: A Randomized Controlled Trial. JAMA 2005, 294, 47–55. [Google Scholar] [CrossRef]
- Mädge, J.C.; Stallmach, A.; Kleebusch, L.; Schlattmann, P. Meta-analysis of aspirin-guided therapy of colorectal cancer. Journal of Cancer Research and Clinical Oncology 2022, 148, 1407–17. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, R.; Yu, L.; Xiao, J.; Zhou, X.; Li, X.; et al. Aspirin Use and Common Cancer Risk: A Meta-Analysis of Cohort Studies and Randomized Controlled Trials. Frontiers in Oncology 2021, 11, 2021. [Google Scholar] [CrossRef] [PubMed]
- Bosetti, C.; Santucci, C.; Gallus, S.; Martinetti, M.; La Vecchia, C. Aspirin and the risk of colorectal and other digestive tract cancers: an updated meta-analysis through 2019. Annals of Oncology 2020, 31, 558–68. [Google Scholar] [CrossRef]
- Lin J-L, Lin J-X, Zheng C-H, Li P, Xie J-W, Wang J-b. ; et al. Relationship between aspirin use of esophageal, gastric and colorectal cancer patient survival: a meta-analysis. BMC Cancer 2020, 20, 638. [Google Scholar]
- Algra, A.M.; Rothwell, P.M. Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. The Lancet Oncology 2012, 13, 518–27. [Google Scholar] [CrossRef] [PubMed]
- Rothwell, P.M.; Price, J.F.; Fowkes, F.G.R.; Zanchetti, A.; Roncaglioni, M.C.; Tognoni, G.; et al. Short-term effects of daily aspirin on cancer incidence, mortality, and non-vascular death: analysis of the time course of risks and benefits in 51 randomised controlled trials. The Lancet 2012, 379, 1602–12. [Google Scholar] [CrossRef]
- Bibbins-Domingo, K. Aspirin Use for the Primary Prevention of Cardiovascular Disease and Colorectal Cancer: U.S. Preventive Services Task Force Recommendation Statement. Annals of Internal Medicine 2016, 164, 836–45. [Google Scholar] [CrossRef]
- McNeil, J.J.; Gibbs, P.; Orchard, S.G.; Lockery, J.E.; Bernstein, W.B.; Cao, Y.; et al. Effect of Aspirin on Cancer Incidence and Mortality in Older Adults. JNCI: Journal of the National Cancer Institute 2021, 113, 258–65. [Google Scholar] [CrossRef]
- Guo, C.-G.; Ma, W.; Drew, D.A.; Cao, Y.; Nguyen, L.H.; Joshi, A.D.; et al. Aspirin Use and Risk of Colorectal Cancer Among Older Adults. JAMA Oncology 2021, 7, 428–35. [Google Scholar] [CrossRef]
- Flossmann, E.; Rothwell, P.M. Effect of aspirin on long-term risk of colorectal cancer: consistent evidence from randomised and observational studies. The Lancet 2007, 369, 1603–13. [Google Scholar] [CrossRef]
- Drew, D.A.; Chan, A.T. Aspirin in the Prevention of Colorectal Neoplasia. Annual Review of Medicine 2021, 72, 415–30. [Google Scholar] [CrossRef]
- Sung, J.J.Y.; Ho, J.M.W.; Chan, F.C.H.; Tsoi, K.K.F. Low-dose aspirin can reduce colorectal cancer mortality after surgery: A 10-year follow-up of 13 528 colorectal cancer patients. J Gastroenterol Hepatol 2019, 34, 1027–34. [Google Scholar] [CrossRef] [PubMed]
- Hua, X.; Phipps, A.I.; Burnett-Hartman, A.N.; Adams, S.V.; Hardikar, S.; Cohen, S.A.; et al. Timing of Aspirin and Other Nonsteroidal Anti-Inflammatory Drug Use Among Patients With Colorectal Cancer in Relation to Tumor Markers and Survival. J Clin Oncol 2017, 35, 2806–13. [Google Scholar] [CrossRef] [PubMed]
- Bains, S.J.; Mahic, M.; Myklebust, T.Å.; Småstuen, M.C.; Yaqub, S.; Dørum, L.M.; et al. Aspirin as secondary prevention in patients with colorectal cancer: an unselected population-based study. Journal of clinical oncology 2016, 34, 2501–8. [Google Scholar] [CrossRef] [PubMed]
- Cardwell, C.R.; Kunzmann, A.T.; Cantwell, M.M.; Hughes, C.; Baron, J.A.; Powe, D.G.; et al. Low-Dose Aspirin Use After Diagnosis of Colorectal Cancer Does Not Increase Survival: A Case–Control Analysis of a Population-Based Cohort. Gastroenterology 2014, 146, 700–8.e2. [Google Scholar] [CrossRef]
- Gray, R.T.; Coleman, H.G.; Hughes, C.; Murray, L.J.; Cardwell, C.R. Low-dose aspirin use and survival in colorectal cancer: results from a population-based cohort study. BMC Cancer 2018, 18, 228. [Google Scholar] [CrossRef]
- Rothwell, P.M.; Wilson, M.; Price, J.F.; Belch, J.F.F.; Meade, T.W.; Mehta, Z. Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. The Lancet 2012, 379, 1591–601. [Google Scholar] [CrossRef]
- Fenwick, S.W.; Toogood, G.J.; Lodge, J.P.; Hull, M.A. The effect of the selective cyclooxygenase-2 inhibitor rofecoxib on human colorectal cancer liver metastases. Gastroenterology 2003, 125, 716–29. [Google Scholar] [CrossRef]
- Yao, M.; Kargman, S.; Lam, E.C.; Kelly, C.R.; Zheng, Y.; Luk, P.; et al. Inhibition of Cyclooxygenase-2 by Rofecoxib Attenuates the Growth and Metastatic Potential of Colorectal Carcinoma in Mice. Cancer Research 2003, 63, 586–92. [Google Scholar]
- Sheng, H.; Shao, J.; Washington, M.K.; DuBois, R.N. Prostaglandin E<sub>2</sub> Increases Growth and Motility of Colorectal Carcinoma Cells *. Journal of Biological Chemistry 2001, 276, 18075–81. [Google Scholar]
- Tsujii, M.; Kawano, S.; DuBois, R.N. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proceedings of the National Academy of Sciences 1997, 94, 3336–40. [Google Scholar] [CrossRef]
- Fujita, T.; Matsui, M.; Takaku, K.; Uetake, H.; Ichikawa, W.; Taketo, M.M.; et al. Size- and Invasion-dependent Increase in Cyclooxygenase 2 Levels in Human Colorectal Carcinomas1. Cancer Research 1998, 58, 4823–6. [Google Scholar] [PubMed]
- Sheehan, K.M.; Sheahan, K.; O'Donoghue, D.P.; MacSweeney, F.; Conroy, R.M.; Fitzgerald, D.J.; et al. The Relationship Between Cyclooxygenase-2 Expression and Colorectal Cancer. JAMA 1999, 282, 1254–7. [Google Scholar] [CrossRef] [PubMed]
- Sinicrope, F.A.; Gill, S. Role of cyclooxygenase-2 in colorectal cancer. Cancer and Metastasis Reviews 2004, 23, 63–75. [Google Scholar] [CrossRef]
- Amann, R.; Peskar, B.A. Anti-inflammatory effects of aspirin and sodium salicylate. European Journal of Pharmacology 2002, 447, 1–9. [Google Scholar] [CrossRef]
- Soumaoro, L.T.; Uetake, H.; Higuchi, T.; Takagi, Y.; Enomoto, M.; Sugihara, K. Cyclooxygenase-2 Expression: A Significant Prognostic Indicator for Patients With Colorectal Cancer. Clinical Cancer Research 2004, 10, 8465–71. [Google Scholar] [CrossRef] [PubMed]
- Eberhart, C.E.; Coffey, R.J.; Radhika, A.; Giardiello, F.M.; Ferrenbach, S.; Dubois, R.N. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 1994, 107, 1183–8. [Google Scholar] [CrossRef]
- Chan Andrew, T.; Ogino, S.; Fuchs Charles, S. Aspirin and the Risk of Colorectal Cancer in Relation to the Expression of COX-2. New England Journal of Medicine 2007, 356, 2131–42. [Google Scholar] [CrossRef]
- Hall, D.; Benndorf, R. Aspirin sensitivity of PIK3CA-mutated Colorectal Cancer: potential mechanisms revisited. Cell. Mol. Life Sci. 2022, 79. [Google Scholar] [CrossRef]
- Güller, U.; Hayoz, S.; Horber, D.; De Dosso, S.; Koeberle, D.; Kaufmann, S.S.; et al. 512O Adjuvant aspirin treatment in PIK3CA mutated colon cancer patients: The phase III, prospective-randomized placebo-controlled multicenter SAKK 41/13 trial. Annals of Oncology 2024, 35, S432. [Google Scholar] [CrossRef]
- Martling, A.; Lindberg, J.; Hed Myrberg, I.; Nilbert, M.; Mayrhofer, M.; Gronberg, H.; et al. Low-dose aspirin to reduce recurrence rate in colorectal cancer patients with PI3K pathway alterations: 3-year results from a randomized placebo-controlled trial. Journal of Clinical Oncology 2025, 43 (Suppl. S4), LBA125–LBA. [Google Scholar] [CrossRef]
- Jacobs, E.J.; Thun, M.J.; Bain, E.B.; Rodriguez, C.; Henley, S.J.; Calle, E.E. A Large Cohort Study of Long-Term Daily Use of Adult-Strength Aspirin and Cancer Incidence. JNCI: Journal of the National Cancer Institute 2007, 99, 608–15. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.T.; Giovannucci, E.L.; Meyerhardt, J.A.; Schernhammer, E.S.; Wu, K.; Fuchs, C.S. Aspirin Dose and Duration of Use and Risk of Colorectal Cancer in Men. Gastroenterology 2008, 134, 21–8. [Google Scholar] [CrossRef] [PubMed]
- Friis, S.; Riis, A.H.; Erichsen, R.; Baron, J.A.; Sørensen, H.T. Low-Dose Aspirin or Nonsteroidal Anti-inflammatory Drug Use and Colorectal Cancer Risk. Annals of Internal Medicine 2015, 163, 347–55. [Google Scholar] [CrossRef]
- Din, F.V.N.; Theodoratou, E.; Farrington, S.M.; Tenesa, A.; Barnetson, R.A.; Cetnarskyj, R.; et al. Effect of aspirin and NSAIDs on risk and survival from colorectal cancer. Gut 2010, 59, 1670. [Google Scholar] [CrossRef]
- Sandler, R.S.; Halabi, S.; Baron, J.A.; Budinger, S.; Paskett, E.; Keresztes, R.; et al. A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. N Engl J Med 2003, 348, 883–90. [Google Scholar] [CrossRef]
- Benamouzig, R.; Deyra, J.; Martin, A.; Girard, B.; Jullian, E.; Piednoir, B.; et al. Daily soluble aspirin and prevention of colorectal adenoma recurrence: one-year results of the APACC trial1 1The authors thank the women and men who participated in the study, P.E. Douziech for coordination of treatments, and the hospital pharmacists for preparation of the treatments in the trial centers. Gastroenterology 2003, 125, 328–36. [Google Scholar]
- Gann, P.H.; Manson, J.E.; Glynn, R.J.; Buring, J.E.; Hennekens, C.H. Low-Dose Aspirin and Incidence of Colorectal Tumors in a Randomized Trial. JNCI: Journal of the National Cancer Institute 1993, 85, 1220–4. [Google Scholar] [CrossRef]
- Zheng, S.L.; Roddick, A.J. Association of Aspirin Use for Primary Prevention With Cardiovascular Events and Bleeding Events: A Systematic Review and Meta-analysis. JAMA 2019, 321, 277–87. [Google Scholar] [CrossRef] [PubMed]
- McNeil John, J.; Wolfe, R.; Woods Robyn, L.; Tonkin Andrew, M.; Donnan Geoffrey, A.; Nelson Mark, R.; et al. Effect of Aspirin on Cardiovascular Events and Bleeding in the Healthy Elderly. New England Journal of Medicine 2018, 379, 1509–18. [Google Scholar] [CrossRef]
- Ikeda, Y.; Shimada, K.; Teramoto, T.; Uchiyama, S.; Yamazaki, T.; Oikawa, S.; et al. Low-Dose Aspirin for Primary Prevention of Cardiovascular Events in Japanese Patients 60 Years or Older With Atherosclerotic Risk Factors: A Randomized Clinical Trial. JAMA 2014, 312, 2510–20. [Google Scholar] [CrossRef]
- Hreinsson, J.P.; Jonasson, J.G.; Bjornsson, E.S. Bleeding-related symptoms in colorectal cancer: a 4-year nationwide population-based study. Aliment Pharmacol Ther 2014, 39, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Lawrenson, R.; Logie, J.; Marks, C. Risk of colorectal cancer in general practice patients presenting with rectal bleeding, change in bowel habit or anaemia. European Journal of Cancer Care 2006, 15, 267–71. [Google Scholar] [CrossRef] [PubMed]
- Margaret, A.; Tom, G.; Richard, D.N.; Peter, R.; William, H. The diagnostic value of symptoms for colorectal cancer in primary care: a systematic review. British Journal of General Practice 2011, 61, e231. [Google Scholar]
- Stjepanovic, N.; Moreira, L.; Carneiro, F.; Balaguer, F.; Cervantes, A.; Balmaña, J.; et al. Hereditary gastrointestinal cancers: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up<sup>†</sup>. Annals of Oncology 2019, 30, 1558–71. [Google Scholar]
- Yurgelun, M.B.; Chan, A.T. Aspirin for Lynch syndrome: a legacy of prevention. The Lancet 2020, 395, 1817–8. [Google Scholar] [CrossRef]
- Dominguez-Valentin, M.; Sampson, J.R.; Seppälä, T.T.; ten Broeke, S.W.; Plazzer, J.-P.; Nakken, S.; et al. Cancer risks by gene, age, and gender in 6350 carriers ofpathogenic mismatch repair variants: findings from the Prospective Lynch SyndromeDatabase. Genetics in Medicine 2020, 22, 15–25. [Google Scholar] [CrossRef]
- Burn, J.; Sheth, H.; Elliott, F.; Reed, L.; Macrae, F.; Mecklin, J.-P.; et al. Cancer prevention with aspirin in hereditary colorectal cancer (Lynch syndrome), 10-year follow-up and registry-based 20-year data in the CAPP2 study: a double-blind, randomised, placebo-controlled trial. The Lancet 2020, 395, 1855–63. [Google Scholar] [CrossRef]
- Chen, Q.; Toorop, M.M.A.; Tops, L.F.; Lijfering, W.M.; Cannegieter, S.C. Time Trends in Patient Characteristics, Anticoagulation Treatment, and Prognosis of Incident Nonvalvular Atrial Fibrillation in the Netherlands. JAMA Network Open 2023, 6, e239973. [Google Scholar] [CrossRef]
- Marzec, L.N.; Wang, J.; Shah, N.D.; Chan, P.S.; Ting, H.H.; Gosch, K.L.; et al. Influence of Direct Oral Anticoagulants on Rates of Oral Anticoagulation for Atrial Fibrillation. J Am Coll Cardiol 2017, 69, 2475–84. [Google Scholar] [CrossRef]
- Ágústsson AS, B. IA, Edward R, Daníel P, E. RI, P. HJ.; et al. Causes of gastrointestinal bleeding in oral anticoagulant users compared to non-users in a population-based study. Scandinavian Journal of Gastroenterology 2022, 57, 239–45. [Google Scholar] [CrossRef]
- Clemens, A.; Strack, A.; Noack, H.; Konstantinides, S.; Brueckmann, M.; Lip, G.Y.H. Anticoagulant-related gastrointestinal bleeding—could this facilitate early detection of benign or malignant gastrointestinal lesions? Annals of Medicine 2014, 46, 672–8. [Google Scholar] [CrossRef] [PubMed]
- Johannsdottir, G.A.; Onundarson, P.T.; Gudmundsdottir, B.R.; Bjornsson, E.S. Screening for anemia in patients on warfarin facilitates diagnosis of gastrointestinal malignancies and pre-malignant lesions. Thrombosis Research 2012, 130, e20–e5. [Google Scholar] [CrossRef] [PubMed]
- Hashash, J.G.; Shamseddeen, W.; Skoury, A.; Aoun, N.; Barada, K. Gross Lower Gastrointestinal Bleeding in Patients on Anticoagulant and/or Antiplatelet Therapy: Endoscopic Findings, Management, and Clinical Outcomes. Journal of Clinical Gastroenterology 2009, 43. [Google Scholar] [CrossRef]
- Rasmussen, P.V.; Dalgaard, F.; Gislason, G.H.; Brandes, A.; Johnsen, S.P.; Grove, E.L.; et al. Gastrointestinal bleeding and the risk of colorectal cancer in anticoagulated patients with atrial fibrillation. Eur Heart J. 2020, 43, e38–e44. [Google Scholar] [CrossRef] [PubMed]
- Abrahami, D.; Renoux, C.; Yin, H.; Fournier, J.-P.; Azoulay, L. The Association between Oral Anticoagulants and Cancer Incidence among Individuals with Nonvalvular Atrial Fibrillation. Thromb Haemost 2020, 120, 1384–94. [Google Scholar] [CrossRef]
- Kirane, A.; Ludwig, K.F.; Sorrelle, N.; Haaland, G.; Sandal, T.; Ranaweera, R.; et al. Warfarin Blocks Gas6-Mediated Axl Activation Required for Pancreatic Cancer Epithelial Plasticity and Metastasis. Cancer Research 2015, 75, 3699–705. [Google Scholar] [CrossRef]
- Haaland, G.S.; Falk, R.S.; Straume, O.; Lorens, J.B. Association of Warfarin Use With Lower Overall Cancer Incidence Among Patients Older Than 50 Years. JAMA Intern Med 2017, 177, 1774–80. [Google Scholar] [CrossRef]
- Ng, C.-A.W.; Jiang, A.A.; Toh, E.M.S.; Ng, C.H.; Ong, Z.H.; Peng, S.; et al. Metformin and colorectal cancer: a systematic review, meta-analysis and meta-regression. International Journal of Colorectal Disease 2020, 35, 1501–12. [Google Scholar] [CrossRef]
- DeCensi, A.; Puntoni, M.; Goodwin, P.; Cazzaniga, M.; Gennari, A.; Bonanni, B.; et al. Metformin and Cancer Risk in Diabetic Patients: A Systematic Review and Meta-analysis. Cancer Prevention Research 2010, 3, 1451–61. [Google Scholar] [CrossRef]
- Noto, H.; Goto, A.; Tsujimoto, T.; Noda, M. Cancer Risk in Diabetic Patients Treated with Metformin: A Systematic Review and Meta-analysis. PLOS ONE 2012, 7, e33411. [Google Scholar] [CrossRef]
- Zhang, Z.-J.; Zheng, Z.-J.; Kan, H.; Song, Y.; Cui, W.; Zhao, G.; et al. Reduced Risk of Colorectal Cancer With Metformin Therapy in Patients With Type 2 Diabetes: A meta-analysis. Diabetes Care 2011, 34, 2323–8. [Google Scholar] [CrossRef] [PubMed]
- Mei, Z.-B.; Zhang, Z.-J.; Liu, C.-Y.; Liu, Y.; Cui, A.; Liang, Z.-L.; et al. Survival Benefits of Metformin for Colorectal Cancer Patients with Diabetes: A Systematic Review and Meta-Analysis. PLOS ONE 2014, 9, e91818. [Google Scholar] [CrossRef] [PubMed]
- Kowall, B.; Stang, A.; Rathmann, W.; Kostev, K. No reduced risk of overall, colorectal, lung, breast, and prostate cancer with metformin therapy in diabetic patients: database analyses from Germany and the UK. Pharmacoepidemiology and Drug Safety 2015, 24, 865–74. [Google Scholar] [CrossRef]
- Mc Menamin, Ú.C.; Murray, L.J.; Hughes, C.M.; Cardwell, C.R. Metformin use and survival after colorectal cancer: A population-based cohort study. International Journal of Cancer 2016, 138, 369–79. [Google Scholar] [CrossRef]
- Larsson, S.C.; Orsini, N.; Wolk, A. Diabetes Mellitus and Risk of Colorectal Cancer: A Meta-Analysis. JNCI: Journal of the National Cancer Institute 2005, 97, 1679–87. [Google Scholar] [CrossRef]
- Guraya, S.Y. Association of type 2 diabetes mellitus and the risk of colorectal cancer: A meta-analysis and systematic review. World J Gastroenterol 2015, 21, 6026–31. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, A.A.; Spechler, S.J.; Huerta, S.; Dredar, S.; Little, B.B.; Cryer, B. Elevated HbA1c Is an Independent Predictor of Aggressive Clinical Behavior in Patients with Colorectal Cancer: A Case-Control Study. Digestive Diseases and Sciences 2008, 53, 2486–94. [Google Scholar] [CrossRef]
- Huang, Y.; Zheng, H.; Chen, P.; Yang, J.; Lin, S.; Liu, T.; et al. An Elevated HbA1c Level Is Associated With Short-Term Adverse Outcomes in Patients With Gastrointestinal Cancer and Type 2 Diabetes Mellitus. J Clin Med Res 2017, 9, 303–9. [Google Scholar] [CrossRef]
- Hope, C.; Robertshaw, A.; Cheung, K.L.; Idris, I.; English, E. Relationship between HbA1c and cancer in people with or without diabetes: a systematic review. Diabetic Medicine 2016, 33, 1013–25. [Google Scholar] [CrossRef]
- Miao Jonasson, J.; Cederholm, J.; Eliasson, B.; Zethelius, B.; Eeg-Olofsson, K.; Gudbjörnsdottir, S. HbA1C and Cancer Risk in Patients with Type 2 Diabetes – A Nationwide Population-Based Prospective Cohort Study in Sweden. PLOS ONE 2012, 7, e38784. [Google Scholar] [CrossRef]
- van de Poll-Franse, L.V.; Haak, H.R.; Coebergh, J.W.W.; Janssen-Heijnen, M.L.G.; Lemmens VEPP. Disease-specific mortality among stage I–III colorectal cancer patients with diabetes: a large population-based analysis. Diabetologia 2012, 55, 2163–72. [Google Scholar] [CrossRef] [PubMed]
- Barone, B.B.; Yeh, H.-C.; Snyder, C.F.; Peairs, K.S.; Stein, K.B.; Derr, R.L.; et al. Long-term All-Cause Mortality in Cancer Patients With Preexisting Diabetes Mellitus: A Systematic Review and Meta-analysis. JAMA 2008, 300, 2754–64. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, K.; Okabayashi, K.; Seishima, R.; Ishida, T.; Shigeta, K.; Tsuruta, M.; et al. Metformin inhibits the development and metastasis of colorectal cancer. Medical Oncology 2022, 39, 136. [Google Scholar] [CrossRef]
- Mogavero, A.; Maiorana, M.V.; Zanutto, S.; Varinelli, L.; Bozzi, F.; Belfiore, A.; et al. Metformin transiently inhibits colorectal cancer cell proliferation as a result of either AMPK activation or increased ROS production. Scientific Reports 2017, 7, 15992. [Google Scholar] [CrossRef]
- Kamarudin, M.N.A.; Sarker, M.M.R.; Zhou, J.-R.; Parhar, I. Metformin in colorectal cancer: molecular mechanism, preclinical and clinical aspects. Journal of Experimental & Clinical Cancer Research 2019, 38, 491. [Google Scholar]
- Ekbom, A.; Adami, H.O.; Helmick, C.; Zack, M. Increased risk of large-bowel cancer in Crohn's disease with colonic involvement. The Lancet 1990, 336, 357–9. [Google Scholar] [CrossRef]
- Hamilton, S.R. Colorectal carcinoma in patients with Crohn's Disease. Gastroenterology 1985, 89, 398–407. [Google Scholar] [CrossRef]
- Velayos, F.S.; Loftus, E.V.; Jess, T.; Harmsen, W.S.; Bida, J.; Zinsmeister, A.R.; et al. Predictive and Protective Factors Associated With Colorectal Cancer in Ulcerative Colitis: A Case-Control Study. Gastroenterology 2006, 130, 1941–9. [Google Scholar] [CrossRef]
- Dietrich, K.; Schned, A.; Fortuny, J.; Heaney, J.; Marsit, C.; Kelsey, K.T.; et al. Glucocorticoid therapy and risk of bladder cancer. Br J Cancer 2009, 101, 1316–20. [Google Scholar] [CrossRef]
- Jensen, A.; Thomsen, H.F.; Engebjerg, M.C.; Olesen, A.B.; Friis, S.; Karagas, M.R.; et al. Use of oral glucocorticoids and risk of skin cancer and non-Hodgkin's lymphoma: a population-based case-control study. Br J Cancer 2009, 100, 200–5. [Google Scholar] [CrossRef]
- Karagas, M.R.; Cushing, G.L.; Jr Greenberg, E.R.; Mott, L.A.; Spencer, S.K.; Nierenberg, D.W. Non-melanoma skin cancers and glucocorticoid therapy. Br J Cancer 2001, 85, 683–6. [Google Scholar] [CrossRef]
- Sørensen, H.T.; Mellemkjaer, L.; Nielsen, G.L.; Baron, J.A.; Olsen, J.H.; Karagas, M.R. Skin cancers and non-hodgkin lymphoma among users of systemic glucocorticoids: a population-based cohort study. J Natl Cancer Inst 2004, 96, 709–11. [Google Scholar] [CrossRef] [PubMed]
- Oh, T.K.; Song, I.-A. Trends in long-term glucocorticoid use and risk of 5-year mortality: a historical cohort study in South Korea. Endocrine 2020, 69, 634–41. [Google Scholar] [CrossRef]
- Ostenfeld, E.B.; Erichsen, R.; Thorlacius-Ussing, O.; Riis, A.H.; Sørensen, H.T. Use of systemic glucocorticoids and the risk of colorectal cancer. Alimentary Pharmacology & Therapeutics 2013, 37, 146–52. [Google Scholar]
- Buchwald, H. Cholesterol inhibition, cancer, and chemotherapy. The Lancet 1992, 339, 1154–6. [Google Scholar] [CrossRef] [PubMed]
- Poynter Jenny, N.; Gruber Stephen, B.; Higgins Peter, D.R.; Almog, R.; Bonner Joseph, D.; Rennert Hedy, S.; et al. Statins and the Risk of Colorectal Cancer. New England Journal of Medicine 2005, 352, 2184–92. [Google Scholar] [CrossRef] [PubMed]
- Lytras, T.; Nikolopoulos, G.; Bonovas, S. Statins and the risk of colorectal cancer: an updated systematic review and meta-analysis of 40 studies. World J Gastroenterol 2014, 20, 1858–70. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, W.; Wang, J.; Xie, L.; Li, T.; He, Y.; et al. Association between statin use and colorectal cancer risk: a meta-analysis of 42 studies. Cancer Causes & Control 2014, 25, 237–49. [Google Scholar]
- Li, Y.; He, X.; Ding Ye Chen, H.; Sun, L. Statin uses and mortality in colorectal cancer patients: An updated systematic review and meta-analysis. Cancer Medicine 2019, 8, 3305–13. [Google Scholar] [CrossRef]
- Gray, R.T.; Coleman, H.G.; Hughes, C.; Murray, L.J.; Cardwell, C.R. Statin use and survival in colorectal cancer: Results from a population-based cohort study and an updated systematic review and meta-analysis. Cancer Epidemiology 2016, 45, 71–81. [Google Scholar] [CrossRef]
- Cardwell, C.R.; Hicks, B.M.; Hughes, C.; Murray, L.J. Statin Use After Colorectal Cancer Diagnosis and Survival: A Population-Based Cohort Study. Journal of Clinical Oncology 2014, 32, 3177–83. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Li, Z.; Lu, L.; Cho, C.H. β-Adrenergic system, a backstage manipulator regulating tumour progression and drug target in cancer therapy. Seminars in Cancer Biology 2013, 23 Part B, 533–42. [Google Scholar] [CrossRef]
- Jansen, L.; Below, J.; Chang-Claude, J.; Brenner, H.; Hoffmeister, M. Beta blocker use and colorectal cancer risk. Cancer 2012, 118, 3911–9. [Google Scholar] [CrossRef] [PubMed]
- Jansen, L.; Weberpals, J.; Kuiper, J.G.; Vissers, P.A.J.; Wolkewitz, M.; Hoffmeister, M.; et al. Pre- and post-diagnostic beta-blocker use and prognosis after colorectal cancer: Results from a population-based study. International Journal of Cancer 2017, 141, 62–71. [Google Scholar] [CrossRef]
- Jansen, L.; Hoffmeister, M.; Arndt, V.; Chang-Claude, J.; Brenner, H. Stage-specific associations between beta blocker use and prognosis after colorectal cancer. Cancer 2014, 120, 1178–86. [Google Scholar] [CrossRef] [PubMed]
- Fiala, O.; Ostasov, P.; Sorejs, O.; Liska, V.; Buchler, T.; Poprach, A.; et al. Incidental Use of Beta-Blockers Is Associated with Outcome of Metastatic Colorectal Cancer Patients Treated with Bevacizumab-Based Therapy: A Single-Institution Retrospective Analysis of 514 Patients. Cancers 2019, 11, 1856. [Google Scholar] [CrossRef]
- Wang, J.; Lu, S.; Meng, Y.; Fu, W.; Zhou, X. Beta adrenergic blockade and clinical outcomes in patients with colorectal cancer: A systematic review and meta-analysis. European Journal of Pharmacology 2022, 929, 175135. [Google Scholar] [CrossRef]
| Observational Studies | Aspirin dose | CRC-specific survival* (Hazard Ratio (95% CI), p) (Relative Risk (95% CI), p) |
|---|---|---|
| Lam et.al. 2025 [6] | Low dose** | sHR = 0.78 (0.76 – 0.81) |
| Skriver et.al. 2023 [7] | 75-150 mg | HR = 0.90 (0.84 - 0.95) |
| Shahrivar et.al. 2023 [8] | 75 or 160mg | HR = 0.99 (0.91 – 1.07) |
| Shami et.al. 2022 [9] | 75-300mg | HR = 0.83 (0.76 - 0.91) |
| Sung et.al. 2019 | Low dose** | sHR = 0.69 (0.59 – 0.81) |
| Tsoi et.al. 2018 [10] | Low dose** | sHR = 0.59 (0.56 - 0.62) |
| Cao et.al. 2016 [11] | 81 or 325mg | RR = 0.81 (0.75 - 0.88) |
| Cook et.al. 2013 [12] - 8 year follow-up post-trial |
100mg | HR = 0.80 (0.67 - 0.97), p = 0.021 |
| Liao et.al. 2012 [13] **PIK3CA-mutated patients |
81 or 325mg post-diagnosis |
HR = 0.18 (0.06 - 0.61), p<0.001 |
| Rothwell et.al. 2011 [14] | 75mg | HR = 0.60 (0.45 – 0.81), p = 0·0007 |
| Rothwell et.al. 2010 [15] | 75mg | HR = 0.65 (0.48 – 0.88), p = 0·005 |
| Chan et.al. 2009 [16] | 81 or 325mg | HR = 0.71 (0.53 - 0.95) |
| Thun Michael et.al. 1991 [17] | Low dose** |
Men: RR = 0.60 (0.40 – 0.89), p<0.001 Women: RR = 0.58 (0.37 – 0.90), p<0.001 |
| Randomized controlled studies | Aspirin dose |
CRC-specific survival* (Hazard Ratio (95% CI), p) (Relative Risk (95% CI), p) |
| McNeil et.al. 2018 [18] | 100mg | HR = 1.77 (1.02 – 3.06) |
| Cook et.al. 2005 [19] | 100mg | RR = 0.94 (0.79 - 1.11), p = 0.45 |
|
Meta-analysis |
Aspirin dose |
CRC-specific survival* (Hazard Ratio (95% CI), p) (Relative Risk (95% CI), p) |
| Mädge et.al. 2022 [20] | Variable, most often low-dose** | HR = 0.74 (0.62 – 0.89) |
| Wang et.al. 2021 [21] | Variable, most often low-dose* |
Cohort studies: RR = 0.85 (0.78 - 0.92) RCTs: RR = 0.74 (0.56 - 0.97) |
| Bosetti et.al. 2020 [22] | Variable, most often low-dose** | RR = 0.73 (0.69–0.78), p<0.001 |
| Lin et.al. 2020 [23] | Variable, most often low-dose** | HR = 0.78 (0.73 - 0.85) |
| Algra et.al. 2012 [24] | Variable, most often low-dose** | OR = 0.58 (0.44 – 0.78), p=0·0002 |
| Rothwell et.al. 2012 [25] | Low dose** | OR = 0.58 (0.38 – 0.89), p=0·008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
