Submitted:
22 May 2025
Posted:
23 May 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Genetically Engineered Models
3. Tumor Heterogeneity
4. Effectiveness of Cancer Therapies
5. Early Cancer Detection
6. Emerging Technologies
7. Tumor Microenvironment
8. Treatments Selectively Targeting Cancer Cells
9. Drug Resistance
10. Metastasis and Molecular Mechanisms
11. The Transition from Determinism to Indeterminism in the Biomedicine
12. Importance of Deep Molecular Mechanisms in the Study of Cancer
13. Advanced Approaches to Study Cancer Progression
13.1. Cancer Genomics
13.2. Transcriptomics
13.3. Proteomics
13.4. Epigenomics
13.5. Single-Cell Technologies
13.6. Advanced Imaging
13.7. Bioinformatics and Computational Biology
13.8. Mathematical Modeling and Stochastic Control
13.9. Artificial Intelligence and Big Data
14. Barriers Hindering Progress in Cancer Research
15. Conclusion and Socio-Economic Aspects
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
- “The ability (know-how)”: This emphasizes that it is not just about having the tools, but possessing the knowledge, skill, and practical understanding to do something. It implies expertise.
- “to control”: This is the core action. It means to direct, regulate, and influence the behavior or properties of something.
-
“the acquisition, disposition, and use of matter/energy,”: This is the “what” is being controlled.
- o
- Acquisition: The ability to get or gather matter (physical substance) and energy (the capacity to do work). This could involve sourcing raw materials, absorbing nutrients, capturing sunlight, etc.
- o
- Disposition: The ability to get rid of, arrange, or distribute matter and energy. This could involve waste removal, storage, or the structured organization of components.
- o
- Use: The ability to apply or use matter and energy for specific purposes. This is about converting them into work, structure, or information.
-
“in a targeted (teleonomic) process”: This is the “how” and “why.”
- o
- Targeted: Implies a specific goal, aim, or desired outcome. The control is not random but directed towards achieving something.
- o
- Teleonomic: This is a more formal term. It refers to processes that appear goal-directed because of the operation of a program or a pre-existing design. It’s often used in biology to describe how living organisms seem to strive towards certain ends (like survival or reproduction) even though there isn’t conscious intent in every cellular process. It differentiates from “teleological,” which implies conscious, purposeful design, by focusing on the appearance of purposefulness because of underlying mechanisms.
- Targeted (Teleonomic) Process: The “target” for cancer cells is their own unchecked survival and proliferation, often at the expense of the host organism. Although they don’t have a conscious “purpose”, genetic and epigenetic alterations influence their actions, giving them a competitive advantage and making them constantly grow and spread. This appears teleonomic because the cell’s entire machinery rewrites itself to achieve this singular, self-serving goal.
-
Control over Acquisition of Matter/Energy:
- o
- Nutrients: Cancer cells often reprogram their metabolism to gain and use nutrients efficiently. For instance, many cancer cells exhibit the “Warburg effect,” preferentially using glycolysis (fermentation) even in the presence of oxygen, allowing them to generate ATP and building blocks for proliferation, even if it’s less efficient than oxidative phosphorylation. They “acquire” glucose at a much higher rate than normal cells.
- o
- Growth factors: They can overexpress receptors for growth factors, or even produce their own, thus effectively gaining the signals needed for continuous division.
- o
- Blood Supply (Angiogenesis): A critical aspect of cancer progression is its ability to induce the formation of new blood vessels (angiogenesis). Tumor cells release signaling molecules (like VEGF) that instruct nearby normal cells to build a fresh blood supply, ensuring a constant “acquisition” of oxygen and nutrients.
-
Control over Disposition of Matter/Energy:
- o
- Waste Products: While cancer cells are metabolically inefficient, they dispose of their waste products (like lactate from glycolysis) into the surrounding microenvironment. This can even alter the local pH, creating a more favorable environment for their own growth and inhibiting immune cells.
- o
- Metastatic Spread: We also see the disposition of matter in metastasis. Cancer cells must detach from the primary tumor, break through the basement membrane, enter blood or lymphatic vessels, survive in circulation, exit the vessels, and then establish a new colony in a distant organ. This involves a highly coordinated “disposition” of their own cellular structure and movement through the body.
- o
- Immune Evasion: Cancer cells “dispose” of signals that would normally trigger an immune response. They can express proteins that turn off immune cells or shed antigens that would identify them as foreign.
-
Control over Use of Matter/Energy:
- o
- Proliferation: The vast majority of the gained matter and energy is directly “used” for rapid cell division, synthesizing new DNA, proteins, and organelles to create more cancer cells.
- o
- Invasion: Cancer cells use energy to express enzymes that degrade the extracellular matrix, allowing them to “use” the surrounding tissue as a pathway for invasion.
- o
- Survival in Hostile Environments: They can adapt their metabolism and gene expression to “use” limited resources or survive in hypoxic (low oxygen) environments, which would be lethal to normal cells.
- o
- Drug Resistance: Cancer cells can develop mechanisms to “use” drugs ineffectively or even pump them out, demonstrating a targeted ability to evade therapeutic interventions.
1. The Macroscopic Deterministic Observational Level:
2. The Microscopic and Deep Indeterministic Level:
How the Sentence Fits Both Levels (and Bridges the Gap):
References
- Oh, J.H.; Cho, J.Y. Comparative oncology: overcoming human cancer through companion animal studies. Experimental & Molecular Medicine 2023, 55, 725–734. [Google Scholar] [CrossRef]
- Guo, H.; Xu, X.; Zhang, J.; Du, Y.; Yang, X.; He, Z. . & Guo, L. The Pivotal Role of Preclinical Animal Models in Anti-Cancer Drug Discovery and Personalized Cancer Therapy Strategies. Pharmaceuticals 2024, 17, 1048. [Google Scholar] [CrossRef]
- Paradiso, F.; Serpelloni, S.; Francis, L.W.; Taraballi, F. Mechanical studies of the third dimension in cancer: From 2D to 3D model. International Journal of Molecular Sciences 2021, 22, 10098. [Google Scholar] [CrossRef]
- Habanjar, O.; Diab-Assaf, M.; Caldefie-Chezet, F.; Delort, L. 3D cell culture systems: tumor application, advantages, and disadvantages. International journal of molecular sciences 2021, 22, 12200. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.E. Human cancer xenografts in immunocompromised mice provide an advanced genuine tumor model for research and drug development-A revisit of murine models for human cancers. Biochimica et Biophysica Acta (BBA)-General Subjects 2021, 1865, 129929. [Google Scholar] [CrossRef]
- Junttila, M.R.; De Sauvage, F.J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 2013, 501, 346–354. [Google Scholar] [CrossRef]
- Cassidy, J.W.; Caldas, C.; Bruna, A. Maintaining tumor heterogeneity in patient-derived tumor xenografts. Cancer research 2015, 75, 2963–2968. [Google Scholar] [CrossRef] [PubMed]
- Shultz, L.D.; Brehm, M.A.; Garcia-Martinez, J.V.; Greiner, D.L. Humanized mice for immune system investigation: progress, promise and challenges. Nature Reviews Immunology 2012, 12, 786–798. [Google Scholar] [CrossRef]
- Lai, Y.; Wei, X.; Lin, S.; Qin, L.; Cheng, L.; Li, P. Current status and perspectives of patient-derived xenograft models in cancer research. Journal of hematology & oncology 2017, 10, 1–14. [Google Scholar] [CrossRef]
- Kaushik, G.; Ponnusamy, M.P.; Batra, S.K. Concise review: current status of three-dimensional organoids as preclinical models. Stem Cells 2018, 36, 1329–1340. [Google Scholar] [CrossRef]
- Pan, E.; Bogumil, D.; Cortessis, V.; Yu, S.; Nieva, J. A systematic review of the efficacy of preclinical models of lung cancer drugs. Frontiers in Oncology 2020, 10, 591. [Google Scholar] [CrossRef] [PubMed]
- Kersten, K.; de Visser, K.E.; van Miltenburg, M.H.; Jonkers, J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO molecular medicine 2017, 9, 137–153. [Google Scholar] [CrossRef] [PubMed]
- Amorim, A.M.; Piochi, L.F.; Gaspar, A.T.; Preto, A.J.; Rosário-Ferreira, N.; Moreira, I.S. Advancing drug safety in drug development: bridging computational predictions for enhanced toxicity prediction. Chemical Research in Toxicology 2024, 37, 827–849. [Google Scholar] [CrossRef]
- Bai, C.; Wu, L.; Li, R.; Cao, Y.; He, S.; Bo, X. Machine Learning-Enabled Drug-Induced Toxicity Prediction. Advanced Science 2025, 2413405. [Google Scholar] [CrossRef] [PubMed]
- Sahlgren, C.; Meinander, A.; Zhang, H.; Cheng, F.; Preis, M.; Xu, C. . & Sandler, N. Tailored approaches in drug development and diagnostics: from molecular design to biological model systems. Advanced Healthcare Materials 2017, 6, 1700258. [Google Scholar] [CrossRef]
- MacDonald, W.J.; Purcell, C.; Pinho-Schwermann, M.; Stubbs, N.M.; Srinivasan, P.R.; El-Deiry, W.S. Heterogeneity in Cancer. Cancers 2025, 17, 441. [Google Scholar] [CrossRef]
- Allison, K.H.; Sledge, G.W. Heterogeneity and cancer. Oncology 2014, 28, 772–772. [Google Scholar] [PubMed]
- Deshmukh, S.; Saini, S. Phenotypic heterogeneity in tumor progression, and its possible role in the onset of cancer. Frontiers in Genetics 2020, 11, 604528. [Google Scholar] [CrossRef]
- Marusyk, A; Polyak, K. Tumor heterogeneity: Causes and consequences. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2010, 1805, 105–117. [Google Scholar] [CrossRef]
- Aldea, M.; Andre, F.; Marabelle, A.; Dogan, S.; Barlesi, F.; Soria, J.C. Overcoming resistance to tumor-targeted and immune-targeted therapies. Cancer Discovery 2021, 11, 874–899. [Google Scholar] [CrossRef]
- El-Sayes, N.; Vito, A.; Mossman, K. Tumor Heterogeneity: A Great Barrier in the Age of Cancer Immunotherapy. Cancers 2021, 13, 806. [Google Scholar] [CrossRef] [PubMed]
- Ottaiano A, Ianniello M, Santorsola M, Ruggiero R, Sirica R, Sabbatino F, Perri F, Cascella M, Di Marzo M, Berretta M, et al. From Chaos to Opportunity: Decoding Cancer Heterogeneity for Enhanced Treatment Strategies. Biology, 2023, 12, 1183. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fedele, C.; Tothill, R.W.; McArthur, G.A. Navigating the challenge of tumor heterogeneity in cancer therapy. Cancer discovery 2014, 4, 146–148. [Google Scholar] [CrossRef] [PubMed]
- Proietto, M.; Crippa, M.; Damiani, C.; Pasquale, V.; Sacco, E.; Vanoni, M.; Gilardi, M. Tumor heterogeneity: preclinical models, emerging technologies, and future applications. Frontiers in Oncology 2023, 13, 1164535. [Google Scholar] [CrossRef]
- Balasubramanian, V.; Liu, Z.; Hirvonen, J.; Santos, H.A. Bridging the knowledge of different worlds to understand the big picture of cancer nanomedicines. Advanced healthcare materials 2018, 7, 1700432. [Google Scholar] [CrossRef]
- Melillo, G.; Chand, V.; Yovine, A.; Gupta, A.; Massacesi, C. Curative-intent treatment with durvalumab in early-stage cancers. Advances in Therapy 2021, 38, 2759–2778. [Google Scholar] [CrossRef]
- Crosby, D.; Bhatia, S.; Brindle, K.M.; Coussens, L.M.; Dive, C.; Emberton, M.; Balasubramanian, S.; et al. Early detection of cancer. Science 2022, 375, eaay9040. [Google Scholar] [CrossRef]
- Kumar, V.; Kukkar, D.; Hashemi, B.; Kim, K.H.; Deep, A. Advanced functional structure-based sensing and imaging strategies for cancer detection: possibilities, opportunities, challenges, and prospects. Advanced Functional Materials 2019, 29, 1807859. [Google Scholar] [CrossRef]
- Patel, R.; Patel, S.; Momin, I.; Shah, S. (2024). The evolving landscape of colonoscopy: recent developments and complication management. Colonoscopy-Diagnostic and Therapeutic Advances. [CrossRef]
- Qadrie, Z.; Maqbool, M.; Dar, M.A.; Qadir, A. Navigating challenges and maximizing potential: Handling complications and constraints in minimally invasive surgery. Open Health 2025, 6, 20250059. [Google Scholar] [CrossRef]
- Levy, I.; Gralnek, I.M. Complications of diagnostic colonoscopy, upper endoscopy, and enteroscopy. Best practice & research Clinical gastroenterology 2016, 30, 705–718. [Google Scholar] [CrossRef]
- Schiffman, J.D.; Fisher, P.G.; Gibbs, P. (2015). Early detection of cancer: past, present, and future. American Society of Clinical Oncology Educational Book, Editor: Don S. Dizon, 35, 57-65. ISSN: 1548-8748; Electronic ISSN: 1548-8756.
- Cancer Disparities, (accessed may 2, 2025) National Cancer Institute, NIH, Bethesda, USA. https://www.cancer.gov/about-cancer/understanding/disparities.
- Loomans-Kropp, H.A.; Umar, A.; Minasian, L.M.; Pinsky, P.F. Multi-cancer early detection tests: current progress and future perspectives. Cancer Epidemiology, Biomarkers & Prevention 2022, 31, 512–514. [Google Scholar] [CrossRef]
- Milner DA Jr., Lennerz JK. Technology and Future of Multi-Cancer Early Detection. Life. 2024; 14:833. [CrossRef]
- Schroeder, A.; Heller, D.A.; Winslow, M.M.; Dahlman, J.E.; Pratt, G.W.; Langer, R.; Anderson, D.G.; et al. Treating metastatic cancer with nanotechnology. Nature Reviews Cancer 2012, 12, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, V.K.; Singh, A.; Singh, V.K.; Singh, M.P. Cancer nanotechnology: a new revolution for cancer diagnosis and therapy. Current drug metabolism 2019, 20, 416–429. [Google Scholar] [CrossRef] [PubMed]
- Dar, R.A.; Rasool, M.; Assad, A. Breast cancer detection using deep learning: Datasets, methods, and challenges ahead. Computers in biology and medicine 2022, 149, 106073. [Google Scholar] [CrossRef]
- Iqbal, M.J.; Javed, Z.; Sadia, H.; Qureshi, I.A.; Irshad, A.; Ahmed, R. . & Sharifi-Rad, J. Clinical applications of artificial intelligence and machine learning in cancer diagnosis: looking into the future. Cancer cell international 2021, 21, 270. [Google Scholar] [CrossRef] [PubMed]
- Albahri, A.S.; Duhaim, A.M.; Fadhel, M.A.; Alnoor, A.; Baqer, N.S.; Alzubaidi, L. . & Deveci, M. A systematic review of trustworthy and explainable artificial intelligence in healthcare: Assessment of quality, bias risk, and data fusion. Information Fusion 2023, 96, 156–191. [Google Scholar] [CrossRef]
- Aminizadeh, S.; Heidari, A.; Dehghan, M.; Toumaj, S.; Rezaei, M.; Navimipour, N.J.; Unal, M.; et al. Opportunities and challenges of artificial intelligence and distributed systems to improve the quality of healthcare service. Artificial Intelligence in Medicine 2024, 149, 102779. [Google Scholar] [CrossRef]
- Esmaeilzadeh, P. Challenges and strategies for wide-scale artificial intelligence (AI) deployment in healthcare practices: A perspective for healthcare organizations. Artificial Intelligence in Medicine 2024, 151, 102861. [Google Scholar] [CrossRef]
- De Rubis, G.; Krishnan, S.R.; Bebawy, M. Liquid biopsies in cancer diagnosis, monitoring, and prognosis. Trends in pharmacological sciences 2019, 40, 172–186. [Google Scholar] [CrossRef]
- Amelio, I.; Bertolo, R.; Bove, P.; Buonomo, O.C.; Candi, E.; Chiocchi, M.; Melino, G.; et al. Liquid biopsies and cancer omics. Cell Death Discovery 2020, 6, 131. [Google Scholar] [CrossRef]
- Desai, S.A.; Patel, V.P.; Bhosle, K.P.; Nagare, S.D.; Thombare, K.C. The tumor microenvironment: shaping cancer progression and treatment response. Journal of Chemotherapy 2025, 37, 15–44. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Shao, X.; Zhang, Y.; Zhu, M.; Wang, F.X.; Mu, J. . & Chen, K. Role of tumor microenvironment in cancer progression and therapeutic strategy. Cancer Medicine 2023, 12, 11149–11165. [Google Scholar] [CrossRef] [PubMed]
- Goenka, A.; Khan, F.; Verma, B.; Sinha, P.; Dmello, C.C.; Jogalekar, M.P.; Ahn, B.C.; et al. Tumor microenvironment signaling and therapeutics in cancer progression. Cancer Communications 2023, 43, 525–561. [Google Scholar] [CrossRef] [PubMed]
- Arner, E.N.; Rathmell, J.C. Metabolic programming and immune suppression in the tumor microenvironment. Cancer cell 2023, 41, 421–433. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, J.; Deng, X.; Xiong, F.; Zhang, S.; Gong, Z.; Xiong, W.; et al. The role of microenvironment in tumor angiogenesis. Journal of Experimental & Clinical Cancer Research 2020, 39, 1–19. [Google Scholar] [CrossRef]
- Xia, L.; Oyang, L.; Lin, J.; Tan, S.; Han, Y.; Wu, N.; Liao, Q.; et al. The cancer metabolic reprogramming and immune response. Molecular cancer 2021, 20, 1–21. [Google Scholar] [CrossRef]
- Wu, P.; Gao, W.; Su, M.; Nice, E.C.; Zhang, W.; Lin, J.; Xie, N. Adaptive mechanisms of tumor therapy resistance driven by tumor microenvironment. Frontiers in cell and developmental biology 2021, 9, 641469. [Google Scholar] [CrossRef]
- Mierke, C.T. Phenotypic heterogeneity, bidirectionality, universal cues, plasticity, mechanics, and the tumor microenvironment drive cancer metastasis. Biomolecules 2024, 14, 184. [Google Scholar] [CrossRef]
- Sabit, H.; Arneth, B.; Abdel-Ghany, S.; Madyan, E.F.; Ghaleb, A.H.; Selvaraj, P.; Elhashash, A.; et al. Beyond cancer cells: How the tumor microenvironment drives cancer progression. Cells 2024, 13, 1666. [Google Scholar] [CrossRef]
- Lv, B.; Wang, Y.; Ma, D.; Cheng, W.; Liu, J.; Yong, T.; Wang, C.; et al. Immunotherapy: reshape the tumor immune microenvironment. Frontiers in immunology 2022, 13, 844142. [Google Scholar] [CrossRef]
- Belhabib, I.; Zaghdoudi, S.; Lac, C.; Bousquet, C.; Jean, C. Extracellular matrices and cancer-associated fibroblasts: targets for cancer diagnosis and therapy? Cancers 2021, 13, 3466. [Google Scholar] [CrossRef] [PubMed]
- Jászai, J.; Schmidt, M.H. Trends and challenges in tumor anti-angiogenic therapies. Cells 2019, 8, 1102. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.R.; Aggarwal, P.; Costa, R.G.; Cole, A.M.; Trinchieri, G. Targeting the gut microbiota for cancer therapy. Nature Reviews Cancer 2022, 22, 703–722. [Google Scholar] [CrossRef]
- Liu, X.; Peng, T.; Xu, M.; Lin, S.; Hu, B.; Chu, T. . & Wu, P. Spatial multi-omics: deciphering technological landscape of integration of multi-omics and its applications. Journal of Hematology & Oncology 2024, 17, 72. [Google Scholar] [CrossRef]
- Baysoy, A.; Bai, Z.; Satija, R.; Fan, R. The technological landscape and applications of single-cell multi-omics. Nature Reviews Molecular Cell Biology 2023, 24, 695–713. [Google Scholar] [CrossRef] [PubMed]
- Raj, S.; Khurana, S.; Choudhari, R.; Kesari, K.K.; Kamal, M.A.; Garg, N.; Kumar, D.; et al. , (2021, February). Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. In Seminars in cancer biology (Vol. 69, pp. 166–177). Academic Press. [CrossRef]
- Yazbeck, V.; Alesi, E.; Myers, J.; Hackney, M.H.; Cuttino, L.; Gewirtz, D.A. An overview of chemotoxicity and radiation toxicity in cancer therapy. Advances in Cancer Research 2022, 155, 1–27. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, J.; Gao, Y.; Li, Y.; Li, Y. Strategies for targeting undruggable targets. Expert Opinion on Drug Discovery 2022, 17, 55–69. [Google Scholar] [CrossRef]
- Dang, C.V.; Reddy, E.P.; Shokat, K.M.; Soucek, L. Drugging the’undruggable’cancer targets. Nature Reviews Cancer 2017, 17, 502–508. [Google Scholar] [CrossRef]
- Qian, L.; Lin, X.; Gao, X.; Khan, R.U.; Liao, J.Y.; Du, S.; Yao, S.Q.; et al. The dawn of a new era: targeting the “undruggables” with antibody-based therapeutics. Chemical reviews 2023, 123, 7782–7853. [Google Scholar] [CrossRef]
- Jan, S.A.; Debnath, A.; Singh, R.K.; Tyagi, P.K.; Singh, S.; Singh, A.K. (2025). Targeting Undruggable Proteins: The siRNA Revolution Beyond Small Molecules-Advances, Challenges, and Future Prospects in Therapeutic Innovation. Current Gene Therapy. [CrossRef]
- Lin, A.; Giuliano, C.J.; Palladino, A.; John, K.M.; Abramowicz, C.; Yuan, M.L.; Sheltzer, J.M.; et al. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Science translational medicine 2019, 11, eaaw8412. [Google Scholar] [CrossRef]
- van den Boogaard, W.M.; Komninos, D.S.; Vermeij, W.P. Chemotherapy side-effects: not all DNA damage is equal. Cancers 2022, 14, 627. [Google Scholar] [CrossRef] [PubMed]
- Bagnyukova, T.V.; Serebriiskii, I.G.; Zhou, Y.; Hopper-Borge, E.A.; Golemis, E.A.; Astsaturov, I. Chemotherapy and signaling: How can targeted therapies supercharge cytotoxic agents? Cancer biology & therapy 2010, 10, 839–853. [Google Scholar] [CrossRef]
- Wahida, A.; Buschhorn, L.; Fröhling, S.; Jost, P.J.; Schneeweiss, A.; Lichter, P.; Kurzrock, R. The coming decade in precision oncology: six riddles. Nature Reviews Cancer 2023, 23, 43–54. [Google Scholar] [CrossRef]
- Punekar, S.R.; Velcheti, V.; Neel, B.G.; Wong, K.K. The current state of the art and future trends in RAS-targeted cancer therapies. Nature reviews Clinical oncology 2022, 19, 637–655. [Google Scholar] [CrossRef]
- Raghani, N.R.; Chorawala, M.R.; Mahadik, M.; Patel, R.B.; Prajapati, B.G.; Parekh, P.S. Revolutionizing cancer treatment: Comprehensive insights into immunotherapeutic strategies. Medical Oncology 2024, 41, 51. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Kaur, G.; Sankin, A.I.; Chen, F.; Guan, F.; Zang, X. Immune checkpoint blockade and CAR-T cell therapy in hematologic malignancies. Journal of hematology & oncology 2019, 12, 1–20. [Google Scholar] [CrossRef]
- Liu, D. CAR-T “the living drugs”, immune checkpoint inhibitors, and precision medicine: a new era of cancer therapy. Journal of Hematology & Oncology 2019, 12, 113. [Google Scholar] [CrossRef]
- Abdollahpour-Alitappeh, M.; Lotfinia, M.; Gharibi, T.; Mardaneh, J.; Farhadihosseinabadi, B.; Larki, P.; Bagheri, N.; et al. Antibody–drug conjugates (ADCs) for cancer therapy: Strategies, challenges, and successes. Journal of cellular physiology 2019, 234, 5628–5642. [Google Scholar] [CrossRef]
- Walsh, S.J.; Bargh, J.D.; Dannheim, F.M.; Hanby, A.R.; Seki, H.; Counsell, A.J.; Spring, D.R.; et al. Site-selective modification strategies in antibody–drug conjugates. Chemical Society Reviews 2021, 50, 1305–1353. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, Y.; Li, G.; Yang, Z.; Han, C.; Sun, X.; Rao, Y.; et al. Targeting the Undruggables----the Power of Protein Degraders. Science Bulletin. Vol 69 2024, 11, 1776–1797. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, J.; Zhong, K.; Tong, A.; Jia, D. Targeted protein degradation: mechanisms, strategies and application. Signal transduction and targeted therapy 2022, 7, 113. [Google Scholar] [CrossRef]
- Siravegna, G.; Marsoni, S.; Siena, S.; Bardelli, A. Integrating liquid biopsies into the management of cancer. Nature reviews Clinical oncology 2017, 14, 531–548. [Google Scholar] [CrossRef] [PubMed]
- Lone, S.N.; Nisar, S.; Masoodi, T.; Singh, M.; Rizwan, A.; Hashem, S.; Macha, M.A.; et al. Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments. Molecular cancer 2022, 21, 79. [Google Scholar] [CrossRef] [PubMed]
- Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer. Nature 2019, 575, 299–309. [Google Scholar] [CrossRef]
- Baguley, B.C. Multiple drug resistance mechanisms in cancer. Molecular biotechnology 2010, 46, 308–316. [Google Scholar] [CrossRef]
- Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: a brief review. Advanced pharmaceutical bulletin 2017, 7, 339. [Google Scholar] [CrossRef]
- Lei, Z.N.; Tian, Q.; Teng, Q.X.; Wurpel, J.N.; Zeng, L.; Pan, Y.; Chen, Z.S. Understanding and targeting resistance mechanisms in cancer. MedComm 2023, 4, e265. [Google Scholar] [CrossRef] [PubMed]
- Boumahdi, S.; de Sauvage, F.J. The great escape: tumour cell plasticity in resistance to targeted therapy. Nature reviews Drug discovery 2020, 19, 39–56. [Google Scholar] [CrossRef]
- Burrell, R.A.; Swanton, C. Tumour heterogeneity and the evolution of polyclonal drug resistance. Molecular oncology 2014, 8, 1095–1111. [Google Scholar] [CrossRef]
- Aramini, B.; Masciale, V.; Grisendi, G.; Bertolini, F.; Maur, M.; Guaitoli, G.; Haider, K.H.; et al. Dissecting tumor growth: the role of cancer stem cells in drug resistance and recurrence. Cancers 2022, 14, 976. [Google Scholar] [CrossRef]
- Leary, M.; Heerboth, S.; Lapinska, K.; Sarkar, S. Sensitization of drug resistant cancer cells: a matter of combination therapy. Cancers 2018, 10, 483. [Google Scholar] [CrossRef] [PubMed]
- Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: an overview. Cancers 2014, 6, 1769–1792. [Google Scholar] [CrossRef]
- Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: a brief review. Advanced pharmaceutical bulletin 2017, 7, 339. [Google Scholar] [CrossRef]
- Issa, M.E.; Takhsha, F.S.; Chirumamilla, C.S.; Perez-Novo, C.; Vanden Berghe, W.; Cuendet, M. Epigenetic strategies to reverse drug resistance in heterogeneous multiple myeloma. Clinical Epigenetics 2017, 9, 1–13. [Google Scholar] [CrossRef]
- Gedye, C.; Navani, V. Find the path of least resistance: Adaptive therapy to delay treatment failure and improve outcomes. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 2022, 1877, 188681. [Google Scholar] [CrossRef]
- Ingham, J.; Ruan, J.L.; Coelho, M.A. Breaking barriers: we need a multidisciplinary approach to tackle cancer drug resistance. BJC reports 2025, 3, 11. [Google Scholar] [CrossRef] [PubMed]
- Riggi, N.; Aguet, M.; Stamenkovic, I. Cancer metastasis: a reappraisal of its underlying mechanisms and their relevance to treatment. Annual Review of Pathology: Mechanisms of Disease 2018, 13, 117–140. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, F.; Cai, Q.; Deng, L.; Ouyang, Q.; Zhang, X.H. F.; Zheng, J. Invasion and metastasis in cancer: molecular insights and therapeutic targets. Signal transduction and targeted therapy 2025, 10, 57. [Google Scholar] [CrossRef]
- Hebert, J.D.; Neal, J.W.; Winslow, M.M. Dissecting metastasis using preclinical models and methods. Nature Reviews Cancer 2023, 23, 391–407. [Google Scholar] [CrossRef]
- Sajjad, H.; Imtiaz, S.; Noor, T.; Siddiqui, Y.H.; Sajjad, A.; Zia, M. Cancer models in preclinical research: A chronicle review of advancement in effective cancer research. Animal models and experimental medicine 2021, 4, 87–103. [Google Scholar] [CrossRef]
- Najafi, M.; Farhood, B.; Mortezaee, K. Extracellular matrix (ECM) stiffness and degradation as cancer drivers. Journal of cellular biochemistry 2019, 120, 2782–2790. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhang, L.; Wan, D.; Zhou, L.; Zheng, S.; Lin, S.; Qiao, Y. Extracellular matrix and its therapeutic potential for cancer treatment. Signal transduction and targeted therapy 2021, 6, 153. [Google Scholar] [CrossRef] [PubMed]
- Bielenberg, D.R.; Zetter, B.R. The contribution of angiogenesis to the process of metastasis. The Cancer Journal 2015, 21, 267–273. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, J.; Wang, F.; Fang, Y.; Yang, Y.; Zhou, Q.; Yang, S.; et al. Pre-metastatic niche: formation, characteristics and therapeutic implication. Signal Transduction and Targeted Therapy 2024, 9, 236. [Google Scholar] [CrossRef]
- Mitra, A.; Kumar, A.; Amdare, N.P.; Pathak, R. Current Landscape of Cancer Immunotherapy: Harnessing the Immune Arsenal to Overcome Immune Evasion. Biology 2024, 13, 307. [Google Scholar] [CrossRef]
- Yoo, B.; Fuchs, B.C.; Medarova, Z. New directions in the study and treatment of metastatic cancer. Frontiers in Oncology 2018, 8, 258. [Google Scholar] [CrossRef]
- Hebert, J.D.; Neal, J.W.; Winslow, M.M. Dissecting metastasis using preclinical models and methods. Nature Reviews Cancer 2023, 23, 391–407. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.T.; Butow, P.N.; Costa, D.S.; Lovell, M.R.; Agar, M. Symptom clusters in patients with advanced cancer: a systematic review of observational studies. Journal of pain and symptom management 2014, 48, 411–450. [Google Scholar] [CrossRef]
- Lagani, V.; Triantafillou, S.; Ball, G.; Tegnér, J.; Tsamardinos, I. (2016). Probabilistic computational causal discovery for systems biology. In: Geris, L.; Gomez-Cabrero, D. (eds) Uncertainty in Biology. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 17. Springer, Cham. [CrossRef]
- Rosenberg, A. Discussion note: Indeterminism, probability, and randomness in evolutionary theory. Philosophy of Science 2001, 68, 536–544. [Google Scholar] [CrossRef]
- Bruggeman, F.J.; Westerhoff, H.V. The nature of systems biology. TRENDS in Microbiology 2007, 15, 45–50. [Google Scholar] [CrossRef]
- Gasparatos, A.; El-Haram, M.; Horner, M. A critical review of reductionist approaches for assessing the progress towards sustainability. Environmental impact assessment review. [CrossRef]
- Gallagher, R.; Appenzeller, T. Beyond reductionism. Science 1999, 284, 79–79. [Google Scholar] [CrossRef]
- Kaiser, M.I. The limits of reductionism in the life sciences. History and philosophy of the life sciences 2011, 453-476. https://www.jstor.org/stable/23335178.
- Nielsen, J.; Keasling, J.D. Engineering cellular metabolism. Cell 2016, 164, 1185–1197. [Google Scholar] [CrossRef]
- Albert, R. Scale-free networks in cell biology. Journal of cell science 2005, 118, 4947–4957. [Google Scholar] [CrossRef] [PubMed]
- De la Fuente, I.M. Elements of the cellular metabolic structure. Frontiers in Molecular Biosciences 2015, 2, 16. [Google Scholar] [CrossRef]
- Perbal, B. The concept of the CCN protein family revisited: a centralized coordination network. Journal of cell communication and signaling 2018, 12, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Yip, A.M.; Horvath, S. Gene network interconnectedness and the generalized topological overlap measure. BMC bioinformatics 2007, 8, 1–14. [Google Scholar] [CrossRef]
- Van Segbroeck, S.; De Jong, S.; Nowé, A.; Santos, F.C.; Lenaerts, T. Learning to coordinate in complex networks. Adaptive Behavior 2010, 18, 416–427. [Google Scholar] [CrossRef]
- Wu, F.; Yang, J.; Liu, J.; Wang, Y.; Mu, J.; Zeng, Q. . & Zhou, H. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal transduction and targeted therapy 2021, 6, 218. [Google Scholar] [CrossRef]
- Spano, D.; Heck, C.; De Antonellis, P.; Christofori, G.; Zollo, M. (2012, June). Molecular networks that regulate cancer metastasis. In Seminars in cancer biology (Vol. 22, No. 3, pp. 234–249). Academic Press. [CrossRef]
- Cerella, C.; Teiten, M.H.; Radogna, F.; Dicato, M.; Diederich, M. From nature to bedside: pro-survival and cell death mechanisms as therapeutic targets in cancer treatment. Biotechnology advances 2014, 32, 1111–1122. [Google Scholar] [CrossRef]
- Neureiter, D.; Jäger, T.; Ocker, M.; Kiesslich, T. Epigenetics and pancreatic cancer: pathophysiology and novel treatment aspects. World Journal of Gastroenterology: WJG 2014, 20, 7830. [Google Scholar] [CrossRef]
- Hayashi, A.; Hong, J.; Iacobuzio-Donahue, C.A. The pancreatic cancer genome revisited. Nature reviews Gastroenterology & hepatology 2021, 18, 469–481. [Google Scholar] [CrossRef]
- Connor, A.A.; Gallinger, S. Pancreatic cancer evolution and heterogeneity: integrating omics and clinical data. Nature Reviews Cancer 2022, 22, 131–142. [Google Scholar] [CrossRef]
- Chen, L.; Wang, R.; Li, C.; Aihara, K. (2010). Modeling biomolecular networks in cells: structures and dynamics. Springer Science & Business Media. ISBN978-1-84966-213-1; [CrossRef]
- Smith, J.M. The concept of information in biology. Philosophy of science 2000, 67, 177–194. [Google Scholar] [CrossRef]
- Gaiseanu, F. Evolution and development of the information concept in biological systems: From empirical description to informational modeling of the living structures. Philosophy Study 2021, 11, 501–516. [Google Scholar] [CrossRef]
- Newman, Mark, Barabási, Albert-László and Watts, Duncan J. The Structure and Dynamics of Networks, Princeton: Princeton University Press, 2006. [CrossRef]
- Barabasi, A.L.; Oltvai, Z.N. Network biology: understanding the cell’s functional organization. Nature reviews genetics 2004, 5, 101–113. [Google Scholar] [CrossRef]
- Ulitsky, I.; Shamir, R. Identifying functional modules using expression profiles and confidence-scored protein interactions. Bioinformatics 2009, 25, 1158–1164. [Google Scholar] [CrossRef]
- Zanin, M.; Aitya, N.A.; Basilio, J.; Baumbach, J.; Benis, A.; Behera, C.K.; Schmidt, H.H.; et al. An early-stage researcher’s primer on systems medicine terminology. Network and systems medicine 2021, 4, 2–50. [Google Scholar] [CrossRef] [PubMed]
- Erciyes, K. Graph-theoretical analysis of biological networks: a survey. Computation 2023, 11, 188. [Google Scholar] [CrossRef]
- Kim, W.; Li, M.; Wang, J.; Pan, Y. Biological network motif detection and evaluation. BMC systems biology 2011, 5, 1–13. [Google Scholar] [CrossRef]
- Klemm, K.; Bornholdt, S. Topology of biological networks and reliability of information processing. Proceedings of the National Academy of Sciences 2005, 102, 18414–18419. [Google Scholar] [CrossRef]
- Ricard, J. (2006). Emergent collective properties, networks and information in biology. Elsevier. New Comprehensive Biochemistry, Vol 40. Ed. G. Bernardi. ISBN-10:0.444.52159.
- Adler, M.; Medzhitov, R. Emergence of dynamic properties in network hypermotifs. Proceedings of the National Academy of Sciences 2022, 119, e2204967119. [Google Scholar] [CrossRef] [PubMed]
- Kampis, G. (2013). Self-modifying systems in biology and cognitive science: a new framework for dynamics, information and complexity (Vol. 6). Elsevier. ISBN0.08.036979.
- Barrett, C.; Eubank, S.; Marathe, M. (2006). Modeling and Simulation of Large Biological, Information and Socio-Technical Systems: An Interaction Based Approach. 353-392 In: Goldin, D.; Smolka, S.A.; Wegner, P. (eds) Interactive Computation. Springer, Berlin, Heidelberg. [CrossRef]
- Angione, C. Human systems biology and metabolic modelling: a review—from disease metabolism to precision medicine. BioMed research international 2019, 2019, 8304260. [Google Scholar] [CrossRef]
- Tyson, J.J.; Chen, K.; Novak, B. Network dynamics and cell physiology. Nature reviews Molecular cell biology 2001, 2, 908–916. [Google Scholar] [CrossRef]
- Colonna, G. Interactomic Analyses and a Reverse Engineering Study Identify Specific Functional Activities of One-to-One Interactions of the S1 Subunit of the SARS-CoV-2 Spike Protein with the Human Proteome. Biomolecules (2218-273X) 2024, 14. [CrossRef]
- Shen, G. (2018). Optimal Hub-Spoke Network Design. Cities as Spatial and Social Networks,. Chp 4, pag 39-56, Springer, Ed.X.Ye and X.Liu, ISBN 978-3-319-95350-2.
- Chen, C.Y.; Ho, A.; Huang, H.Y.; Juan, H.F.; Huang, H.C. Dissecting the human protein-protein interaction network via phylogenetic decomposition. Scientific reports 2014, 4, 7153. [Google Scholar] [CrossRef]
- Trané, C. (2008). Robustness analysis of intracellular oscillators with application to the circadian clock (Doctoral dissertation, Control Engineering, Stockolm: KTH), p. vii, 102. Trita-EE, ISSN 1653-5146. ISBN: 978-91-7415-032 (print).
- Dierickx, P.; Van Laake, L.W.; Geijsen, N. Circadian clocks: from stem cells to tissue homeostasis and regeneration. EMBO reports 2018, 19, 18–28. [Google Scholar] [CrossRef]
- Scardoni, G.; Laudanna, C. (2012). Centralities based analysis of complex networks. New frontiers in graph theory, ch.16, pag.323. IntechOpen, Ed. Y.Zhang, ISBN 978-953-51-0115-4.
- Mansueto, G.; Fusco, G.; Colonna, G. A Tiny Viral Protein, SARS-CoV-2-ORF7b: Functional Molecular Mechanisms. Biomolecules 2024, 14, 541. [Google Scholar] [CrossRef] [PubMed]
- Park J, Barabási AL. Distribution of node characteristics in complex networks. Proc Natl Acad Sci U S A. 2007 Nov 13;104:17916-20. [CrossRef] [PubMed] [PubMed Central]
- Azeloglu, E.U.; Iyengar, R. Signaling networks: information flow, computation, and decision making. Cold Spring Harbor perspectives in biology 2015, 7, a005934. [Google Scholar] [CrossRef] [PubMed]
- Kholodenko, B.; Yaffe, M.B.; Kolch, W. Computational approaches for analyzing information flow in biological networks. Science signaling 2012, 5, re1–re1. [Google Scholar] [CrossRef]
- Wang, S.; Wu, R.; Lu, J.; Jiang, Y.; Huang, T.; Cai, Y.D. Protein-protein interaction networks as miners of biological discovery. Proteomics 2022, 22(15-16), 2100190. [CrossRef]
- Colonna, G. (2024) Understanding the SARS-CoV-2–Human Liver Interactome Using a Comprehensive Analysis of the Individual Virus–Host Interactions. Livers 2024, 4, 209–239. [Google Scholar] [CrossRef]
- Gao, J.; Hu, J.; Tung, W.W. Entropy measures for biological signal analyses. Nonlinear Dynamics 2012, 68, 431–444. [Google Scholar] [CrossRef]
- Corning, P.A.; Kline, S.J. Thermodynamics, information and life revisited, Part I:‘To be or entropy’. Systems Research and Behavioral Science: The Official Journal of the International Federation for Systems Research 1998, 15, 273–295. [Google Scholar] [CrossRef]
- Rényi, A. (1961, January). In On measures of entropy and information. In Proceedings of the fourth Berkeley symposium on mathematical statistics and probability, volume 4.1: pp. 547–561). University of California Press. Ed. J. Neyman.
- Ellerman, D. An introduction to logical entropy and its relation to Shannon entropy. International Journal of Semantic Computing 2013, 7, 121–145. [Google Scholar] [CrossRef]
- Bishop, R.C.; Atamanspacher, H.; Bishop, R. (2002). Deterministic and indeterministic descriptions. Pg 5-31 in Between chance and choice: interdisciplinary perspectives on determinism, Ed(s) H. Atmanspacher and R. Bishop, Imprint Academic, USA. ISBN 9-780907-845-218.
- Werndl, C. (2016). Determinism and indeterminism. Chp.10, 210-232 in The Oxford handbook of philosophy of science. Oxford University Press, Ed. P.Humphreys, ISBN 9780199368815.
- Lewis, E.R.; MacGregor, R.J. On indeterminism, chaos, and small number particle systems in the brain. Journal of Integrative Neuroscience 2006, 5, 223–247. [Google Scholar] [CrossRef] [PubMed]
- Weber, G.F. (2007). Molecular mechanisms of cancer (Vol. 39, pp. 45–99). Dordrecht: Springer. https://link.springer.com/book/10.1007/978-1-4020-6016-8.
- Pecorino, L. (2021). Molecular biology of cancer: mechanisms, targets, and therapeutics. Oxford university press. Fifth Ed, ISBN 978-0-19-883302-4.
- Ostrander, E.A.; Giniger, E. Semper fidelis: what man’s best friend can teach us about human biology and disease. The American Journal of Human Genetics 1997, 61, 475–480. [Google Scholar] [CrossRef]
- Weston, G.C.; Ponnampalam, A.; Vollenhoven, B.J.; Healy, D.L.; Aw Rogers, P. Genomics in obstetrics and gynaecology. Australian and New Zealand journal of obstetrics and gynaecology 2003, 43, 264–272. [Google Scholar] [CrossRef]
- Satori, C.P.; Henderson, M.M.; Krautkramer, E.A.; Kostal, V.; Distefano, M.M.; Arriaga, E.A. Bioanalysis of eukaryotic organelles. Chemical reviews 2013, 113, 2733–2811. [Google Scholar] [CrossRef] [PubMed]
- Aebersold, R.; Agar, J.N.; Amster, I.J.; Baker, M.S.; Bertozzi, C.R.; Boja, E.S.; Zhang, B.; et al. How many human proteoforms are there? Nature chemical biology 2018, 14, 206–214. [Google Scholar] [CrossRef]
- Toby, T.K.; Fornelli, L.; Kelleher, N.L. Progress in top-down proteomics and the analysis of proteoforms. Annual review of analytical chemistry 2016, 9, 499–519. [Google Scholar] [CrossRef]
- Carbonara, K.; Andonovski, M.; Coorssen, J.R. Proteomes are of proteoforms: embracing the complexity. Proteomes 2021, 9, 38. [Google Scholar] [CrossRef]
- Velloso, F.J.; Bianco, A.F.; Farias, J.O.; Torres, N.E.; Ferruzo, P.Y.; Anschau, V. ;... & Correa, R.G. The crossroads of breast cancer progression: insights into the modulation of major signaling pathways. OncoTargets and therapy 2017, 5491–5524. [Google Scholar] [CrossRef]
- Hellerstein, M.K. A critique of the molecular target-based drug discovery paradigm based on principles of metabolic control: advantages of pathway-based discovery. Metabolic engineering 2008, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Amend, S.R.; Pienta, K.J. Ecology meets cancer biology: the cancer swamp promotes the lethal cancer phenotype. Oncotarget 2015, 6, 9669. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Xu, J.; Wang, W.; Zhang, B.; Yu, X.; Shi, S. Epigenetic regulation in the tumor microenvironment: molecular mechanisms and therapeutic targets. Signal transduction and targeted therapy 2023, 8, 210. [Google Scholar] [CrossRef]
- Elia, I.; Haigis, M.C. Metabolites and the tumour microenvironment: from cellular mechanisms to systemic metabolism. Nature metabolism 2021, 3, 21–32. [Google Scholar] [CrossRef]
- Dong, S.; Li, W.; Li, X.; Wang, Z.; Chen, Z.; Shi, H. . & Zhou, W. Glucose metabolism and tumour microenvironment in pancreatic cancer: a key link in cancer progression. Frontiers in Immunology 2022, 13, 1038650. [Google Scholar] [CrossRef]
- Varghese, E.; Samuel, S.M.; Líšková, A.; Samec, M.; Kubatka, P.; Büsselberg, D. Targeting glucose metabolism to overcome resistance to anticancer chemotherapy in breast cancer. Cancers 2020, 12, 2252. [Google Scholar] [CrossRef]
- Aldarini, N.; Alhasawi, A.A.; Thomas, S.C.; Appanna, V.D. The role of glutamine synthetase in energy production and glutamine metabolism during oxidative stress. Antonie Van Leeuwenhoek 2017, 110, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Amores-Sánchez, M.I.; Medina, M.Á. Glutamine, as a precursor of glutathione, and oxidative stress. Molecular genetics and metabolism 1999, 67, 100–105. [Google Scholar] [CrossRef]
- Keating, S.T.; El-Osta, A. Epigenetics and metabolism. Circulation research 2015, 116, 715–736. [Google Scholar] [CrossRef]
- Abdul, Q.A.; Yu, B.P.; Chung, H.Y.; Jung, H.A.; Choi, J.S. Epigenetic modifications of gene expression by lifestyle and environment. Archives of pharmacal research 2017, 40, 1219–1237. [Google Scholar] [CrossRef]
- Vaissière, T.; Sawan, C.; Herceg, Z. Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutation Research/Reviews in Mutation Research 2008, 659, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Xu, J.; Wang, W.; Liang, C.; Hua, J.; Liu, J.; Shi, S.; et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Molecular cancer 2021, 20, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Arias, A.M.; Hayward, P. Filtering transcriptional noise during development: concepts and mechanisms. Nature Reviews Genetics 2006, 7, 34–44. [Google Scholar] [CrossRef]
- Funk, L.; Su, K.C.; Ly, J.; Feldman, D.; Singh, A.; Moodie, B.; Cheeseman, I.M.; et al. The phenotypic landscape of essential human genes. Cell 2022, 185, 4634–4653. [Google Scholar] [CrossRef]
- Harris, V.K.; Schiffman, J.D.; Boddy, A.M. (2017). Evolution of cancer defense mechanisms across species. In Ecology and evolution of cancer (pp. 99–110). Academic Press. [CrossRef]
- Thomas, F.; Giraudeau, M.; Gouzerh, F.; Boutry, J.; Renaud, F.; Pujol, P.; Ujvari, B.; et al. The evolution of resistance and tolerance as cancer defences. Parasitology 2020, 147, 255–262. [Google Scholar] [CrossRef]
- Taddei, M.L.; Giannoni, E.; Comito, G.; Chiarugi, P. Microenvironment and tumor cell plasticity: an easy way out. Cancer letters 2013, 341, 80–96. [Google Scholar] [CrossRef]
- Giraudeau, M.; Sepp, T.; Ujvari, B.; Renaud, F.; Tasiemski, A.; Roche, B.; Thomas, F.; et al. Differences in mutational processes and intra-tumour heterogeneity between organs: The local selective filter hypothesis. Evolution 2019, 2019, 139–146. [Google Scholar] [CrossRef]
- Whiting, F.J.; Househam, J.; Baker, A.M.; Sottoriva, A.; Graham, T.A. Phenotypic noise and plasticity in cancer evolution. Trends in Cell Biology 2024, 34, 451–464. [Google Scholar] [CrossRef] [PubMed]
- Seager, R.J.; Hajal, C.; Spill, F.; Kamm, R.D.; Zaman, M.H. Dynamic interplay between tumour, stroma and immune system can drive or prevent tumour progression. Convergent science physical oncology 2017, 3, 034002. [Google Scholar] [CrossRef]
- Vincent, M. Cancer: A de-repression of a default survival program common to all cells? A life-history perspective on the nature of cancer. Bioessays 2012, 34, 72–82. [Google Scholar] [CrossRef]
- Knox, S.S. From’omics’ to complex disease: a systems biology approach to gene-environment interactions in cancer. Cancer cell international 2010, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Soto, A.M.; Sonnenschein, C. The end of the genetic paradigm of cancer. PLoS biology 2025, 23, e3003052. [Google Scholar] [CrossRef] [PubMed]
- Casás-Selves, M.; DeGregori, J. How cancer shapes evolution and how evolution shapes cancer. Evolution: Education and outreach 2011, 4, 624–634. [Google Scholar] [CrossRef]
- Klein, C.A. Cancer progression and the invisible phase of metastatic colonization. Nature Reviews Cancer 2020, 20, 681–694. [Google Scholar] [CrossRef]
- Mierke, C.T. The fundamental role of mechanical properties in the progression of cancer disease and inflammation. Reports on Progress in Physics 2014, 77, 076602. [Google Scholar] [CrossRef]
- Park, S.T.; Kim, J. Trends in next-generation sequencing and a new era for whole genome sequencing. International neurourology journal 2016, 20 (Suppl 2), S76. [Google Scholar] [CrossRef]
- LaFramboise, T. Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances. Nucleic acids research 2009, 37, 4181–4193. [Google Scholar] [CrossRef]
- Ozsolak, F.; Milos, P.M. RNA sequencing: advances, challenges and opportunities. Nature reviews genetics 2011, 12, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Slonim, D.K.; Yanai, I. Getting started in gene expression microarray analysis. PLoS computational biology 2009, 5, e1000543. [Google Scholar] [CrossRef]
- Urban, P.L. Quantitative mass spectrometry: an overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2016, 374, 20150382. [Google Scholar] [CrossRef]
- Cutler, P. Protein arrays: The current state-of-the-art. Proteomics 2003, 3, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Dai, Q.; Ye, C.; Irkliyenko, I.; Wang, Y.; Sun, H.L.; Gao, Y.; He, C.; et al. Ultrafast bisulfite sequencing detection of 5-methylcytosine in DNA and RNA. Nature Biotechnology 2024, 42, 1559–1570. [Google Scholar] [CrossRef] [PubMed]
- Park, P.J. ChIP–seq: advantages and challenges of a maturing technology. Nature reviews genetics 2009, 10, 669–680. [Google Scholar] [CrossRef]
- Grandi, F.C.; Modi, H.; Kampman, L.; Corces, M.R. Chromatin accessibility profiling by ATAC-seq. Nature protocols 2022, 17, 1518–1552. [Google Scholar] [CrossRef]
- Khozyainova, A.A.; Valyaeva, A.A.; Arbatsky, M.S.; Isaev, S.V.; Iamshchikov, P.S.; Volchkov, E.V.; Denisov, E.V.; et al. Complex analysis of single-cell RNA sequencing data. Biochemistry (Moscow) 2023, 88, 231–252. [Google Scholar] [CrossRef]
- Liu, F.; Wang, Y.; Gu, H.; Wang, X. Technologies and applications of single-cell DNA methylation sequencing. Theranostics 2023, 13, 2439. [Google Scholar] [CrossRef]
- Traenkle, B.; Rothbauer, U. Under the microscope: single-domain antibodies for live-cell imaging and super-resolution microscopy. Frontiers in immunology 2017, 8, 1030. [Google Scholar] [CrossRef] [PubMed]
- Buchberger, A.R.; DeLaney, K.; Johnson, J.; Li, L. Mass spectrometry imaging: a review of emerging advancements and future insights. Analytical chemistry 2017, 90, 240. [Google Scholar] [CrossRef]
- Yue, R.; Dutta, A. Computational systems biology in disease modeling and control, review and perspectives. npj Systems Biology and Applications 2022, 8, 37. [Google Scholar] [CrossRef]
- Beerenwinkel, N.; Schwarz, R.F.; Gerstung, M.; Markowetz, F. Cancer evolution: mathematical models and computational inference. Systematic biology 2015, 64, e1–e25. [Google Scholar] [CrossRef]
- Kumar, A. AI-driven precision oncology: predictive biomarker discovery and personalized treatment optimization using genomic data. Int J Adv Res Publ Rev 2024, 1, 21–38. [Google Scholar] [CrossRef]
- Dlamini, Z.; Francies, F.Z.; Hull, R.; Marima, R. Artificial intelligence (AI) and big data in cancer and precision oncology. Computational and structural biotechnology journal 2020, 18, 2300–2311. [Google Scholar] [CrossRef] [PubMed]
- Sahu, M.; Gupta, R.; Ambasta, R.K.; Kumar, P. Artificial intelligence and machine learning in precision medicine: A paradigm shift in big data analysis. Progress in molecular biology and translational science 2022, 190, 57–100. [Google Scholar] [CrossRef]
- Latysheva, N.S.; Oates, M.E.; Maddox, L.; Flock, T.; Gough, J.; Buljan, M.; Babu, M.M.; et al. Molecular principles of gene fusion mediated rewiring of protein interaction networks in cancer. Molecular cell 2016, 63, 579–592. [Google Scholar] [CrossRef]
- Milenković, T.; Memišević, V.; Ganesan, A.K.; Pržulj, N. Systems-level cancer gene identification from protein interaction network topology applied to melanogenesis-related functional genomics data. Journal of the Royal Society Interface 2010, 7, 423–437. [Google Scholar] [CrossRef] [PubMed]
- Wang, L. (2017, August). Heterogeneous data and big data analytics. In ACIS (Vol. 3, No. 1, pp. 8–15). [CrossRef]
- Hariri, R.H.; Fredericks, E.M.; Bowers, K.M. Uncertainty in big data analytics: survey, opportunities, and challenges. Journal of Big data 2019, 6, 1–16. [Google Scholar] [CrossRef]
- Beesley, L.J.; Salvatore, M.; Fritsche, L.G.; Pandit, A.; Rao, A.; Brummett, C.; Mukherjee, B.; et al. The emerging landscape of health research based on biobanks linked to electronic health records: Existing resources, statistical challenges, and potential opportunities. Statistics in medicine 2020, 39, 773–800. [Google Scholar] [CrossRef]
- Köhler, S.; Gargano, M.; Matentzoglu, N.; Carmody, L.C.; Lewis-Smith, D.; Vasilevsky, N.A.; Robinson, P.N.; et al. The human phenotype ontology in 2021. Nucleic acids research 2021, 49(D1), D1207–D1217. [Google Scholar] [CrossRef]
- Ellis, B. (2014). Real-time analytics: Techniques to analyze and visualize streaming data. John Wiley & Sons. ISBN 978-1-118-83791-7.
- Fryer, A.A.; Smellie, W.S. A. Managing demand for laboratory tests: a laboratory toolkit. Journal of clinical pathology 2013, 66, 62–72. [Google Scholar] [CrossRef]
- Sarder, A.; Mondal, R.K. (2024). Real-Life Applications of Noisy Big Data Elimination in the Social Media Context. Fusion of Minds, 15. AkiNik Publications, Ed(s). R. Kumar. [CrossRef]
- Mudadla, T.; Sharma, G.; Mishra, A.; Gola, S. Multifaceted Landscape of Omics Data. Bio-Algorithms and Med-Systems 2024, 20, 22–36. [Google Scholar] [CrossRef]
- Hassan, J.; Saeed, S.M.; Deka, L.; Uddin, M.J.; Das, D.B. Applications of machine learning (ML) and mathematical modeling (MM) in healthcare with special focus on cancer prognosis and anticancer therapy: current status and challenges. Pharmaceutics 2024, 16, 260. [Google Scholar] [CrossRef] [PubMed]
- Board on Health Sciences Policy, & Committee on Strategies for Responsible Sharing of Clinical Trial Data. (2015). Sharing clinical trial data: maximizing benefits, minimizing risk. THE NATIONAL ACADEMIES PRESS, USA. Library of Congress Control Number: 2015934702.
- Taherdoost, H. (2024). Innovation Through Research and Development: Strategies for Success. Springer Nature. ISSN 1860-4862. [CrossRef]
- Fortunato, S.; Bergstrom, C.T.; Börner, K.; Evans, J.A.; Helbing, D.; Milojević, S.; Barabási, A.L.; et al. Science of science. Science 2018, 359, eaao0185. [Google Scholar] [CrossRef] [PubMed]
- Brittain, S.; Ibbett, H.; de Lange, E.; Dorward, L.; Hoyte, S.; Marino, A.; Lewis, J.; et al. Ethical considerations when conservation research involves people. Conservation Biology 2020, 34, 925–933. [Google Scholar] [CrossRef]
- Tang, M.; Joensuu, H.; Simes, R.J.; Price, T.J.; Yip, S.; Hague, W.; Zalcberg, J.; et al. Challenges of international oncology trial collaboration—a call to action. British Journal of Cancer 2019, 121, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Braveman, P.A.; Kumanyika, S.; Fielding, J.; LaVeist, T.; Borrell, L.N.; Manderscheid, R.; Troutman, A. Health disparities and health equity: the issue is justice. American journal of public health 2011, 101(S1), S149–S155. [Google Scholar] [CrossRef]
- Brennan, E.; Suchman, M.C. (2020). Law and technology in healthcare organizations. In Research Handbook on Socio-Legal Studies of Medicine and Health (pp. 169–190). Edward Elgar Publishing. [CrossRef]
- Degeling, C.; Johnson, J.; Kerridge, I.; Wilson, A.; Ward, M.; Stewart, C.; Gilbert, G. Implementing a One Health approach to emerging infectious disease: reflections on the socio-political, ethical and legal dimensions. BMC Public Health 2015, 15, 1–11. [Google Scholar] [CrossRef]
- Small, A.; Wainwright, D. Privacy and security of electronic patient records–Tailoring multimethodology to explore the socio-political problems associated with Role Based Access Control systems. European Journal of Operational Research 2018, 265, 344–360. [Google Scholar] [CrossRef]
- Lehoux, P. (2014). The problem of health technology. Routledge. eBook. ISBN978131581 0782. [CrossRef]
| Level of heterogeneity | Mechanisms Contributing to Heterogeneity | Implications for Targeted Therapy | Implications for Immunotherapy |
| Genetic | Mutations, genomic instability, exposure to mutagens | Resistance because of lack of target in subclones; outgrowth of resistant subclones with different mutations. | Variable antigen expression leading to immune evasion in some subclones. |
| Epigenetic | DNA methylation, histone modifications | Resistance through altered expression of drug targets or resistance-conferring genes. | Variable expression of immune-related molecules. |
| Phenotypic | Genetic and epigenetic variations, TME interactions | Differential drug sensitivity across subclones selection of drug-tolerant or resistant phenotypes. | Varying levels of immunogenicity; different interactions with immune cells; creation of immunosuppressive microenvironment by some subclones. |
| Screening/Detection Method | Key Limitations | Associated Challenges |
| Imaging (Mammography, CT, MRI) | Limited sensitivity for small tumors; not always cancer-specific; false positives; accessibility and cost. | Improving resolution and specificity; reducing false positives; increasing accessibility. |
| Tumor Markers (PSA, CA-125) | Poor accuracy and efficacy for many cancers; low sensitivity and specificity; false positives and negatives; Non-cancerous conditions may raise levels. |
Identifying more specific and sensitive markers; improving positive predictive value. |
| Multi-Omics | Ethical considerations on standardization of data interpretation and integration (data privacy). | Developing robust computational tools for data analysis and integration; establishing ethical guidelines. |
| Nanotechnology | Translation from lab to clinic, ensuring safety and efficacy in vivo. | Overcoming biological barriers for targeted delivery; long-term safety assessment. |
| AI and Machine Learning | Data quality and security; algorithm reliability and transparency; integration with existing systems; implementation costs; ethical and regulatory considerations. | Ensure explainability and fairness of algorithms; validate performance in diverse populations; establish regulatory frameworks. |
| Liquid Biopsies (ctDNA, etc.) | Low analyte concentration in early stages; need for highly sensitive and specific detection methods. | Improving detection sensitivity and specificity; distinguishing cancer-derived signals from background noise. |
| Model Type | Key Advantages | Key Limitations |
| 2D Cell Culture | Simple, inexpensive, high-throughput screening | Lacks 3D architecture, cell-cell/matrix interactions, complex microenvironment, immune component; limited clinical relevance. |
| 3D Cell Culture | Improved structure over 2D; some cell-cell interactions | Often lacks vasculature, complex microenvironment, immune component; variability in protocols. |
| Murine Xenografts | Allows in vivo drug testing | Immunocompromised mice lack human immune system; murine microenvironment differs from human; limited metastasis in some models; physiological differences. |
| Humanized Mice | More relevant immune context for immunotherapy testing; can test unapproved drugs | Incomplete human immune system reconstitution; murine physiology still differs; expensive and technically complex. |
| PDXs | Preserves original tumor histology and genomics | Lacks fully intact human microenvironment (murine fibroblasts); expensive and difficult to generate; limited scalability. |
| Organoids | Better representation of human cancer heterogeneity; higher success rate than cell lines | Often lacks vasculature, complete microenvironment (stromal and immune components); need for standardized protocols. |
| GEMMs | Useful for studying cancer development driven by specific genetic alterations | Species-specific pharmacological and safety responses; time-consuming and expensive to generate and maintain. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).