Submitted:
19 May 2025
Posted:
20 May 2025
You are already at the latest version
Abstract
Keywords:
1. Clinical Foundation and Engineering Motivation
2. Mechanically Tunable Spinal Implants
2.1. Polymeric and Hybrid Materials in Tunable Spacers
2.2. Viscoelastic Properties and Biomechanical Compatibility
2.3. Soft Robotic Concepts for Personalized Tension Modulation
2.4. Clinical Findings and Future Material Directions
3. Smart Sensor Systems and Real-Time Load Feedback
3.1. Design and Integration of MEMS and Nanosensors
3.2. Conductive Polymers and Nanocomposite Sensors
3.3. Wireless Telemetry and Energy Harvesting
4. Control Algorithms and Biomechanical Intelligence
4.1. AI/ML-Based Control Systems
4.2. Real-Time Decision-Making Algorithms
4.3. Edge AI and Neuromorphic Computing
5. Translational Roadmap and Regulatory Strategy
5.1. Preclinical Testing and Regulatory Compliance
5.2. FDA Regulatory Pathways and Compliance
5.3. Translational Pipeline, Clinical Integration, and Reimbursement Pathways
6. Future Directions
Author Contributions
Funding
Patents
Competing Interests
Institutional Review Board Statement
Clinical Trial Number
Ethics Approval and Consent to Participate
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sengupta, D.K. Dynamic Stabilization Devices in the Treatment of Low Back Pain. Orthop. Clin. North Am. 2004, 35, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Rohlmann, A.; Burra, N.K.; Zander, T.; Bergmann, G. Comparison of the Effects of Bilateral Posterior Dynamic and Rigid Fixation Devices on the Loads in the Lumbar Spine: A Finite Element Analysis. Eur. Spine J. 2007, 16, 1223–1231. [Google Scholar] [CrossRef] [PubMed]
- Wilke, H.J.; Drumm, J.; Häussler, K.; Mack, C.; Steudel, W.I.; Kettler, A. Biomechanical Effect of Different Lumbar Interspinous Implants on Flexibility and Intradiscal Pressure. Eur. Spine J. 2008, 17, 1049–1056. [Google Scholar] [CrossRef] [PubMed]
- Bellini, C.M.; Galbusera, F.; Raimondi, M.T.; Mineo, G.V.; Brayda-Bruno, M. Biomechanics of the Lumbar Spine After Dynamic Stabilization. J. Spinal Disord. Tech. 2007, 20, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Kanayama, M.; Cunningham, B.W.; Haggerty, C.J.; Abumi, K.; Kaneda, K.; McAfee, P.C. In Vitro Biomechanical Investigation of the Stability and Stress-Shielding Effect of Lumbar Interbody Fusion Devices. J. Neurosurg. 2000, 93, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Buric, J.; Pulidori, M. Long-Term Reduction in Pain and Disability After Surgery with the Interspinous Device for Intervertebral Assisted Motion (DIAM) Spinal Stabilization System in Patients with Low Back Pain: 4-Year Follow-Up from a Longitudinal Prospective Case Series. Eur. Spine J. 2011, 20, 1304–1311. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.S.; Huang, C.H.; Shih, S.L. Biomechanical Evaluation of a New Pedicle Screw-Based Posterior Dynamic Stabilization Device (Awesome Rod System)—A Finite Element Analysis. BMC Musculoskelet. Disord. 2015, 16, 81. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, V.K.; Ganguly, R.; Minnema, A.J.; DeVries Watson, N.A.; Grosland, N.M.; Fredericks, D.C.; Grossbach, A.J.; Viljoen, S.V.; Farhadi, H.F. Biomechanical Evaluation of a Dynamic Stabilization System for the Prevention of Proximal Junctional Failure in Adult Deformity Surgery. J. Neurosurg. Spine 2018, 30, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Mageswaran, P.; Techy, F.; Colbrunn, R.W.; Bonner, T.F.; McLain, R.F. Hybrid Dynamic Stabilization: A Biomechanical Assessment of Adjacent and Supraadjacent Levels of the Lumbar Spine. J. Neurosurg. Spine 2012, 17, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Schmoelz, W.; Huber, J.F.; Nydegger, T.; Claes, L.; Wilke, H.J. Dynamic Stabilization of the Lumbar Spine and Its Effects on Adjacent Segments: An In Vitro Experiment. J. Spinal Disord. Tech. 2003, 16, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Niosi, C.A.; Zhu, Q.A.; Wilson, D.C.; Keynan, O.; Wilson, D.R.; Oxland, T.R. Biomechanical Characterization of the Three-Dimensional Kinematic Behaviour of the Dynesys Dynamic Stabilization System: An In Vitro Study. Eur. Spine J. 2006, 15, 913–922. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.J.; Timm, J.P.; Panjabi, M.M.; Jaramillo-de la Torre, J. Clinical Application of the Panjabi Neutral Zone Hypothesis: The Stabilimax NZ Posterior Lumbar Dynamic Stabilization System. Neurosurg. Focus 2007, 22, E12. [Google Scholar] [CrossRef] [PubMed]
- Korovessis, P.; Papazisis, Z.; Koureas, G.; Lambiris, E. Rigid, Semirigid Versus Dynamic Instrumentation for Degenerative Lumbar Spinal Stenosis: A Correlative Radiological and Clinical Analysis of Short-Term Results. Spine 2004, 29, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Shih, S.L.; Chen, C.S.; Lin, H.M.; Huang, L.Y.; Liu, C.L.; Huang, C.H.; Cheng, C.K. Effect of Spacer Diameter of the Dynesys Dynamic Stabilization System on the Biomechanics of the Lumbar Spine: A Finite Element Analysis. J. Spinal Disord. Tech. 2012, 25, E140–E149. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Chen, M.Y.; Chang, C.N.; Yan, J.L. Three-Dimensional Volumetric Changes and Clinical Outcomes After Decompression with DIAM™ Implantation in Patients with Degenerative Lumbar Spine Diseases. Medicina 2020, 56, 723. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, F.; Dietz, S.O.; Kuhn, S.; Hely, H.; Rommens, P.M.; Gercek, E. Biomechanical Comparison of an Interspinous Device and a Rigid Stabilization on Lumbar Adjacent Segment Range of Motion. Acta Chir. Orthop. Traumatol. Cech. 2011, 78, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Kulduk, A.; Altun, N.S.; Senkoylu, A. Biomechanical Comparison of Effects of the Dynesys and Coflex Dynamic Stabilization Systems on Range of Motion and Loading Characteristics in the Lumbar Spine: A Finite Element Study. Int. J. Med. Robot. 2015, 11, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Guo, L.X. Biomechanical Investigation of Topping-Off Technique Using an Interspinous Process Device Following Lumbar Interbody Fusion Under Vibration Loading. Med. Biol. Eng. Comput. 2021, 59, 2449–2458. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Kim, Y.E.; Lee, H.J.; Kim, D.G.; Kim, C.H. Biomechanical Effects of Hybrid Stabilization on the Risk of Proximal Adjacent-Segment Degeneration Following Lumbar Spinal Fusion Using an Interspinous Device or a Pedicle Screw-Based Dynamic Fixator. J. Neurosurg. Spine 2017, 27, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.E.; Hu, H.T.; Kao, L.H.; Liu, C.J.; Chen, K.C.; Huang, K.Y. Biomechanical Feasibility of Semi-Rigid Stabilization and Semi-Rigid Lumbar Interbody Fusion: A Finite Element Study. BMC Musculoskelet. Disord. 2022, 23, 10. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, V.; Strom, R.; Tanweer, O.; Frempong-Boadu, A.K. Posterior Dynamic Stabilization of the Lumbar Spine: Review of Biomechanical and Clinical Studies. Bull. Hosp. Jt. Dis. 2018, 76, 100–104. [Google Scholar] [PubMed]
- Gornet, M.F.; Chan, F.W.; Coleman, J.C.; Murrell, B.; Nockels, R.P.; Taylor, B.A.; Lanman, T.H.; Ochoa, J.A. Biomechanical Assessment of a PEEK Rod System for Semi-Rigid Fixation of Lumbar Fusion Constructs. J. Biomech. Eng. 2011, 133, 081009. [Google Scholar] [CrossRef] [PubMed]
- Ha, K.Y.; Hwang, S.C.; Whang, T.H. Biomechanical Stability According to Different Configurations of Screws and Rods. J. Spinal Disord. Tech. 2013, 26, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Facchinello, Y.; Brailovski, V.; Petit, Y.; Brummund, M.; Tremblay, J.; Mac-Thiong, J.M. Biomechanical Assessment of the Stabilization Capacity of Monolithic Spinal Rods with Different Flexural Stiffness and Anchoring Arrangement. Spine 2015, 40, E1169–E1176. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Liu, Y.; Mei, W.; Xu, J.; Zhan, S. Biomechanical Changes of Degenerated Adjacent Segment and Intact Lumbar Spine After Lumbosacral Topping-Off Surgery: A Three-Dimensional Finite Element Analysis. BMC Musculoskelet. Disord. 2020, 21, 104. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, C.K.; Tsai, Y.J.; Yen, C.Y.; Li, Y.C.; Hsiao, H.Y.; Tu, Y.K. Biomechanical Effect of Hybrid Dynamic Stabilization Implant on the Segmental Motion and Intradiscal Pressure in Human Lumbar Spine. Bioengineering 2022, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.M.; Liu, C.L.; Pan, Y.N.; Huang, C.H.; Shih, S.L.; Wei, S.H.; Chen, C.S. Biomechanical Analysis and Design of a Dynamic Spinal Fixator Using Topology Optimization: A Finite Element Analysis. Med. Biol. Eng. Comput. 2014, 52, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Fiani, B.; Noblett, C.; Chacon, D.; Siddiqi, I.; Pennington, E.; Kortz, M. Total Posterior Spinal Arthroplasty Systems for Dynamic Stability. Cureus 2020, 12, e12361. [Google Scholar] [CrossRef] [PubMed]
- Sangiorgio, S.N.; Sheikh, H.; Borkowski, S.L.; Khoo, L.; Warren, C.R.; Ebramzadeh, E. Comparison of Three Posterior Dynamic Stabilization Devices. Spine 2011, 36, E1251–E1258. [Google Scholar] [CrossRef] [PubMed]
- Bae, I.S.; Bak, K.H.; Chun, H.J.; Ryu, J.I.; Park, S.J.; Lee, S.J. Biomechanical Analysis of a Newly Developed Interspinous Process Device Conjunction with Interbody Cage Based on a Finite Element Model. PLoS One 2020, 15, e0243771. [Google Scholar] [CrossRef] [PubMed]
- Kashkoush, A.; Agarwal, N.; Paschel, E.; Goldschmidt, E.; Gerszten, P.C. Evaluation of a Hybrid Dynamic Stabilization and Fusion System in the Lumbar Spine: A 10 Year Experience. Cureus 2016, 8, e637. [Google Scholar] [CrossRef] [PubMed]
- Acosta, F.L.; Christensen, F.B.; Coe, J.D.; Jahng, T.A.; Kitchel, S.H.; Meisel, H.J.; Schnöring, M.; Wingo, C.H.; Ames, C.P. Early Clinical & Radiographic Results of NFix II Posterior Dynamic Stabilization System. Spine J. 2012, 12, S141–S142. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Miao, J.; Chen, G.; Xu, H.; Wen, W.; Xu, H.; Liu, L. Finite Element Biomechanical Analysis of 3D Printed Intervertebral Fusion Cage in Osteoporotic Population. BMC Musculoskelet. Disord. 2024, 25, 129. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Zheng, Q.; Zhang, L.; Chen, R.; Li, Z.; Xu, W. Biomechanical Evaluation of Different Oblique Lumbar Interbody Fusion Constructs: A Finite Element Analysis. BMC Musculoskelet. Disord. 2024, 25, 97. [Google Scholar] [CrossRef] [PubMed]
- Cannestra, A.F.; Peterson, M.D.; Parker, S.R.; Roush, T.F.; Bundy, J.V.; Turner, A.W. MIS Expandable Interbody Spacers: A Literature Review and Biomechanical Comparison of an Expandable MIS TLIF with Conventional TLIF and ALIF. Spine 2016, 41, S44–S49. [Google Scholar] [CrossRef] [PubMed]
- Pradeep, K.; Pal, B. Biomechanical and Clinical Studies on Lumbar Spine Fusion Surgery: A Review. Med. Biol. Eng. Comput. 2023, 61, 617–634. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.; Han, J.S.; Kang, S.; Ahn, C.H.; Kim, D.H.; Kim, C.H.; Kim, K.T.; Kim, A.R.; Hwang, J.M. Biomechanical Effects of Different Sitting Postures and Physiologic Movements on the Lumbar Spine: A Finite Element Study. Bioengineering 2023, 10, 1051. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Li, Q.; Lin, J.; Yang, Y.; Fei, Q. Intradiscal Cement Leakage (ICL) Increases the Stress on Adjacent Vertebrae After Kyphoplasty for Osteoporotic Vertebra Compression Fracture (OVCF): A Finite-Element Study. Sci. Rep. 2023, 13, 15984. [Google Scholar] [CrossRef] [PubMed]
- Costăchescu, B.; Niculescu, A.G.; Grumezescu, A.M.; Teleanu, D.M. Screw Osteointegration—Increasing Biomechanical Resistance to Pull-Out Effect. Materials 2023, 16, 3462. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yang, S.; Zhou, F.; Lu, J.; Xia, C.; Wang, H.; Chen, C. The Feasibility of Short-Segment Schanz Screw Implanted in an Oblique Downward Direction for the Treatment of Lumbar 1 Burst Fracture: A Finite Element Analysis. J. Orthop. Surg. Res. 2020, 15, 537. [Google Scholar] [CrossRef] [PubMed]
- Uri, O.; Folman, Y.; Laufer, G.; Behrbalk, E. A Novel Spine Fixation System Made Entirely of Carbon-Fiber-Reinforced PEEK Composite: An In Vitro Mechanical Evaluation. Adv. Orthop. 2020, 2020, 4796136. [Google Scholar] [CrossRef] [PubMed]
- Oda, Y.; Takigawa, T.; Ito, Y.; Misawa, H.; Tetsunaga, T.; Uotani, K.; Ozaki, T. Mechanical Study of Various Pedicle Screw Systems Including Percutaneous Pedicle Screw in Trauma Treatment. Medicina 2022, 58, 565. [Google Scholar] [CrossRef] [PubMed]
- Danison, A.P.; Lee, D.J.; Panchal, R.R. Temporary Stabilization of Unstable Spine Fractures. Curr. Rev. Musculoskelet. Med. 2017, 10, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Schlenk, R.P.; Stewart, T.; Benzel, E.C. The Biomechanics of Iatrogenic Spinal Destabilization and Implant Failure. Neurosurg. Focus 2003, 15, E2. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhao, Y.; Qi, L.; Xu, B.; Yue, L.; Zhu, R.; Li, C. Comparison of Biomechanical Effects of Polyetheretherketone (PEEK) Rods and Titanium Rods in Lumbar Long-Segment Instrumentation: A Finite Element Study. Front. Bioeng. Biotechnol. 2024, 12, 1416046. [Google Scholar] [CrossRef] [PubMed]
- Saghebdous, S.; Zare, R.; Chaurasia, B.; Vakilzadeh, M.M.; Yousefi, O.; Boustani, M.R. Dynamic Rod Constructs as the Preventive Strategy Against Adjacent Segment Disease in Degenerative Lumbar Spinal Disorders: A Retrospective Comparative Cohort Study. Arch. Bone Jt. Surg. 2023, 11, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Fuster, S.; Martínez-Anda, J.J.; Castillo-Rivera, S.A.; Vargas-Reverón, C.; Tornero, E. Dynamic Fixation Techniques for the Prevention of Adjacent Segment Disease: A Retrospective Controlled Study. Asian Spine J. 2022, 16, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Porrino, J.; Rao, A.; Moran, J.; Wang, A.; Grauer, J.; Haims, A.; Kani, K. Current Concepts of Spondylosis and Posterior Spinal Motion Preservation for Radiologists. Skeletal Radiol. 2021, 50, 2169–2184. [Google Scholar] [CrossRef] [PubMed]
- Kobbe, P.; Hildebrand, F.; Stoffel, M.; Markert, B.; Siewe, J. Biomechanical Testing of a Polycarbonate-Urethane-Based Dynamic Instrumentation System Under Physiological Conditions. Clin. Biomech. 2019, 61, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Oikonomidis, S.; Sobottke, R.; Wilke, H.J.; Herren, C.; Beckmann, A.; Zarghooni, K.; Siewe, J. Material Failure in Dynamic Spine Implants: Are the Standardized Implant Tests Before Market Launch Sufficient? Eur. Spine J. 2019, 28, 1351–1360. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, A.; Herren, C.; Mundt, M.; Siewe, J.; Kobbe, P.; Sobottke, R.; Pape, H.C.; Stoffel, M. A New In Vitro Spine Test Rig to Track Multiple Vertebral Motions Under Physiological Conditions. Biomed. Eng.-Biomed. Tech. 2017, 62, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.P.; Zhang, R.J.; Wang, J.Q.; Zhang, H.Q.; Shang, J.; Gao, Y.; Jia, C.Y.; Ding, J.Y.; Zhang, L.; Shen, C.L. Medium and Long-Term Radiographic and Clinical Outcomes of Dynesys Dynamic Stabilization Versus Instrumented Fusion for Degenerative Lumbar Spine Diseases. BMC Surg. 2023, 23, 46. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Xu, B.; Qi, L.; Li, C.; Yue, L.; Yu, Z.; Wang, S.; Sun, H. Hybrid Surgery with PEEK Rods for Lumbar Degenerative Diseases: A 2-Year Follow-Up Study. BMC Musculoskelet. Disord. 2021, 22, 756. [Google Scholar] [CrossRef] [PubMed]
- Mavrogenis, A.F.; Vottis, C.; Triantafyllopoulos, G.; Papagelopoulos, P.J.; Pneumaticos, S.G. PEEK Rod Systems for the Spine. Eur. J. Orthop. Surg. Traumatol. 2014, 24, S111–S116. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.K.; Kim, Y.E.; Wang, K.C. Biomechanical Effect of Constraint in Lumbar Total Disc Replacement: A Study with Finite Element Analysis. Spine 2009, 34, 1281–1286. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lim, D.H.; Oh, H.J.; Lee, K.Y.; Lee, S.J. Effects of Nonlinearity in the Materials Used for the Semi-Rigid Pedicle Screw Systems on Biomechanical Behaviors of the Lumbar Spine After Surgery. Spine J. 2011, 11, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.J.; Chung, C.K.; Kim, C.H. Screw Loosening and Migration After Dynesys Implantation. Korean J. Spine 2012, 9, 300–303. [Google Scholar] [CrossRef] [PubMed]
- Galbusera, F.; Casaroli, G.; Chande, R.; Lindsey, D.; Villa, T.; Yerby, S.; Mesiwala, A.; Panico, M.; Gallazzi, E.; Brayda-Bruno, M. Biomechanics of Sacropelvic Fixation: A Comprehensive Finite Element Comparison of Three Techniques. Eur. Spine J. 2020, 29, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Cecchinato, R.; Bourghli, A.; Obeid, I. Revision Surgery of Spinal Dynamic Implants: A Literature Review and Algorithm Proposal. Eur. Spine J. 2020, 29, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Cakir, B.; Carazzo, C.; Schmidt, R.; Mattes, T.; Reichel, H.; Käfer, W. Adjacent Segment Mobility After Rigid and Semirigid Instrumentation of the Lumbar Spine. Spine 2009, 34, 1287–1291. [Google Scholar] [CrossRef] [PubMed]
- Warburton, A.; Girdler, S.J.; Mikhail, C.M.; Ahn, A.; Cho, S.K. Biomaterials in Spinal Implants: A Review. Neurospine 2020, 17, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Malakoutian, M.; Street, J.; Wilke, H.J.; Stavness, I.; Dvorak, M.; Fels, S.; Oxland, T. Role of Muscle Damage on Loading at the Level Adjacent to a Lumbar Spine Fusion: A Biomechanical Analysis. Eur. Spine J. 2016, 25, 2929–2937. [Google Scholar] [CrossRef] [PubMed]
- Volkheimer, D.; Malakoutian, M.; Oxland, T.R.; Wilke, H.J. Limitations of Current In Vitro Test Protocols for Investigation of Instrumented Adjacent Segment Biomechanics: Critical Analysis of the Literature. Eur. Spine J. 2015, 24, 1882–1892. [Google Scholar] [CrossRef] [PubMed]
- Edwards, W.T. Biomechanics of Posterior Lumbar Fixation: Analysis of Testing Methodologies. Spine 1991, 16, 1224–1232. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, M.; Hoffman, H.; Goel, V.K.; Weinstein, J.N.; Griss, P. In Vitro Testing of a New Transpedicular Stabilization Technique. Eur. Spine J. 1997, 6, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Izzo, R.; Guarnieri, G.; Guglielmi, G.; Muto, M. Biomechanics of the Spine. Part II: Spinal Instability. Eur. J. Radiol. 2013, 82, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.S.; Lim, T.H.; Kwon, T.K.; Han, K.S. Feasibility of Compressive Follower Load on Spine in a Simplified Dynamic State: A Simulation Study. Biomed. Mater. Eng. 2014, 24, 2319–2329. [Google Scholar] [CrossRef] [PubMed]
- Przybyla, A.S.; Skrzypiec, D.; Pollintine, P.; Dolan, P.; Adams, M.A. Strength of the Cervical Spine in Compression and Bending. Spine 2007, 32, 1612–1620. [Google Scholar] [CrossRef] [PubMed]
- Arjmand, N.; Gagnon, D.; Plamondon, A.; Shirazi-Adl, A.; Larivière, C. Comparison of Trunk Muscle Forces and Spinal Loads Estimated by Two Biomechanical Models. Clin. Biomech. 2010, 25, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Sung, P.S.; Danial, P.; Lee, D.C. Reliability of the Kinematic Steadiness Index During One-Leg Standing in Subjects with Recurrent Low Back Pain. Eur. Spine J. 2018, 27, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Qu, N.; Tian, H.; De Martino, E.; Zhang, B. Neck Pain: Do We Know Enough About the Sensorimotor Control System? Front. Comput. Neurosci. 2022, 16, 946514. [Google Scholar] [CrossRef] [PubMed]
- Doodkorte, R.J.P.; Roth, A.K.; Arts, J.J.; Lataster, L.M.A.; van Rhijn, L.W.; Willems, P.C. Biomechanical Comparison of Semirigid Junctional Fixation Techniques to Prevent Proximal Junctional Failure After Thoracolumbar Adult Spinal Deformity Correction. Spine 2021, 46, E139–E147. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Lattes, S.; Ries, Z.; Gao, Y.; Weinstein, S.L. Proximal Junctional Kyphosis in Adult Reconstructive Spine Surgery Results from Incomplete Restoration of the Lumbar Lordosis Relative to the Magnitude of the Thoracic Kyphosis. Iowa Orthop. J. 2011, 31, 199–206. [Google Scholar] [PubMed]
- Hostin, R.; McCarthy, I.; O’Brien, M.; Bess, S.; Line, B.; Boachie-Adjei, O.; Burton, D.; Gupta, M.; Mundis, G.; Schwab, F.; Shaffrey, C.; Smith, J.; Wood, K.; Hart, R.; Klineberg, E.; Ames, C. Incidence, Mode, and Location of Acute Proximal Junctional Failures After Surgical Treatment of Adult Spinal Deformity. Spine 2013, 38, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Lenke, L.G.; Shaffrey, C.I.; Van Alstyne, E.M.; Skelly, A.C. Proximal Junctional Kyphosis as a Distinct Form of Adjacent Segment Pathology After Spinal Deformity Surgery: A Systematic Review. Spine 2012, 37, S144–S164. [Google Scholar] [CrossRef] [PubMed]
- Yagi, M.; King, A.B.; Boachie-Adjei, O. Incidence, Risk Factors, and Natural Course of Proximal Junctional Kyphosis: Surgical Outcomes Review of Adult Idiopathic Scoliosis. Minimum 5 Years of Follow-Up. Spine 2012, 37, 1479–1489. [Google Scholar] [CrossRef] [PubMed]
- Arlet, V.; Aebi, M. Junctional Spinal Disorders in Operated Adult Spinal Deformities: Present Understanding and Future Perspectives. Eur. Spine J. 2013, 22, S276–S295. [Google Scholar] [CrossRef] [PubMed]
- Schmoelz, W.; Onder, U.; Martin, A.; von Strempel, A. Non-Fusion Instrumentation of the Lumbar Spine with a Hinged Pedicle Screw Rod System: An In Vitro Experiment. Eur. Spine J. 2009, 18, 1478–1485. [Google Scholar] [CrossRef] [PubMed]
- Más, Y.; Gracia, L.; Ibarz, E.; Gabarre, S.; Peña, D.; Herrera, A. Finite Element Simulation and Clinical Follow-Up of Lumbar Spine Biomechanics with Dynamic Fixations. PLoS One 2017, 12, e0188328. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.M.; Kim, Y.C.; Kim, K.T.; Ha, K.Y.; Luo, Q.; Li, X.; Park, J. Surgical Sequence in Anterior Column Realignment with Posterior Osteotomy Is Important for Degree of Adult Spinal Deformity Correction: Advantages and Indications for Posterior to Anterior Sequence. BMC Musculoskelet. Disord. 2022, 23, 1004. [Google Scholar] [CrossRef] [PubMed]
- Harris, B.M.; Hilibrand, A.S.; Savas, P.E.; Pellegrino, A.; Vaccaro, A.R.; Siegler, S.; Albert, T.J. Transforaminal Lumbar Interbody Fusion: The Effect of Various Instrumentation Techniques on the Flexibility of the Lumbar Spine. Spine 2004, 29, E65–E70. [Google Scholar] [CrossRef] [PubMed]
- Eysel, P.; Hopf, C.; Diop, A.; Lavaste, F. Multi-Segment Ventral Stabilization of the Lumbar Spine: A Comparative Biomechanical Study. Z. Orthop. Ihre Grenzgeb. 1995, 133, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Li, C.R.; Chen, S.H.; Chen, W.H.; Tsou, H.K.; Tzeng, C.Y.; Chen, T.Y.; Lin, M.S. A Retrospective Observational Study to Evaluate Adjacent Segmental Degenerative Change with the Dynesys-Transition-Optima Instrumentation System. J. Clin. Med. 2024, 13, 582. [Google Scholar] [CrossRef] [PubMed]
- Porwal, S.; Rizvi, M.R.; Sharma, A.; Ahmad, F.; Alshahrani, M.S.; Raizah, A.; Shaik, A.R.; Seyam, M.K.; Miraj, M.; Alkhamis, B.A.; Mukherjee, D.; Ahmad, I. Enhancing Functional Ability in Chronic Nonspecific Lower Back Pain: The Impact of EMG-Guided Trunk Stabilization Exercises. J. Clin. Med. 2023, 12, 3423. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Kohan, S.; Bhargav, D.; Choi, J.; Perera, S.; Dean, C.; Chopra, N.; Sial, A.; Sandhu, H.S.; Apos, E.; Appleyard, R.; Diwan, A.D. Phase 1 Evaluation of an Elastomeric Nucleus Pulposus Device as an Option to Augment Disc at Microdiscectomy: Experimental Results from Biomechanical and Biocompatibility Testing and First in Human. JOR Spine 2023, 6, e1250. [Google Scholar] [CrossRef] [PubMed]
- Perera, K.; Ivone, R.; Natekin, E.; Wilga, C.A.; Shen, J.; Menon, J.U. 3D Bioprinted Implants for Cartilage Repair in Intervertebral Discs and Knee Menisci. Front. Bioeng. Biotechnol. 2021, 9, 754113. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, H. Surgical Options for Lumbosacral Fusion: Biomechanical Stability, Advantage, Disadvantage and Affecting Factors in Selecting Options. Eur. J. Orthop. Surg. Traumatol. 2014, 24, S73–S82. [Google Scholar] [CrossRef] [PubMed]
- Lang, Z.; Li, J.S.; Yang, F.; Yu, Y.; Khan, K.; Jenis, L.G.; Cha, T.D.; Kang, J.D.; Li, G. Reoperation of Decompression Alone or Decompression Plus Fusion Surgeries for Degenerative Lumbar Diseases: A Systematic Review. Eur. Spine J. 2019, 28, 1371–1385. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lin, H.B. Dynamic Stabilization Devices in the Treatment of Low Back Pain. Zhongguo Gu Shang 2008, 21, 76–78. [Google Scholar] [PubMed]
- Akamaru, T.; Kawahara, N.; Yoon, S.T.; Minamide, A.; Kim, K.S.; Tomita, K.; Hutton, W.C. Adjacent Segment Motion After a Simulated Lumbar Fusion in Different Sagittal Alignments: A Biomechanical Analysis. Spine 2003, 28, 1560–1566. [Google Scholar] [CrossRef] [PubMed]
- Chou, P.H.; Lin, H.H.; An, H.S.; Liu, K.Y.; Su, W.Y.; Lin, M.C. Could the Topping-Off Technique Be the Preventive Strategy Against Adjacent Segment Disease After Pedicle Screw-Based Fusion in Lumbar Degenerative Diseases? A Systematic Review. Biomed. Res. Int. 2017, 2017, 4385620. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.C.; Mihara, H.; David, S.M.; Zdeblick, T.A. Biomechanical Comparison of Posterior Cervical Fixation. Spine 2001, 26, 1662–1667. [Google Scholar] [CrossRef] [PubMed]
- Weis, J.C.; Cunningham, B.W.; Kanayama, M.; Parker, L.; McAfee, P.C. In Vitro Biomechanical Comparison of Multistrand Cables with Conventional Cervical Stabilization. Spine 1996, 21, 2108–2114. [Google Scholar] [CrossRef] [PubMed]
- Coe, J.D.; Warden, K.E.; Sutterlin, C.E.; McAfee, P.C. Biomechanical Evaluation of Cervical Spinal Stabilization Methods in a Human Cadaveric Model. Spine 1989, 14, 1122–1131. [Google Scholar] [CrossRef] [PubMed]
- Sutterlin, C.E.; McAfee, P.C.; Warden, K.E.; Rey, R.M.; Farey, I.D. A Biomechanical Evaluation of Cervical Spinal Stabilization Methods in a Bovine Model: Static and Cyclical Loading. Spine 1988, 13, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Han, M.S.; Lee, G.J.; Kim, J.H.; Lee, S.K.; Moon, B.J.; Lee, J.K. Outcomes of Anterior Cervical Fusion Using Polyetheretherketone Cage with Demineralized Bone Matrix and Plate for Management of Subaxial Cervical Spine Injuries. Korean J. Neurotrauma 2018, 14, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Herrero, C.F.; Luis do Nascimento, A.; Maranho, D.A.C.; Ferreira-Filho, N.M.; Nogueira, C.P.; Nogueira-Barbosa, M.H.; Defino, H.L.A. Cervical Pedicle Morphometry in a Latin American Population: A Brazilian Study. Medicine 2016, 95, e3947. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Guo, L.X.; Zhao, D. Posterior Lumbar Interbody Fusion Versus Transforaminal Lumbar Interbody Fusion: Finite Element Analysis of the Vibration Characteristics of Fused Lumbar Spine. Spine 2021, 46, E1311–E1319. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Guo, L.X. Biomechanical Comparison of the Effects of Anterior, Posterior and Transforaminal Lumbar Interbody Fusion on Vibration Characteristics of the Human Lumbar Spine. Comput. Methods Biomech. Biomed. Engin. 2019, 22, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Jiang, M.; Hong, Y.; Rong, X.; Huang, K.; Liu, H.; Pu, D.; Wang, B. Single-Level Cervical Disc Arthroplasty in the Spine with Reversible Kyphosis: A Finite Element Study. JOR Spine 2022, 5, e1194. [Google Scholar] [CrossRef] [PubMed]
- Ou, Y.; Xiao, Z.; Wei, J.; Jiang, H.; Li, Z. Upper and Lower Adjacent Segment Range of Motion After Fixation of Different Lumbar Spine Segments in the Goat: An In Vitro Experiment. J. Int. Med. Res. 2021, 49, 3000605211020219. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Liu, Z.; Wei, Z.; Fang, Z.; Xi, Z.; Cai, P.; Li, J. Will the Adjustment of Insertional Pedicle Screw Positions Affect the Risk of Adjacent Segment Diseases Biomechanically? An In-Silico Study. Front. Surg. 2023, 9, 1004642. [Google Scholar] [CrossRef] [PubMed]
- Jahng, T.A.; Kim, Y.E.; Moon, K.Y. Comparison of the Biomechanical Effect of Pedicle-Based Dynamic Stabilization: A Study Using Finite Element Analysis. Spine J. 2013, 13, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.H.; Teo, E.C. Finite Element Application in Implant Research for Treatment of Lumbar Degenerative Disc Disease. Med. Eng. Phys. 2008, 30, 1246–1256. [Google Scholar] [CrossRef] [PubMed]
- Schwarzenbach, O.; Berlemann, U.; Stoll, T.M.; Dubois, G. Posterior Dynamic Stabilization Systems: DYNESYS. Orthop. Clin. North Am. 2005, 36, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Abumi, K.; Panjabi, M.M.; Duranceau, J. Biomechanical Evaluation of Spinal Fixation Devices: III. Stability Provided by Six Spinal Fixation Devices and Interbody Bone Graft. Spine 1989, 14, 1249–1255. [Google Scholar] [CrossRef] [PubMed]
- Blumenthal, S.; Gill, K. Complications of the Wiltse Pedicle Screw Fixation System. Spine 1993, 18, 1867–1871. [Google Scholar] [CrossRef] [PubMed]
- Dalenberg, D.D.; Asher, M.A.; Robinson, R.G.; Jayaraman, G. The Effect of a Stiff Spinal Implant and Its Loosening on Bone Mineral Content in Canines. Spine 1993, 18, 1862–1866. [Google Scholar] [CrossRef] [PubMed]
- Farey, I.D.; McAfee, P.C.; Gurr, K.R.; Randolph, M.A. Quantitative Histologic Study of the Influence of Spinal Instrumentation on Lumbar Fusions: A Canine Model. J. Orthop. Res. 1989, 7, 709–722. [Google Scholar] [CrossRef] [PubMed]
- Angst, M.; Winter, M.; Lang, M.C. Dorsal Tension Band Stabilization for the Lumbar Spine Analyzed In Vitro. J. Biomech. 1993, 26, 817. [Google Scholar] [CrossRef] [PubMed]
- Vahldiek, M.J.; Panjabi, M.M. Stability Potential of Spinal Instrumentations in Tumor Vertebral Body Replacement Surgery. Spine 1998, 23, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Strauss, P.J.; Novotny, J.E.; Wilder, D.G.; Grobler, L.J.; Pope, M.H. Multidirectional Stability of the Graf System. Spine 1994, 19, 965–972. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.Z.; Wang, X.Y.; Chi, Y.L.; Zhu, Q.A.; Lin, Y.; Huang, Q.S.; Dai, L.Y. Biomechanical Comparison of Posterior Lumbar Interbody Fusion and Transforaminal Lumbar Interbody Fusion by Finite Element Analysis. Neurosurgery 2013, 72, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Goel, V.K.; Konz, R.J.; Chang, H.T.; Grosland, N.M.; Weinstein, J.N.; Panjabi, M.M. Hinged-Dynamic Posterior Device Permits Greater Physiologic Motion in the Lumbar Spine Compared with a Rigid Device: A Finite Element Study. J. Spinal Disord. Tech. 2005, 18, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Larson, C.R.; Sjovold, S.G.; Rosler, D.M.; Keynan, O.; Wilson, D.R.; Cripton, P.A.; Oxland, T.R. Biomechanical Evaluation of the Total Facet Arthroplasty System®: 3-Dimensional Kinematics. Spine 2007, 32, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Sjovold, S.G.; Zhu, Q.; Bowden, A.; Larson, C.R.; de Bakker, P.M.; Villarraga, M.L.; Ochoa, J.A.; Rosler, D.M.; Cripton, P.A.; Oxland, T.R. Biomechanical Evaluation of the Total Facet Arthroplasty System® (TFAS®): Loading as Compared to a Rigid Posterior Fixation System. Eur. Spine J. 2012, 21, 1660–1673. [Google Scholar] [CrossRef] [PubMed]
- Phillips, F.M.; Tzermiadianos, M.N.; Voronov, L.I.; Havey, R.M.; Carandang, G.; Renner, S.M.; Rosler, D.M.; Ochoa, J.A.; Patwardhan, A.G. Effect of the Total Facet Arthroplasty System After Complete Laminectomy-Facetectomy on the Biomechanics of Implanted and Adjacent Segments. Spine J. 2009, 9, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Serhan, H.; Mhatre, D.; Newton, P.; Giorgio, P.; Punjabi, M. Would CoCr Rods Provide Better Correctional Forces Than Stainless Steel or Titanium for Rigid Scoliosis Curves? J. Spinal Disord. Tech. 2010, 23, e70–e74. [Google Scholar] [CrossRef] [PubMed]
- Denozière, G.; Ku, D.N. Biomechanical Comparison Between Fusion of Two Vertebrae and Implantation of an Artificial Intervertebral Disc. J. Biomech. 2006, 39, 766–775. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, B.W.; Hu, N.; Beatson, H.J.; Serhan, H.; Sefter, J.C.; McAfee, P.C. Revision Strategies for Single- and Two-Level Total Disc Arthroplasty Procedures: A Biomechanical Perspective. Spine J. 2009, 9, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Galbusera, F.; Schmidt, H.; Noailly, J.; Malandrino, A.; Lacroix, D.; Wilke, H.J.; Shirazi-Adl, A. Comparison of Four Methods to Simulate Swelling in Poroviscoelastic Finite Element Models of Intervertebral Discs. J. Mech. Behav. Biomed. Mater. 2011, 4, 1234–1241. [Google Scholar] [CrossRef] [PubMed]
- Noailly, J.; Planell, J.A.; Lacroix, D. On the Collagen Criss-Cross Angles in the Annuli Fibrosi of Lumbar Spine Finite Element Models. Biomech. Model. Mechanobiol. 2011, 10, 203–219. [Google Scholar] [CrossRef] [PubMed]
- Little, J.P.; Adam, C.J.; Evans, J.H.; Pettet, G.J.; Pearcy, M.J. Nonlinear Finite Element Analysis of Anular Lesions in the L4/5 Intervertebral Disc. J. Biomech. 2007, 40, 2744–2751. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.; Heuer, F.; Simon, U.; Kettler, A.; Rohlmann, A.; Claes, L.; Wilke, H.J. Application of a New Calibration Method for a Three-Dimensional Finite Element Model of a Human Lumbar Annulus Fibrosus. Clin. Biomech. 2006, 21, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Eberlein, R.; Holzapfel, G.A.; Schulze-Bauer, C.A.J. An Automated Approach for the Parameterization of Finite Element Models of Soft Tissues: Application to the Human Annulus Fibrosus. Comput. Methods Biomech. Biomed. Engin. 2004, 7, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, R.N.; Williams, J.R.; Andersson, G.B.J. Modeling Changes in Intervertebral Disc Mechanics Following Partial Nucleotomy Using a Poroelastic Finite Element Model. Spine 2006, 31, S108–S114. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, S.J.; Ito, K.; Nolte, L.P. Fluid Flow and Convective Transport of Solutes Within the Intervertebral Disc. J. Biomech. 2004, 37, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Iatridis, J.C.; Laible, J.P.; Krag, M.H. Influence of Fixed Charge Density Magnitude and Distribution on the Intervertebral Disc: Applications of a Poroelastic and Chemical Electric (PEACE) Model. J. Biomech. Eng. 2003, 125, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Mow, V.C.; Ateshian, G.A.; Spilker, R.L. Biomechanics of Diarthrodial Joints: A Review of Twenty Years of Progress. J. Biomech. Eng. 1993, 115, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Spilker, R.L.; Suh, J.K.; Mow, V.C. Effects of Friction on the Unconfined Compressive Response of Articular Cartilage: A Finite Element Analysis. J. Biomech. Eng. 1990, 112, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Laible, J.P.; Pflaster, D.S.; Krag, M.H.; Simon, B.R.; Haugh, L.D. A Poroelastic-Swelling Finite Element Model with Application to the Intervertebral Disc. Spine 1993, 18, 659–670. [Google Scholar] [CrossRef] [PubMed]
- Simon, B.R.; Wu, J.S.S.; Carlton, M.W.; Kazarian, L.E.; France, E.P.; Evans, J.H.; Zienkiewicz, O.C. Poroelastic Dynamic Structural Models of Rhesus Spinal Motion Segments. Spine 1985, 10, 494–507. [Google Scholar] [CrossRef] [PubMed]
- Argoubi, M.; Shirazi-Adl, A. Poroelastic Creep Response Analysis of a Lumbar Motion Segment in Compression. J. Biomech. 1996, 29, 1331–1339. [Google Scholar] [CrossRef] [PubMed]
- Cheung, J.T.M.; Zhang, M.; Leung, A.K.L.; Fan, Y.B. Three-Dimensional Finite Element Analysis of the Foot During Standing—A Material Sensitivity Study. J. Biomech. 2005, 38, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.Z.; Herzog, W.; Epstein, M. Modelling of Location- and Time-Dependent Deformation of Chondrocytes During Cartilage Loading. J. Biomech. 1999, 32, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Nicoll, S.B.; Mauck, R.L.; Ateshian, G.A. Cartilage Mechanical Response Under Dynamic Compression at Physiological Strain Rates: Experimental and Computational Validations. J. Biomech. Eng. 2008, 130, 021013. [Google Scholar] [CrossRef] [PubMed]
- Ateshian, G.A.; Warden, W.H.; Kim, J.J.; Grelsamer, R.P.; Mow, V.C. Finite Deformation Biphasic Material Properties of Bovine Articular Cartilage From Confined Compression Experiments. J. Biomech. 1997, 30, 1157–1164. [Google Scholar] [CrossRef] [PubMed]
- Mow, V.C.; Kuei, S.C.; Lai, W.M.; Armstrong, C.G. Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments. J. Biomech. Eng. 1980, 102, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.D.; Singerman, R.J. Experimental Determination of the Linear Biphasic Constitutive Coefficients of Human Fetal Proximal Femoral Chondroepiphysis. J. Biomech. 1986, 19, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, C.G.; Mow, V.C. Variations in the Intrinsic Mechanical Properties of Human Articular Cartilage With Age, Degeneration, and Water Content. J. Bone Joint Surg. Am. 1982, 64, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Stolz, M.; Raiteri, R.; Daniels, A.U.; VanLandingham, M.R.; Baschong, W.; Aebi, U. Dynamic Elastic Modulus of Porcine Articular Cartilage Determined at Two Different Levels of Tissue Organization by Indentation-Type Atomic Force Microscopy. Biophys. J. 2004, 86, 3269–3283. [Google Scholar] [CrossRef] [PubMed]
- Korhonen, R.K.; Laasanen, M.S.; Töyräs, J.; Rieppo, J.; Hirvonen, J.; Helminen, H.J.; Jurvelin, J.S. Comparison of the Equilibrium Response of Articular Cartilage in Unconfined Compression, Confined Compression and Indentation. J. Biomech. 2002, 35, 903–909. [Google Scholar] [CrossRef] [PubMed]
- Jurvelin, J.S.; Buschmann, M.D.; Hunziker, E.B. Optical and Mechanical Determination of Poisson’s Ratio of Adult Bovine Articular Cartilage. J. Biomech. 1997, 30, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Athanasiou, K.A.; Rosenwasser, M.P.; Buckwalter, J.A.; Malinin, T.I.; Mow, V.C. Interspecies Comparisons of In Situ Intrinsic Mechanical Properties of Distal Femoral Cartilage. J. Orthop. Res. 1991, 9, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Schinagl, R.M.; Gurskis, D.; Chen, A.C.; Sah, R.L. Depth-Dependent Confined Compression Modulus of Full-Thickness Bovine Articular Cartilage. J. Orthop. Res. 1997, 15, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.C.; Bae, W.C.; Schinagl, R.M.; Sah, R.L. Depth- and Strain-Dependent Mechanical and Electromechanical Properties of Full-Thickness Bovine Articular Cartilage in Confined Compression. J. Biomech. 2001, 34, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Buschmann, M.D.; Soulhat, J.; Shirazi-Adl, A.; Jurvelin, J.S.; Hunziker, E.B. Confined Compression of Articular Cartilage: Linearity in Ramp and Sinusoidal Tests and the Importance of Interdigitation and Collagen Fiber Orientation. J. Biomech. 1998, 31, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Li, L.P.; Soulhat, J.; Buschmann, M.D.; Shirazi-Adl, A. Nonlinear Analysis of Cartilage in Unconfined Ramp Compression Using a Fibril Reinforced Poroelastic Model. Clin. Biomech. 1999, 14, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Soulhat, J.; Buschmann, M.D.; Shirazi-Adl, A. A Fibril-Network-Reinforced Biphasic Model of Cartilage in Unconfined Compression. J. Biomech. Eng. 1999, 121, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Cohen, B.; Lai, W.M.; Mow, V.C. A Transversely Isotropic Biphasic Model for Unconfined Compression of Growth Plate and Chondroepiphysis. J. Biomech. Eng. 1998, 120, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Y.; Mow, V.C.; Ateshian, G.A. The Role of Flow-Independent Viscoelasticity in the Biphasic Tensile and Compressive Responses of Articular Cartilage. J. Biomech. Eng. 2001, 123, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Soltz, M.A.; Ateshian, G.A. Experimental Verification and Theoretical Prediction of Cartilage Interstitial Fluid Pressurization at an Impermeable Contact Interface in Confined Compression. J. Biomech. 1998, 31, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Ateshian, G.A.; Wang, H.; Lai, W.M. The Role of Interstitial Fluid Pressurization and Surface Porosities on the Boundary Friction of Articular Cartilage. J. Tribol. 1998, 120, 241–248. [Google Scholar] [CrossRef]
- Mow, V.C.; Holmes, M.H.; Lai, W.M. Fluid Transport and Mechanical Properties of Articular Cartilage: A Review. J. Biomech. 1984, 17, 377–394. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.M.; Mow, V.C.; Roth, V. Effects of Nonlinear Strain-Dependent Permeability and Rate of Compression on the Stress Behavior of Articular Cartilage. J. Biomech. Eng. 1981, 103, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Holmes, M.H.; Mow, V.C. The Nonlinear Characteristics of Soft Gels and Hydrated Connective Tissues in Ultrafiltration. J. Biomech. 1990, 23, 1145–1156. [Google Scholar] [CrossRef] [PubMed]
- Mak, A.F. The Apparent Viscoelastic Behavior of Articular Cartilage—The Contributions From the Intrinsic Matrix Viscoelasticity and Interstitial Fluid Flows. J. Biomech. Eng. 1986, 108, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Oloyede, A.; Broom, N.D. The Generalized Consolidation of Articular Cartilage: An Experimental Study. Connect. Tissue Res. 1994, 31, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Oloyede, A.; Broom, N.D. A Physical Model for the Time-Dependent Deformation of Articular Cartilage. Connect. Tissue Res. 1993, 29, 251–261. [Google Scholar] [CrossRef] [PubMed]
- DiSilvestro, M.R.; Zhu, Q.; Wong, M.; Jurvelin, J.S.; Suh, J.K.F. Biphasic Poroviscoelastic Simulation of the Unconfined Compression of Articular Cartilage: I—Simultaneous Prediction of Reaction Force and Lateral Displacement. J. Biomech. Eng. 2001, 123, 191–197. [Google Scholar] [CrossRef] [PubMed]
- DiSilvestro, M.R.; Suh, J.K.F. A Cross-Validation of the Biphasic Poroviscoelastic Model of Articular Cartilage in Unconfined Compression, Indentation, and Confined Compression. J. Biomech. 2001, 34, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Y.; Soltz, M.A.; Kopacz, M.; Mow, V.C.; Ateshian, G.A. Experimental Verification of the Roles of Intrinsic Matrix Viscoelasticity and Tension-Compression Nonlinearity in the Biphasic Response of Cartilage. J. Biomech. Eng. 2003, 125, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Hung, C.T.; Ateshian, G.A. Mechanical Response of Bovine Articular Cartilage Under Dynamic Unconfined Compression Loading at Physiological Stress Levels. Osteoarthritis Cartilage 2004, 12, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Fortin, M.; Soulhat, J.; Shirazi-Adl, A.; Hunziker, E.B.; Buschmann, M.D. Unconfined Compression of Articular Cartilage: Nonlinear Behavior and Comparison With a Fibril-Reinforced Biphasic Model. J. Biomech. Eng. 2000, 122, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Li, L.P.; Buschmann, M.D.; Shirazi-Adl, A. The Asymmetry of Transient Response in Compression Versus Release for Cartilage in Unconfined Compression. J. Biomech. Eng. 2001, 123, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Suh, J.K.; Bai, S. Finite Element Formulation of Biphasic Poroviscoelastic Model for Articular Cartilage. J. Biomech. Eng. 1998, 120, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.J.; Altiero, N.J.; Haut, R.C. An Approach for the Stress Analysis of Transversely Isotropic Biphasic Cartilage Under Impact Loading. J. Biomech. Eng. 1998, 120, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Donzelli, P.S.; Spilker, R.L. A Contact Finite Element Formulation for Biological Soft Hydrated Tissues. Comput. Methods Appl. Mech. Eng. 1998, 153, 63–79. [Google Scholar] [CrossRef]
- Wu, J.Z.; Herzog, W. Finite Element Simulation of Location- and Time-Dependent Mechanical Behavior of Chondrocytes in Unconfined Compression Tests. Ann. Biomed. Eng. 2000, 28, 318–330. [Google Scholar] [CrossRef] [PubMed]
- Spilker, R.L.; Donzelli, P.S.; Mow, V.C. A Transversely Isotropic Biphasic Finite Element Model of the Meniscus. J. Biomech. 1992, 25, 1027–1045. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
