Submitted:
14 May 2025
Posted:
19 May 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Mechanisms of Action of Propofol
2.1. PI3K/Akt Pathway Activation and Inhibition
2.1.1. PI3K/Akt Pathway Activation
2.1.2. PI3K/Akt Pathway Inhibition
2.2. Inhibition of Nicotinamide Adenine Dinucleotide Phosphate Oxidase
2.3. Blocking and Downregulation of Toll-Like Receptor 4 Expression
2.4. Downregulation of Connexin 43
2.5. JAK1/STAT3 Pathway Activation
2.6. miR-155/SOCS1 Pathway
2.7. miR-221/222-IRF2 Pathway
2.8. NF-κB/Hif- 1α Signaling Pathway
2.9. Extracellular Vesicle Release
2.10. Oxidative Stress and Increasing Antioxidant Activity
2.11. Intracellular Ca2+ Homeostasis

| Mechanism | Type of Experiment | Model | Outcome | Reference |
|---|---|---|---|---|
| PI3K/Akt/ Pathway Activation | in-vivo | Rat I/R Injury | Autophagy Activation (Anti-inflammatory Effects) | [24] |
| PI3K/Akt/ Pathway Activation | in-vitro | (OGD)-Stimulated Primary Microglia | Autophagy Activation (Anti-inflammatory Effects) | [24] |
| PI3K/Akt/ Pathway Activation | in-vitro | LPS-induced BV-2 microglia | Anti-inflammatory Effects | [27] |
| PI3K/Akt/ Pathway Inhibition | in-vitro | LPS-induced Primary Mouse Microglia | Anti-inflammatory Effects | [29] |
| NADPH oxidase Inhibition | in-vitro | LPS-induced BV2 Cells | Anti-inflammatory Effects | [36] |
| Downregulation of TLR4 Expression | in-vivo | (MCA) coagulation | Anti-inflammatory Effects | [14] |
| Downregulation of TLR4 Expression | in-vitro | (OGD/R) BV2 microglia | Anti-inflammatory Effects | [48] |
| Downregulation of TLR4 Expression, but maintaining GSK-3β | in-vitro | LPS-induced BV-2 microglia | Anti-inflammatory Effects | [51] |
| Downregulation of Connexin 43 | in-vitro | hypoxia/reoxygenation-H/R injury | Anti-inflammatory Effects | [52] |
| Downregulation of Connexin 43 | ex-vivo | MCS was collected from H/R-injured microglia. | Anti-inflammatory Effects | [52] |
| Downregulation of Connexin 43 | in-vivo | Middle cerebral artery occlusion (MCAO) in SD rats | Anti-inflammatory Effects | [52] |
| Activation of JAK1/STAT3 pathway | in-vitro | CoCl2-induced hypoxic injured BV2 cells | Anti-inflammatory Effects | [63] |
| Regulating the miR-155/SOCS1 Pathway | in-vitro | LPS-induced BV-2 microglia | Anti-inflammatory Effects | [74] |
| Regulating MicroRNA-221/222-IRF2 Pathway | in-vitro | LPS-induced BV-2 microglia | Anti-inflammatory Effects | [84] |
| Inhibiting NF-κB/Hif- 1α Pathway | in-vitro | CoCl2 hypoxic-induced BV2 cells | Anti-inflammatory Effects | [94] |
| Inhibiting Extracellular Vesicle Release | in-vitro | LPS-induced BV-2 microglia | Anti-inflammatory Effects | [107] |
| Inhibiting ROS and Increasing Antioxidant Activity | in-vitro | CoCl2 hypoxic-induced BV2 cells | Anti-inflammatory Effects | [94] |
| Maintaining Intracellular Ca2+ Homeostasis | in-vitro | CoCl2 hypoxic-induced BV2 cells | Anti-inflammatory Effects | [63] |
5. Conclusions
References
- Yuan, Q.; Yuan, Y.; Zheng, Y.; Sheng, R.; Liu, L.; Xie, F.; Tan, J. Anti-Cerebral Ischemia Reperfusion Injury of Polysaccharides: A Review of the Mechanisms. Biomedicine & Pharmacotherapy 2021, 137, 111303. [CrossRef]
- Salvadori, E.; Papi, G.; Insalata, G.; Rinnoci, V.; Donnini, I.; Martini, M.; Falsini, C.; Hakiki, B.; Romoli, A.; Barbato, C.; et al. Comparison between Ischemic and Hemorrhagic Strokes in Functional Outcome at Discharge from an Intensive Rehabilitation Hospital. Diagnostics (Basel) 2020, 11, 38. [CrossRef]
- Cheng, Z.; Lv, J.; Guo, H.; Liu, X. Global, Regional, and National Burden of Ischemic Stroke, 1990–2021: An Analysis of Data from the Global Burden of Disease Study 2021. eClinicalMedicine 2024, 75, 102758. [CrossRef]
- Li, J.; Zhang, Q.; Wang, W.; Lin, F.; Wang, S.; Zhao, J. Mesenchymal Stem Cell Therapy for Ischemic Stroke: A Look into Treatment Mechanism and Therapeutic Potential. J Neurol 2021, 268, 4095–4107. [CrossRef]
- Wang, Y.; Xiao, G.; He, S.; Liu, X.; Zhu, L.; Yang, X.; Zhang, Y.; Orgah, J.; Feng, Y.; Wang, X.; et al. Protection against Acute Cerebral Ischemia/Reperfusion Injury by QiShenYiQi via Neuroinflammatory Network Mobilization. Biomedicine & Pharmacotherapy 2020, 125, 109945. [CrossRef]
- DeLong, J.H.; Ohashi, S.N.; O’Connor, K.C.; Sansing, L.H. Inflammatory Responses After Ischemic Stroke. Seminars in Immunopathology 2022, 44, 625–648. [CrossRef]
- Dong, R.; Huang, R.; Wang, J.; Liu, H.; Xu, Z. Effects of Microglial Activation and Polarization on Brain Injury After Stroke. Front. Neurol. 2021, 12. [CrossRef]
- Xu, L.; He, D.; Bai, Y. Microglia-Mediated Inflammation and Neurodegenerative Disease. Mol Neurobiol 2016, 53, 6709–6715. [CrossRef]
- Yenari, M.A.; Xu, L.; Tang, X.N.; Qiao, Y.; Giffard, R.G. Microglia Potentiate Damage to Blood-Brain Barrier Constituents: Improvement by Minocycline in Vivo and in Vitro. Stroke 2006, 37, 1087–1093. [CrossRef]
- Cherry, J.D.; Olschowka, J.A.; O’Banion, M.K. Neuroinflammation and M2 Microglia: The Good, the Bad, and the Inflamed. Journal of Neuroinflammation 2014, 11, 98. [CrossRef]
- Yu, H.; Wang, X.; Kang, F.; Chen, Z.; Meng, Y.; Dai, M. Propofol Attenuates Inflammatory Damage on Neurons Following Cerebral Infarction by Inhibiting Excessive Activation of Microglia. International Journal of Molecular Medicine 2019, 43, 452–460. [CrossRef]
- Peng, M.; Ye, J.-S.; Wang, Y.-L.; Chen, C.; Wang, C.-Y. Posttreatment with Propofol Attenuates Lipopolysaccharide-Induced up-Regulation of Inflammatory Molecules in Primary Microglia. Inflamm. Res. 2014, 63, 411–418. [CrossRef]
- Zhou, R.; Yang, Z.; Tang, X.; Tan, Y.; Wu, X.; Liu, F. Propofol Protects Against Focal Cerebral Ischemia via Inhibition of Microglia-Mediated Proinflammatory Cytokines in a Rat Model of Experimental Stroke. PLOS ONE 2013, 8, e82729. [CrossRef]
- Mitsui, K.; Kotoda, M.; Hishiyama, S.; Takamino, A.; Morikawa, S.; Ishiyama, T.; Matsukawa, T. Propofol Ameliorates Ischemic Brain Injury by Blocking TLR4 Pathway in Mice. Transl Neurosci 2022, 13, 246–254. [CrossRef]
- Sigel, E.; Steinmann, M.E. Structure, Function, and Modulation of GABAA Receptors. The Journal of Biological Chemistry 2012, 287, 40224. [CrossRef]
- Trapani, G.; Altomare, C.; Liso, G.; Sanna, E.; Biggio, G. Propofol in Anesthesia. Mechanism of Action, Structure-Activity Relationships, and Drug Delivery. Curr Med Chem 2000, 7, 249–271. [CrossRef]
- Nelson, L.E.; Guo, T.Z.; Lu, J.; Saper, C.B.; Franks, N.P.; Maze, M. The Sedative Component of Anesthesia Is Mediated by GABAA Receptors in an Endogenous Sleep Pathway. Nature Neuroscience 2002, 5, 979. [CrossRef]
- Buggy, D.J.; Nicol, B.; Rowbotham, D.J.; Lambert, D.G. Effects of Intravenous Anesthetic Agents on Glutamate Release: A Role for GABAA Receptor-Mediated Inhibition. Anesthesiology 2000, 92, 1067–1073. [CrossRef]
- Rehberg, B.; Duch, D.S. Suppression of Central Nervous System Sodium Channels by Propofol. Anesthesiology 1999, 91, 512–520. [CrossRef]
- Kotani, Y.; Shimazawa, M.; Yoshimura, S.; Iwama, T.; Hara, H. The Experimental and Clinical Pharmacology of Propofol, an Anesthetic Agent with Neuroprotective Properties. CNS Neuroscience & Therapeutics 2008, 14, 95. [CrossRef]
- Mori, H.; Mishina, M. Structure and Function of the NMDA Receptor Channel. Neuropharmacology 1995, 34, 1219–1237. [CrossRef]
- Zhang, X.; Wang, D.; Zhang, B.; Zhu, J.; Zhou, Z.; Cui, L. Regulation of Microglia by Glutamate and Its Signal Pathway in Neurodegenerative Diseases. Drug Discovery Today 2020, 25, 1074–1085. [CrossRef]
- Wu, Q.; Zhao, Y.; Chen, X.; Zhu, M.; Miao, C. Propofol Attenuates BV2 Microglia Inflammation via NMDA Receptor Inhibition. Canadian Journal of Physiology & Pharmacology 2018, 96, 241–248. [CrossRef]
- Chen, Y.; Li, Z. Protective Effects of Propofol on Rats with Cerebral Ischemia–Reperfusion Injury Via the PI3K/Akt Pathway. J Mol Neurosci 2021, 71, 810–820. [CrossRef]
- Tewari, D.; Patni, P.; Bishayee, A.; Sah, A.N.; Bishayee, A. Natural Products Targeting the PI3K-Akt-mTOR Signaling Pathway in Cancer: A Novel Therapeutic Strategy. Seminars in Cancer Biology 2022, 80, 1–17. [CrossRef]
- Kirkin, V.; Rogov, V.V. A Diversity of Selective Autophagy Receptors Determines the Specificity of the Autophagy Pathway. Molecular Cell 2019, 76, 268–285. [CrossRef]
- Luo, J.; Huang, B.; Zhang, Z.; Liu, M.; Luo, T. Delayed Treatment of Propofol Inhibits Lipopolysaccharide-Induced Inflammation in Microglia through the PI3K/PKB Pathway. NeuroReport 2018, 29, 839–845. [CrossRef]
- Wang, P.; Shao, B.-Z.; Deng, Z.; Chen, S.; Yue, Z.; Miao, C.-Y. Autophagy in Ischemic Stroke. Progress in Neurobiology 2018, 163–164, 98–117. [CrossRef]
- Liu, J.; Ai, P.; Sun, Y.; Yang, X.; Li, C.; Liu, Y.; Xia, X.; Zheng, J.C. Propofol Inhibits Microglial Activation via miR-106b/Pi3k/Akt Axis. Front. Cell. Neurosci. 2021, 15. [CrossRef]
- Guan, S.; Sun, L.; Wang, X.; Huang, X.; Luo, T. Propofol Inhibits Neuroinflammation and Metabolic Reprogramming in Microglia in Vitro and in Vivo. Front. Pharmacol. 2023, 14. [CrossRef]
- Choi, S.-H.; Aid, S.; Kim, H.-W.; Jackson, S.H.; Bosetti, F. Inhibition of NADPH Oxidase Promotes Alternative and Anti-Inflammatory Microglial Activation during Neuroinflammation. Journal of Neurochemistry 2012, 120, 292–301. [CrossRef]
- Chen, H.; Kim, G.S.; Okami, N.; Narasimhan, P.; Chan, P.H. NADPH Oxidase Is Involved in Post-Ischemic Brain Inflammation. Neurobiology of Disease 2011, 42, 341–348. [CrossRef]
- Chéret, C.; Gervais, A.; Lelli, A.; Colin, C.; Amar, L.; Ravassard, P.; Mallet, J.; Cumano, A.; Krause, K.-H.; Mallat, M. Neurotoxic Activation of Microglia Is Promoted by a Nox1-Dependent NADPH Oxidase. J Neurosci 2008, 28, 12039–12051. [CrossRef]
- Harting, M.T.; Jimenez, F.; Adams, S.D.; Mercer, D.W.; Cox, C.S. Acute, Regional Inflammatory Response after Traumatic Brain Injury: Implications for Cellular Therapy. Surgery 2008, 144, 803–813. [CrossRef]
- Chen, X.; Zhou, X.; Yang, X.; Zhou, Z.; Lu, D.; Tang, Y.; Ling, Z.; Zhou, L.; Feng, X. Propofol Protects Against H2O2-Induced Oxidative Injury in Differentiated PC12 Cells via Inhibition of Ca2+-Dependent NADPH Oxidase. Cell Mol Neurobiol 2016, 36, 541–551. [CrossRef]
- Luo, T.; Wu, J.; Kabadi, S.V.; Sabirzhanov, B.; Guanciale, K.; Hanscom, M.; Faden, J.; Cardiff, K.; Bengson, C.J.; Faden, A.I. Propofol Limits Microglial Activation after Experimental Brain Trauma through Inhibition of Nicotinamide Adenine Dinucleotide Phosphate Oxidase. Anesthesiology 2013, 119, 1370–1388. [CrossRef]
- Fernandez-Lizarbe, S.; Pascual, M.; Guerri, C. Critical Role of TLR4 Response in the Activation of Microglia Induced by Ethanol1. The Journal of Immunology 2009, 183, 4733–4744. [CrossRef]
- Piccinini, A.M.; Midwood, K.S. DAMPening Inflammation by Modulating TLR Signalling. Mediators of Inflammation 2010, 2010, 672395. [CrossRef]
- Ciesielska, A.; Matyjek, M.; Kwiatkowska, K. TLR4 and CD14 Trafficking and Its Influence on LPS-Induced pro-Inflammatory Signaling. Cell. Mol. Life Sci. 2021, 78, 1233–1261. [CrossRef]
- Marsh, B.J.; Williams-Karnesky, R.L.; Stenzel-Poore, M.P. Toll-like Receptor Signaling in Endogenous Neuroprotection and Stroke. Neuroscience 2009, 158, 1007–1020. [CrossRef]
- Andresen, L.; Theodorou, K.; Grünewald, S.; Czech-Zechmeister, B.; Könnecke, B.; Lühder, F.; Trendelenburg, G. Evaluation of the Therapeutic Potential of Anti-TLR4-Antibody MTS510 in Experimental Stroke and Significance of Different Routes of Application. PLOS ONE 2016, 11, e0148428. [CrossRef]
- Ve, T.; Vajjhala, P.R.; Hedger, A.; Croll, T.; DiMaio, F.; Horsefield, S.; Yu, X.; Lavrencic, P.; Hassan, Z.; Morgan, G.P.; et al. Structural Basis of TIR-Domain-Assembly Formation in MAL- and MyD88-Dependent TLR4 Signaling. Nat Struct Mol Biol 2017, 24, 743–751. [CrossRef]
- Escoubet-Lozach, L.; Benner, C.; Kaikkonen, M.U.; Lozach, J.; Heinz, S.; Spann, N.J.; Crotti, A.; Stender, J.; Ghisletti, S.; Reichart, D.; et al. Mechanisms Establishing TLR4-Responsive Activation States of Inflammatory Response Genes. PLoS Genet 2011, 7, e1002401. [CrossRef]
- Valkov, E.; Stamp, A.; DiMaio, F.; Baker, D.; Verstak, B.; Roversi, P.; Kellie, S.; Sweet, M.J.; Mansell, A.; Gay, N.J.; et al. Crystal Structure of Toll-like Receptor Adaptor MAL/TIRAP Reveals the Molecular Basis for Signal Transduction and Disease Protection. Proceedings of the National Academy of Sciences of the United States of America 2011, 108, 14879–14884.
- Gay, N.J.; Symmons, M.F.; Gangloff, M.; Bryant, C.E. Assembly and Localization of Toll-like Receptor Signalling Complexes. Nature Reviews Immunology 2014, 14, 546–558. [CrossRef]
- Wu, G.-J.; Lin, Y.-W.; Chuang, C.-Y.; Tsai, H.-C.; Chen, R.-M. Liver Nitrosation and Inflammation in Septic Rats Were Suppressed by Propofol via Downregulating TLR4/NF-κB-Mediated iNOS and IL-6 Gene Expressions. Life Sciences 2018, 195, 25–32. [CrossRef]
- Ye, H.-H.; Wu, K.-J.; Fei, S.-J.; Zhang, X.-W.; Liu, H.-X.; Zhang, J.-L.; Zhang, Y.-M. Propofol Participates in Gastric Mucosal Protection through Inhibiting the Toll-like Receptor-4/Nuclear Factor Kappa-B Signaling Pathway. Clinics and Research in Hepatology and Gastroenterology 2013, 37, e3–e15. [CrossRef]
- Qin, X.; Sun, Z.-Q.; Zhang, X.-W.; Dai, X.-J.; Mao, S.-S.; Zhang, Y.-M. TLR4 Signaling Is Involved in the Protective Effect of Propofol in BV2 Microglia against OGD/Reoxygenation. J Physiol Biochem 2013, 69, 707–718. [CrossRef]
- Wang, H.; Garcia, C.A.; Rehani, K.; Cekic, C.; Alard, P.; Kinane, D.F.; Mitchell, T.; Martin, M. IFN-β Production by TLR4-Stimulated Innate Immune Cells Is Negatively Regulated by GSK3-Β1. The Journal of Immunology 2008, 181, 6797–6802. [CrossRef]
- Martin, M.; Rehani, K.; Jope, R.S.; Michalek, S.M. Toll-like Receptor–Mediated Cytokine Production Is Differentially Regulated by Glycogen Synthase Kinase 3. Nat Immunol 2005, 6, 777–784. [CrossRef]
- Gui, B.; Su, M.; Chen, J.; Jin, L.; Wan, R.; Qian, Y. Neuroprotective Effects of Pretreatment with Propofol in LPS-Induced BV-2 Microglia Cells: Role of TLR4 and GSK-3β. Inflammation 2012, 35, 1632–1640. [CrossRef]
- Zhang, T.; Wang, Y.; Xia, Q.; Tu, Z.; Sun, J.; Jing, Q.; Chen, P.; Zhao, X. Propofol Mediated Protection of the Brain From Ischemia/Reperfusion Injury Through the Regulation of Microglial Connexin 43. Front. Cell Dev. Biol. 2021, 9. [CrossRef]
- Wentlandt, K.; Samoilova, M.; Carlen, P.L.; Beheiry, H.E. General Anesthetics Inhibit Gap Junction Communication in Cultured Organotypic Hippocampal Slices. Anesthesia & Analgesia 2006, 102, 1692. [CrossRef]
- Watanabe, M.; Masaki, K.; Yamasaki, R.; Kawanokuchi, J.; Takeuchi, H.; Matsushita, T.; Suzumura, A.; Kira, J. Th1 Cells Downregulate Connexin 43 Gap Junctions in Astrocytes via Microglial Activation. Sci Rep 2016, 6, 38387. [CrossRef]
- Yang, Y.; Hang, W.; Li, J.; Liu, T.; Hu, Y.; Fang, F.; Yan, D.; McQuillan, P.M.; Wang, M.; Hu, Z. Effect of General Anesthetic Agents on Microglia. Aging and disease 2024, 15, 1308–1328. [CrossRef]
- Harris, A.L. Connexin Channel Permeability to Cytoplasmic Molecules. Progress in Biophysics and Molecular Biology 2007, 94, 120–143. [CrossRef]
- Chever, O.; Lee, C.-Y.; Rouach, N. Astroglial Connexin43 Hemichannels Tune Basal Excitatory Synaptic Transmission. J Neurosci 2014, 34, 11228–11232. [CrossRef]
- Zhang, M.; Wang, Z.-Z.; Chen, N.-H. Connexin 43 Phosphorylation: Implications in Multiple Diseases. Molecules 2023, 28, 4914. [CrossRef]
- Eugenín, E.A.; Eckardt, D.; Theis, M.; Willecke, K.; Bennett, M.V.L.; Sáez, J.C. Microglia at Brain Stab Wounds Express Connexin 43 and in Vitro Form Functional Gap Junctions after Treatment with Interferon-γ and Tumor Necrosis Factor-α. Proceedings of the National Academy of Sciences of the United States of America 2001, 98, 4190–4195.
- Bruzzone, R.; White, T.W.; Paul, D.L. Connections with Connexins: The Molecular Basis of Direct Intercellular Signaling. European Journal of Biochemistry 1996, 238, 1–27. [CrossRef]
- Simon, A.M.; Goodenough, D.A. Diverse Functions of Vertebrate Gap Junctions. Trends in Cell Biology 1998, 8, 477–483. [CrossRef]
- Frantseva, M.V.; Kokarovtseva, L.; Velazquez, J.L.P. Ischemia-Induced Brain Damage Depends on Specific Gap-Junctional Coupling. J Cereb Blood Flow Metab 2002, 22, 453–462. [CrossRef]
- Lu, Y.; Gu, Y.; Ding, X.; Wang, J.; Chen, J.; Miao, C. Intracellular Ca2+ Homeostasis and JAK1/STAT3 Pathway Are Involved in the Protective Effect of Propofol on BV2 Microglia against Hypoxia-Induced Inflammation and Apoptosis. PLoS ONE 2017, 12, 1–16. [CrossRef]
- Zheng, H.; Xiao, X.; Han, Y.; Wang, P.; Zang, L.; Wang, L.; Zhao, Y.; Shi, P.; Yang, P.; Guo, C.; et al. Research Progress of Propofol in Alleviating Cerebral Ischemia/Reperfusion Injury. Pharmacol. Rep 2024. [CrossRef]
- Kim, O.S.; Park, E.J.; Joe, E.; Jou, I. JAK-STAT Signaling Mediates Gangliosides-Induced Inflammatory Responses in Brain Microglial Cells*. Journal of Biological Chemistry 2002, 277, 40594–40601. [CrossRef]
- Jia, L.; Wang, F.; Gu, X.; Weng, Y.; Sheng, M.; Wang, G.; Li, S.; Du, H.; Yu, W. Propofol Postconditioning Attenuates Hippocampus Ischemia-Reperfusion Injury via Modulating JAK2/STAT3 Pathway in Rats after Autogenous Orthotropic Liver Transplantation. Brain Research 2017, 1657, 202–207. [CrossRef]
- Igaz, P.; Tóth, S.; Falus, A. Biological and Clinical Significance of the JAK-STAT Pathway; Lessons from Knockout Mice. Inflamm. res. 2001, 50, 435–441. [CrossRef]
- Huang, C.; Ma, R.; Sun, S.; Wei, G.; Fang, Y.; Liu, R.; Li, G. JAK2-STAT3 Signaling Pathway Mediates Thrombin-Induced Proinflammatory Actions of Microglia in Vitro. Journal of Neuroimmunology 2008, 204, 118–125. [CrossRef]
- Chen, H.; Lin, W.; Zhang, Y.; Lin, L.; Chen, J.; Zeng, Y.; Zheng, M.; Zhuang, Z.; Du, H.; Chen, R.; et al. IL-10 Promotes Neurite Outgrowth and Synapse Formation in Cultured Cortical Neurons after the Oxygen-Glucose Deprivation via JAK1/STAT3 Pathway. Sci Rep 2016, 6, 30459. [CrossRef]
- Mandal, T.; Bhowmik, A.; Chatterjee, A.; Chatterjee, U.; Chatterjee, S.; Ghosh, M.K. Reduced Phosphorylation of Stat3 at Ser-727 Mediated by Casein Kinase 2 — Protein Phosphatase 2A Enhances Stat3 Tyr-705 Induced Tumorigenic Potential of Glioma Cells. Cellular Signalling 2014, 26, 1725–1734. [CrossRef]
- Breit, A.; Besik, V.; Solinski, H.J.; Muehlich, S.; Glas, E.; Yarwood, S.J.; Gudermann, T. Serine-727 Phosphorylation Activates Hypothalamic STAT-3 Independently From Tyrosine-705 Phosphorylation. Molecular Endocrinology 2015, 29, 445–459. [CrossRef]
- Zhong, Y.; Gu, L.; Ye, Y.; Zhu, H.; Pu, B.; Wang, J.; Li, Y.; Qiu, S.; Xiong, X.; Jian, Z. JAK2/STAT3 Axis Intermediates Microglia/Macrophage Polarization During Cerebral Ischemia/Reperfusion Injury. Neuroscience 2022, 496, 119–128. [CrossRef]
- Zhong, Y.; Yin, B.; Ye, Y.; Dekhel, O.Y.A.T.; Xiong, X.; Jian, Z.; Gu, L. The Bidirectional Role of the JAK2/STAT3 Signaling Pathway and Related Mechanisms in Cerebral Ischemia-Reperfusion Injury. Experimental Neurology 2021, 341, 113690. [CrossRef]
- Zheng, X.; Huang, H.; Liu, J.; Li, M.; Liu, M.; Luo, T. Propofol Attenuates Inflammatory Response in LPS-Activated Microglia by Regulating the miR-155/SOCS1 Pathway. Inflammation 2018, 41, 11–19. [CrossRef]
- Woodbury, M.E.; Freilich, R.W.; Cheng, C.J.; Asai, H.; Ikezu, S.; Boucher, J.D.; Slack, F.; Ikezu, T. miR-155 Is Essential for Inflammation-Induced Hippocampal Neurogenic Dysfunction. J Neurosci 2015, 35, 9764–9781. [CrossRef]
- Sun, X.-H.; Song, M.-F.; Song, H.-D.; Wang, Y.-W.; Luo, M.-J.; Yin, L.-M. miR-155 Mediates Inflammatory Injury of Hippocampal Neuronal Cells via the Activation of Microglia. Molecular Medicine Reports 2019, 19, 2627–2635. [CrossRef]
- Gao, Y.; Han, T.; Han, C.; Sun, H.; Yang, X.; Zhang, D.; Ni, X. Propofol Regulates the TLR4/NF-κB Pathway Through miRNA-155 to Protect Colorectal Cancer Intestinal Barrier. Inflammation 2021, 44, 2078–2090. [CrossRef]
- Androulidaki, A.; Iliopoulos, D.; Arranz, A.; Doxaki, C.; Schworer, S.; Zacharioudaki, V.; Margioris, A.N.; Tsichlis, P.N.; Tsatsanis, C. The Kinase Akt1 Controls Macrophage Response to Lipopolysaccharide by Regulating MicroRNAs. Immunity 2009, 31, 220–231. [CrossRef]
- Cardoso, A.L.; Guedes, J.R.; Pereira de Almeida, L.; Pedroso de Lima, M.C. miR-155 Modulates Microglia-Mediated Immune Response by down-Regulating SOCS-1 and Promoting Cytokine and Nitric Oxide Production. Immunology 2012, 135, 73–88. [CrossRef]
- Moore, C.S.; Rao, V.T.S.; Durafourt, B.A.; Bedell, B.J.; Ludwin, S.K.; Bar-Or, A.; Antel, J.P. miR-155 as a Multiple Sclerosis–Relevant Regulator of Myeloid Cell Polarization. Annals of Neurology 2013, 74, 709–720. [CrossRef]
- Slota, J.A.; Booth, S.A. MicroRNAs in Neuroinflammation: Implications in Disease Pathogenesis, Biomarker Discovery and Therapeutic Applications. Noncoding RNA 2019, 5, 35. [CrossRef]
- Zingale, V.D.; Gugliandolo, A.; Mazzon, E. MiR-155: An Important Regulator of Neuroinflammation. Int J Mol Sci 2021, 23, 90. [CrossRef]
- Baker, B.J.; Akhtar, L.N.; Benveniste, E.N. SOCS1 and SOCS3 in the Control of CNS Immunity. Trends in Immunology 2009, 30, 392–400. [CrossRef]
- Xiao, X.; Hou, Y.; Yu, W.; Qi, S. Propofol Ameliorates Microglia Activation by Targeting MicroRNA-221/222-IRF2 Axis. J Immunol Res 2021, 2021, 3101146. [CrossRef]
- Bai, Y.-Y.; Niu, J.-Z. miR-222 Regulates Brain Injury and Inflammation Following Intracerebral Hemorrhage by Targeting ITGB8. Molecular Medicine Reports 2020, 21, 1145–1153. [CrossRef]
- Martino, M.T.D.; Arbitrio, M.; Caracciolo, D.; Cordua, A.; Cuomo, O.; Grillone, K.; Riillo, C.; Caridà, G.; Scionti, F.; Labanca, C.; et al. miR-221/222 as Biomarkers and Targets for Therapeutic Intervention on Cancer and Other Diseases: A Systematic Review. Molecular Therapy - Nucleic Acids 2022, 27, 1191–1224. [CrossRef]
- Abak, A.; Amini, S.; Sakhinia, E.; Abhari, A. MicroRNA-221: Biogenesis, Function and Signatures in Human Cancers. European review for medical and pharmacological sciences 2018, 22, 3094–3117. [CrossRef]
- Leung, A.; Trac, C.; Jin, W.; Lanting, L.; Akbany, A.; Sætrom, P.; Schones, D.E.; Natarajan, R. Novel Long Noncoding RNAs Are Regulated by Angiotensin II in Vascular Smooth Muscle Cells. Circulation Research 2013, 113, 266–278. [CrossRef]
- Di Leva, G.; Gasparini, P.; Piovan, C.; Ngankeu, A.; Garofalo, M.; Taccioli, C.; Iorio, M.V.; Li, M.; Volinia, S.; Alder, H.; et al. MicroRNA Cluster 221-222 and Estrogen Receptor α Interactions in Breast Cancer. JNCI: Journal of the National Cancer Institute 2010, 102, 706–721. [CrossRef]
- Chistiakov, D.A.; Sobenin, I.A.; Orekhov, A.N.; Bobryshev, Y.V. Human miR-221/222 in Physiological and Atherosclerotic Vascular Remodeling. Biomed Res Int 2015, 2015, 354517. [CrossRef]
- Cruz, S.A.; Hari, A.; Qin, Z.; Couture, P.; Huang, H.; Lagace, D.C.; Stewart, A.F.R.; Chen, H.-H. Loss of IRF2BP2 in Microglia Increases Inflammation and Functional Deficits after Focal Ischemic Brain Injury. Front. Cell. Neurosci. 2017, 11. [CrossRef]
- Zhang, S.; Thomas, K.; Blanco, J.C.G.; Salkowski, C.A.; Vogel, S.N. The Role of the Interferon Regulatory Factors, IRF-1 and IRF-2, in LPS-Induced Cyclooxygenase-2 (COX-2) Expression in Vivo and in Vitro. Journal of Endotoxin Research 2002, 8, 381–390. [CrossRef]
- Chen, H.-H.; Keyhanian, K.; Zhou, X.; Vilmundarson, R.O.; Almontashiri, N.A.M.; Cruz, S.A.; Pandey, N.R.; Lerma Yap, N.; Ho, T.; Stewart, C.A.; et al. IRF2BP2 Reduces Macrophage Inflammation and Susceptibility to Atherosclerosis. Circulation Research 2015, 117, 671–683. [CrossRef]
- Peng, X.; Li, C.; Yu, W.; Liu, S.; Cong, Y.; Fan, G.; Qi, S. Propofol Attenuates Hypoxia-Induced Inflammation in BV2 Microglia by Inhibiting Oxidative Stress and NF-κB/Hif-1α Signaling. Biomed Res Int 2020, 2020, 8978704. [CrossRef]
- van Uden, P.; Kenneth, N.S.; Webster, R.; Müller, H.A.; Mudie, S.; Rocha, S. Evolutionary Conserved Regulation of HIF-1β by NF-κB. PLoS Genetics 2011, 7, 1–15. [CrossRef]
- Hayden, M.S.; Ghosh, S. NF-κB in Immunobiology. Cell Res 2011, 21, 223–244. [CrossRef]
- Perkins, N.D.; Gilmore, T.D. Good Cop, Bad Cop: The Different Faces of NF-κB. Cell Death Differ 2006, 13, 759–772. [CrossRef]
- Hayden, M.S.; Ghosh, S. Shared Principles in NF-κB Signaling. Cell 2008, 132, 344–362. [CrossRef]
- Bonizzi, G.; Karin, M. The Two NF-κB Activation Pathways and Their Role in Innate and Adaptive Immunity. Trends in Immunology 2004, 25, 280–288. [CrossRef]
- Liu, R.; Liao, X.-Y.; Pan, M.-X.; Tang, J.-C.; Chen, S.-F.; Zhang, Y.; Lu, P.-X.; Lu, L.J.; Zou, Y.-Y.; Qin, X.-P.; et al. Glycine Exhibits Neuroprotective Effects in Ischemic Stroke in Rats through the Inhibition of M1 Microglial Polarization via the NF-κB P65/Hif-1α Signaling Pathway. The Journal of Immunology 2019, 202, 1704–1714. [CrossRef]
- Azoitei, N.; Becher, A.; Steinestel, K.; Rouhi, A.; Diepold, K.; Genze, F.; Simmet, T.; Seufferlein, T. PKM2 Promotes Tumor Angiogenesis by Regulating HIF-1α through NF-κB Activation. Mol Cancer 2016, 15, 3. [CrossRef]
- Semenza, G.L. Oxygen Sensing, Homeostasis, and Disease. New England Journal of Medicine 2011, 365, 537–547. [CrossRef]
- Walmsley, S.R.; Chilvers, E.R.; Thompson, A.A.; Vaughan, K.; Marriott, H.M.; Parker, L.C.; Shaw, G.; Parmar, S.; Schneider, M.; Sabroe, I.; et al. Prolyl Hydroxylase 3 (PHD3) Is Essential for Hypoxic Regulation of Neutrophilic Inflammation in Humans and Mice. J Clin Invest 2011, 121, 1053–1063. [CrossRef]
- Palazon, A.; Goldrath, A.W.; Nizet, V.; Johnson, R.S. HIF Transcription Factors, Inflammation, and Immunity. Immunity 2014, 41, 518–528. [CrossRef]
- Bonello, S.; Zähringer, C.; BelAiba, R.S.; Djordjevic, T.; Hess, J.; Michiels, C.; Kietzmann, T.; Görlach, A. Reactive Oxygen Species Activate the HIF-1α Promoter Via a Functional NFκB Site. Arteriosclerosis, Thrombosis, and Vascular Biology 2007, 27, 755–761. [CrossRef]
- Rius, J.; Guma, M.; Schachtrup, C.; Akassoglou, K.; Zinkernagel, A.S.; Nizet, V.; Johnson, R.S.; Haddad, G.G.; Karin, M. NF-κB Links Innate Immunity to the Hypoxic Response through Transcriptional Regulation of HIF-1α. Nature 2008, 453, 807–811. [CrossRef]
- Liu, J.; Li, Y.; Xia, X.; Yang, X.; Zhao, R.; Peer, J.; Wang, H.; Tong, Z.; Gao, F.; Lin, H.; et al. Propofol Reduces Microglia Activation and Neurotoxicity through Inhibition of Extracellular Vesicle Release. Journal of Neuroimmunology 2019, 333, 476962. [CrossRef]
- Frühbeis, C.; Fröhlich, D.; Kuo, W.P.; Krämer-Albers, E.-M. Extracellular Vesicles as Mediators of Neuron-Glia Communication. Front Cell Neurosci 2013, 7, 182. [CrossRef]
- Mathivanan, S.; Ji, H.; Simpson, R.J. Exosomes: Extracellular Organelles Important in Intercellular Communication. Journal of Proteomics 2010, 73, 1907–1920. [CrossRef]
- Joshi, P.; Turola, E.; Ruiz, A.; Bergami, A.; Libera, D.D.; Benussi, L.; Giussani, P.; Magnani, G.; Comi, G.; Legname, G.; et al. Microglia Convert Aggregated Amyloid-β into Neurotoxic Forms through the Shedding of Microvesicles. Cell Death Differ 2014, 21, 582–593. [CrossRef]
- Bianco, F.; Pravettoni, E.; Colombo, A.; Schenk, U.; Möller, T.; Matteoli, M.; Verderio, C. Astrocyte-Derived ATP Induces Vesicle Shedding and IL-1β Release from Microglia1. The Journal of Immunology 2005, 174, 7268–7277. [CrossRef]
- Wang, K.; Ye, L.; Lu, H.; Chen, H.; Zhang, Y.; Huang, Y.; Zheng, J.C. TNF-α Promotes Extracellular Vesicle Release in Mouse Astrocytes through Glutaminase. J Neuroinflammation 2017, 14, 87. [CrossRef]
- Votyakova, T.V.; Reynolds, I.J. ΔΨm-Dependent and -Independent Production of Reactive Oxygen Species by Rat Brain Mitochondria. Journal of Neurochemistry 2001, 79, 266–277. [CrossRef]
- Chinnery, P.F.; Schon, E.A. Mitochondria. Journal of Neurology, Neurosurgery & Psychiatry 2003, 74, 1188–1199. [CrossRef]
- Chouchani, E.T.; Pell, V.R.; James, A.M.; Work, L.M.; Saeb-Parsy, K.; Frezza, C.; Krieg, T.; Murphy, M.P. A Unifying Mechanism for Mitochondrial Superoxide Production during Ischemia-Reperfusion Injury. Cell Metabolism 2016, 23, 254–263. [CrossRef]
- Eltzschig, H.K.; Eckle, T. Ischemia and Reperfusion—from Mechanism to Translation. Nat Med 2011, 17, 1391–1401. [CrossRef]
- Suliman, H.B.; Piantadosi, C.A. Mitochondrial Quality Control as a Therapeutic Target. Pharmacol Rev 2016, 68, 20–48. [CrossRef]
- Yu, W.; Gao, D.; Jin, W.; Liu, S.; Qi, S. Propofol Prevents Oxidative Stress by Decreasing the Ischemic Accumulation of Succinate in Focal Cerebral Ischemia–Reperfusion Injury. Neurochem Res 2018, 43, 420–429. [CrossRef]
- Kang, J.; Park, E.J.; Jou, I.; Kim, J.-H.; Joe, E. Reactive Oxygen Species Mediate Aβ(25-35)-Induced Activation of BV-2 Microglia. NeuroReport 2001, 12, 1449.
- Korvers, L.; de Andrade Costa, A.; Mersch, M.; Matyash, V.; Kettenmann, H.; Semtner, M. Spontaneous Ca2+ Transients in Mouse Microglia. Cell Calcium 2016, 60, 396–406. [CrossRef]
- Sharma, P.; Ping, L. Calcium Ion Influx in Microglial Cells: Physiological and Therapeutic Significance. Journal of Neuroscience Research 2014, 92, 409–423. [CrossRef]
- Hoffmann, A.; Kann, O.; Ohlemeyer, C.; Hanisch, U.-K.; Kettenmann, H. Elevation of Basal Intracellular Calcium as a Central Element in the Activation of Brain Macrophages (Microglia): Suppression of Receptor-Evoked Calcium Signaling and Control of Release Function. J Neurosci 2003, 23, 4410–4419. [CrossRef]
- Färber, K.; Kettenmann, H. Functional Role of Calcium Signals for Microglial Function. Glia 2006, 54, 656–665. [CrossRef]
- Rostas, J.A.P.; Skelding, K.A. Calcium/Calmodulin-Stimulated Protein Kinase II (CaMKII): Different Functional Outcomes from Activation, Depending on the Cellular Microenvironment. Cells 2023, 12, 401. [CrossRef]
- Bell, J.R.; Vila-Petroff, M.; Delbridge, L.M.D. CaMKII-Dependent Responses to Ischemia and Reperfusion Challenges in the Heart. Front. Pharmacol. 2014, 5. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
