Submitted:
04 February 2026
Posted:
05 February 2026
You are already at the latest version
Abstract
Keywords:
I. Introduction and Related Works
II. DC and Small-Signal Models for an n-MOSFET
II.1.The Direct-Current Model
II.2. Drain Current in Linear and Saturation Regimes
II.2.1. Linear Regime
II.2.2 Saturation regime-Effect of the channel modulation
II.3. Small-Signal Model
II-3-1 Resistive Operating
II-3-2 Operation as an amplifier
III. Static and Dynamic Characteristics of an Irradiated n-MOSFET
III-1 Static Parameters

III-2 Hybrid and Dynamic Parameters
III-3 Novel Insights Compared to Existing Literature
IV. Summary and Conclusions
References
- Barnaby, H.J.; Schrimpf, R.D.; Sternberg, A.L.; Berthe, V.; Cirba, C.R.; Sci, R.L. Proton radiation response mechanisms in bipolaranalog circuits. IEEE Trans. Nucl. Sci. 2001, vol. 48, pp. 2074. [Google Scholar] [CrossRef]
- Menichelli, M.; Alpata, B.; Batliston, R.; Bizzarri, M.; Blasko, S.; Massoa, L.; Fioria, E.M.; Papia, A.; Scalieri, G. Radiation damage of electronic components to beused in a space experiment. NuclearPhysics B 2002, vol. 113, pp. 310. [Google Scholar]
- Pushppa, N.; Praveen, K.C.; Prakash, A.P.G.; Rao, Y.P.P.; AmbujTripati; Siddaich, D.R. A comparison of 48 MeV Li³⁺ ion, 100 MeV F⁸⁺ ion and Co-60 gamma irradiation effect on N-channel MOSFET. Nucl. Instr. Meth. Res. A 2010, vol. 613, pp. 280. [Google Scholar] [CrossRef]
- Anjum, A.; Vinayakprasanna, N.H.; Pradeep, T.M.; Pushpa, N.; Krishna, J.B.M.; Prakash, A.P.G. A comparison of 4 MeV Proton and Co-60 gamma irradiation induced degradation in the electricalcharacteristics of N-channel MOSFETs. Nucl. Instr. Meth. Res. B 2016, vol. 379, pp. 265. [Google Scholar] [CrossRef]
- Freeman, R.; Holmes-Siedle, A. A simple model for predicting radiation effects in MOS devices. IEEE Trans. Nucl. Sci. 1978, vol. 25, pp. 1216. [Google Scholar] [CrossRef]
- Benedetto, J.M.; Boesch, H.E.; McLean, F.B. Dose and energy dependence of interface trap formation in cobalt-60 and X-ray environments. IEEE Trans. Nucl. Sci. 1988, vol. 35, pp. 1260. [Google Scholar] [CrossRef]
- Soubra, M.; Cygler, J.; Maskay, G. Evaluation of a dual bias dual metal oxide-siliconsemiconductorfieldeffect transistor detector as radiation dosimeter. Med. Phys. 1994, vol. 21, pp. 567. [Google Scholar] [CrossRef]
- Schwank, J.R. Radiation Effects in MOS Oxides. In IEEE Trans. Nucl. Sci.; 2008. [Google Scholar]
- Zebrev, G.I. Physics-based modeling of TID induced global staticleakage. Microelectron. Reliab. 2018. [Google Scholar] [CrossRef]
- Fleetwood, D.M. Evolution of Total Ionizing Dose Effects in MOS Devices. IEEE Trans. Nucl. Sci., 2018. [Google Scholar]
- Oldham, T.R.; McLean, F.B. Total ionizing dose effects in MOS oxides and devices. IEEE Trans. Nucl. Sci. 2003, vol. 50, pp. 483. [Google Scholar] [CrossRef]
- Alvarado, J.; Kilchtska, V.; Boufouss, E.; Soto-Guz; Flandre, D. A compact model for single eventeffects in PD SOI sub-micron MOSFETs. IEEE Trans. Nucl. Sci. 2012, vol. 59, pp. 943. [Google Scholar] [CrossRef]
- Gwyn, C. Model of radiation-induced charges trapping and annealing in the oxide layer of MOS devices. J. Appl. Phys. 1969, vol. 40, pp. 4886. [Google Scholar] [CrossRef]
- Pejovic, M.M.; Jaksic, A.B. Contribution of fixed oxide traps to sensitivity of pMOSdosimetersduring gamma ray irradiation and annealing at room and elevatedtemperature. SensorsActuators A: Phys. 2012, vol. 174, pp. 85. [Google Scholar]
- Amor, S.; André, N.; Kilchytska, V.; Tounsi, F.; Mezghani, B.; Gérard, P.; Ali, Z.; Udrea, F.; Flandre, D.; Francis, L.A. In situ-Thermal Annealing of On-Membrane SOI Semiconductor-BasedDevicesAfter High Gamma Dose Irradiation. Nanotechnology 2017, vol. 28, pp. 184. [Google Scholar] [CrossRef] [PubMed]
- Amor, S.; Kilchytska, V.; Flandre, D.; Galy, P. The recovery by in situ-annealing in fully-depleted MOSFET with active silicide resistor. IEEE Electron Device Letters 2021, vol. 42, pp. 1085. [Google Scholar] [CrossRef]
- Laurent, A.F.; Amor, S.; Nicolas, A.; Valeria, K.; Pierre, G.; Zeeshan, A.; Florin, U.; Denis, F. A Lower-Power and In Situ Annealing Technique for the Recovery of Active Device After Proton Irradiation. EPJ Web of Conferences 2018, vol. 170, pp. 01006. [Google Scholar]
- Schwank, J.R. Radiation Effects in MOS Oxides. IEEE Trans. Nucl. Sci. 2008, vol. 55(no. 4), 1833–1853. [Google Scholar] [CrossRef]
- Oldham, M.; McLean, F. Total Ionizing Dose Effects in MOS Oxides and Devices. IEEE Trans. Nucl. Sci. 2003, vol. 50(no. 3), 483–499. [Google Scholar] [CrossRef]
- Lee, L.P. Dose Rate Effects on Radiation-Induced Degradation of MOS Devices. IEEE Trans. Nucl. Sci. 1997, vol. 44(no. 6), 2315–2321. [Google Scholar]
- Fleetwood, D.M. The Role of Interface States in MOS Device Radiation Response. IEEE Trans. Nucl. Sci. 2013, vol. 60(no. 3), 1706–1720. [Google Scholar] [CrossRef]
- Saks, N.S.; Ancona, M.G.; Modolo, J.A. Generation of interface states by ionizing radiation in verythin MOS oxides. IEEE Trans. Nucl. Sci. 1986, vol. 33, pp. 1185. [Google Scholar] [CrossRef]
- Gromov, V.; Annema, A.J.; Kluit, R.; Visschers, J.L.; Timmer, P. A radiation hard bandgapreference circuit in a standard 0.13 µm CMOS technology. IEEE Trans. Nucl. Sci. 2007, vol. 54, pp. 2727. [Google Scholar] [CrossRef]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).