Submitted:
13 May 2025
Posted:
14 May 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction and Related Works
2. DC and Small-Signal Models for an n-MOSFET
2.1. The Direct-Current Model
2.2. Drain Current in Linear and Saturation Regimes
2.2.1. Linear Regime
2.2.2. Saturation Regime-Effect of the Channel Modulation
2.3. Small-Signal Model
2.3.1. Resistive Operating
2.3.2. Operation as an Amplifier
- (i)
- The saturated drain-current does not depend on VDS and shows a quadratic variation versus VGS.
- (ii)
- on the other hand, the n-MOSFET behaves as an ideal current source whose intensity is:
3. Static and Dynamic Characteristics of an Irradiated n-MOSFET
3.1. Static Parameters
3.2. Hybrid and Dynamic Parameters
4. Summary and Conclusions
References
- Barnaby, H.J.; SchrimpF, R.D.; Sternberg, A.L.; Berthe, V.; Cirba, C.R.; Pease, R.L. Proton radiation response mechanisms in bipolar analog circuits. IEEE Trans. Nucl. Sci. 2001, 48, 2074. [Google Scholar] [CrossRef]
- Menichelli, M.; Alpata, B.; Batliston, R.; Bizzarri, M.; Blasko, S.; Massoa, L.; Fioria, E.M.; Papia, A.; Scalieri, G. Radiation damage of electronic components to be used in a space experiment. Nuclear Physics B 2002, 113, 310. [Google Scholar] [CrossRef]
- Pushppa, N.; Praveen, K.C.; Prakash, A.P.G.; Rao, Y.P.P.; Tripati, A.; Revannasiddaich, D. A comparison of 48 MeV Li3+ ion, 100 MeV F8+ ion and Co-60 gamma irradiation effect on N-channel MOSFET. Nucl. Instr. Meth. Res. A 2010, 613, 280. [Google Scholar] [CrossRef]
- Anjum, A.; Vinayakprasanna, N.H.; Pradeep, T.M.; Pushpa, N.; Krishna, J.B.M.; Prakash, A.P.G. A comparison of 4 MeV Proton and Co-60 gamma irradiation induced degradation in the electrical characteristics of N-channel MOSFETs. Nucl. Instr. Meth. Res. B 2016, 379, 265. [Google Scholar] [CrossRef]
- Freeman, R.; Holmes-Siedle, A. A simple model for predicting radiation effects in MOS devices. IEEE Trans. Nucl. Sci. 1978, 25, 1216. [Google Scholar] [CrossRef]
- Benedelto, J.M.; Boesch, H.E.; Mclean, F.B. Dose and energy dependence of interface trap formation in cobalt-60 and X-ray environments. IEEE Trans. Nucl. Sci. 1988, 35, 1260. [Google Scholar] [CrossRef]
- Soubra, M.; Cygler, J.; Maskay, G. Evaluation of a dual bais dual metal oxide-silicon semiconductor field effect transistor detector as radiation dosimeter. Med. Phys. 1994, 21, 567. [Google Scholar] [CrossRef] [PubMed]
- Oldham, T.R.; Mclean, F.B. Total ionizing dose effects in MOS oxides and devices. IEEE Trans. Nucl. Sci 2003, 50, 483. [Google Scholar] [CrossRef]
- Alvarado, J.; Kilchtska, V.; Boufouss, E.; Soto-Guz; Flandre, D. A compact model for single event effects in PD SOI sub-micron MOSFETs. IEEE Trans. Nucl. Sci. 2012, 59, 943. [Google Scholar] [CrossRef]
- Gwyn, C. Model of radiation-induced charges trapping and annealing in the oxide layer of MOS devices. Journal of Applied Physics 1969, 40, 4886. [Google Scholar] [CrossRef]
- Pejovic, M.M.; Jaksic, A.B. Contribution of fixed oxide traps to sensitivity of pMOS dosimeters during gamma ray irradiation and annealing at room and elevated temperature. Sensors and Actuators A: Physical 2012, 174, 85. [Google Scholar] [CrossRef]
- Amor, S.; André, N.; Kilchytska, V.; Tounsi, F.; Mezghani, B.; Gérard, P.; Ali, Z.; Udrea, F.; Flandre, D.; Francis, L.A. In situ-Thermal Annealing of On-Membrane SOI Semiconducteur-Based Devices After High Gamma Dose irradiation. Nanotechnology 2017, 28, 184. [Google Scholar] [CrossRef] [PubMed]
- Amor, S.; Kilchytska, V.; Flanfre, D.; Galy, P. The recovery by in situ-annealing in fully-delepted MOSFET with active silicide resistor. IEEE Electron Device Letters 2021, 42, 1085. [Google Scholar] [CrossRef]
- Laurent, A.F.; Amor, S.; Nicolas, A.; Valeria, K.; Pierre, G.; Zeeshan, A.; Florin, U.; Denis, F. A Lower –Power and In Situ Annealing Technique for the recovery of Active Devices After Proton Irradiation. EPJ Web of Conferences 2018, 170, 01006. [Google Scholar]
- Saks, N.S.; Ancona, M.G.; Modolo, J.A. Generation of interface states by ionizing radiation in very thin MOS oxides. IEEE Trans. Nucl. Sci. 1986, 33, 1185. [Google Scholar] [CrossRef]
- Gromov, V.; Annema, A.J.; Kluit, R.; Visschers, J.L.; Timmer, P. Aradiation hard bandgap referece circuit in a standard 0.13µm CMOS Technology. IEEE Trans. Nucl. Sci. 2007, 54, 2727. [Google Scholar] [CrossRef]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).