Submitted:
05 May 2025
Posted:
07 May 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Context for Our Work
1.2. Cosmic Data That We Try to Explain
-
0+:1 – Amounts of stuff in some individual galaxies.
- –
- –
- Redshifts of approximately six [25].
- –
- 5+:1 – Densities of the universe [41].
1.3. A Summary of Unexplained Cosmic Data and a Preview of Our Methods
- Our work comports with successful popular modeling, reuses aspects of successful popular modeling, extends present popular modeling, and enables capturing physics opportunities that present popular modeling seems not to capture.
- Our notions of basing a specification for dark matter on isomers and of using multipole expansions to help explain repelling aspects of gravity preceded [57] the availability of enough data to help us adequately hone our work or to suggest that data might lend enough credibility to our approach.
- There now is enough data to suggest that our work provides a credible candidate basis for extending aspects of cosmology that associate with the popular modeling terms dark matter and dark energy.
- Our work suggests observations that people might want to make to verify or refute aspects of present popular modeling and to verify or refute aspects of our work.
2. Methods
2.1. Suggestions That Underlie Our Work
2.2. Suggested Similarities and Differences Between Isomers of Elementary Particles
2.3. SPRISENG - A Suggested Extension of Newtonian Gravity
- In Newtonian physics, the values of intrinsic properties (such as mass and charge) of an object-A are invariant to special-relativistic notions of the motion of object-A with respect to an observer of object-A (or with respect to a reference frame) and are invariant to special-relativistic notions of the relative motion of object-A with respect to an object-P.
- In special relativity, the values of an intrinsic property of an object-A can vary, based on a choice of an observer or a frame of reference. Here, one can consider that object-P is an observer. The magnitudes of the variations, away from values that associate with a frame of reference in which object-A is at rest, can associate with a nonzero velocity and with nonzero values for the object-A intrinsic-property current that associates with an intrinsic property of object-A.
2.4. Instances of Properties of Objects, Plus Reaches per Instance of Contributions to Fields
2.5. Cosmic Clumping of Stuff
2.6. Single-Object Properties and Regional Properties
3. Results
3.1. Dark-Matter Elementary Particles and Dark-Matter Stuff
3.2. Hyperfine Depletion of Cosmic Microwave Background Radiation
3.3. Galaxy Formation and Galaxy Evolution
3.4. The Pluses in 5+:1 Ratios of Dark-Matter Effects to Ordinary-Matter Effects
3.5. Collisions of Galaxy Clusters
3.6. Eras in the Rate of Expansion of the Universe
3.7. The Hubble Tension
3.8. The S8 Tension
4. Discussion
4.1. Parallels Between Gravitational Dynamics and Electromagnetic Dynamics
4.2. General Relativity
4.3. Our Work and the Term ΛCDM
4.4. Our Work and the Standard Cosmological Model
4.5. Suggestions for Observational Work
4.6. Suggestions for Enhancing Popular Modeling
5. Conclusions
Acknowledgments
Declarations
References
- Philip Bull, Yashar Akrami, Julian Adamek, Tessa Baker, Emilio Bellini, et al. Beyond ΛCDM: Problems, solutions, and the road ahead. Physics of the Dark Universe, 12:56–99, June 2016. [CrossRef]
- Eleonora Di Valentino. Challenges of the Standard Cosmological Model. Universe, 8(8), August 2022. [CrossRef]
- James Binney, Roya Mohayaee, John Peacock, and Subir Sarkar. Manifesto: challenging the standard cosmological model. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 383(2290), February 2025. [CrossRef]
- Fritz Zwicky. The Redshift of extragalactic Nebulae. Helvetica Physica Acta, (6):110–127, 1933. Link: https://ned.ipac.caltech.edu/level5/March17/Zwicky/translation.pdf.
- F. Zwicky. On the Masses of Nebulae and of Clusters of Nebulae. The Astrophysical Journal, 86(86):217, October 1937. [CrossRef]
- Katherine Garrett and Gintaras Duda. Dark Matter: A Primer. Advances in Astronomy, 2011:1–22, 2011. [CrossRef]
- A. Arbey and F. Mahmoudi. Dark matter and the early Universe: A review. Progress in Particle and Nuclear Physics, 119:103865, July 2021. [CrossRef]
- Georges Lemaitre. Un Univers homogene de masse constante et de rayon croissant rendant compte de la vitesse radiale des nebuleuses extra-galactiques. Annales de la Societe Scientifique de Bruxelles, 47:49–56, April 1927. Link: https://archives.uclouvain.be/ark.
- Edwin Hubble. A relation between distance and radial velocity among extra-galactic nebulae. Proceedings of the National Academy of Sciences, 15(3):168–173, March 1929. [CrossRef]
- Daniel Scolnic, Adam G. Riess, Yukei S. Murakami, Erik R. Peterson, Dillon Brout, et al. The Hubble Tension in Our Own Backyard: DESI and the Nearness of the Coma Cluster. The Astrophysical Journal Letters, 979(1):L9, January 2025. [CrossRef]
- Judd D. Bowman, Alan E. E. Rogers, Raul A. Monsalve, Thomas J. Mozdzen, and Nivedita Mahesh. An absorption profile centred at 78 megahertz in the sky-averaged spectrum. Nature, 555(7694):67–70, March 2018. [CrossRef]
- Rennan Barkana. Possible interaction between baryons and dark-matter particles revealed by the first stars. Nature, 555(7694):71–74, March 2018. [CrossRef]
- Paolo Panci. 21-cm line Anomaly: A brief Status. In 33rd Rencontres de Physique de La Vallee d’Aoste, July 2019. URL: https://cds.cern.ch/record/2688533.
- Joshua D. Simon and Marla Geha. Illuminating the darkest galaxies. Physics Today, 74(11):30–36, November 2021. [CrossRef]
- Charles Day. A primordial merger of galactic building blocks. Physics Today, 2021(1):0614a, June 2021. [CrossRef]
- Yuta Tarumi, Naoki Yoshida, and Anna Frebel. Formation of an Extended Stellar Halo around an Ultra-faint Dwarf Galaxy Following One of the Earliest Mergers from Galactic Building Blocks. The Astrophysical Journal Letters, 914(1):L10, June 2021. [CrossRef]
- Elena Asencio, Indranil Banik, Steffen Mieske, Aku Venhola, Pavel Kroupa, and Hongsheng Zhao. The distribution and morphologies of Fornax Cluster dwarf galaxies suggest they lack dark matter. Mon Not R Astron Soc, June 2022. [CrossRef]
- Massimo Meneghetti, Guido Davoli, Pietro Bergamini, Piero Rosati, Priyamvada Natarajan, Carlo Giocoli, Gabriel B. Caminha, R. Benton Metcalf, Elena Rasia, Stefano Borgani, et al. An excess of small-scale gravitational lenses observed in galaxy clusters. Science, 369(6509):1347–1351, September 2020. [CrossRef]
- Joshua D. Simon and Marla Geha. The Kinematics of the Ultra-faint Milky Way Satellites: Solving the Missing Satellite Problem. Astrophys. J., 670(1):313–331, November 2007. [CrossRef]
- Shannon Hall. Ghost galaxy is 99.99 per cent dark matter with almost no stars. New Scientist, August 2016. URL: https://www.newscientist.com/article/2102584-ghost-galaxy-is-99-99-per-cent-dark-matter-with-almost-no-stars/.
- Pieter van Dokkum, Roberto Abraham, Jean Brodie, Charlie Conroy, Shany Danieli, Allison Merritt, Lamiya Mowla, Aaron Romanowsky, and Jielai Zhang. A High Stellar Velocity Dispersion and 100 Globular Clusters for the Ultra-diffuse Galaxy Dragonfly 44. Astrophysical Journal, 828(1):L6, August 2016. [CrossRef]
- Kristi A Webb, Alexa Villaume, Seppo Laine, Aaron J Romanowsky, Michael Balogh, Pieter van Dokkum, Duncan A Forbes, Jean Brodie, et al. Still at odds with conventional galaxy evolution: the star formation history of ultradiffuse galaxy Dragonfly 44. Monthly Notices of the Royal Astronomical Society, 516(3):3318–3341, August 2022. [CrossRef]
- Peter Behroozi, Risa Wechsler, Andrew Hearin, and Charlie Conroy. UniverseMachine: The correlation between galaxy growth and dark matter halo assembly from z = 0-10. Monthly Notices of The Royal Astronomical Society, 488(3):3143–3194, May 2019. [CrossRef]
- R. Genzel, N. M. Forster Schreiber, H. Ubler, P. Lang, T. Naab, R. Bender, L. J. Tacconi, E. Wisnioski, S. Wuyts, T. Alexander, et al. Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago. Nature, 543(7645):397–401, March 2017. [CrossRef]
- R. Herrera-Camus, N. M. Forster Schreiber, S. H. Price, H. Ubler, A. D. Bolatto, R. L. Davies, D. Fisher, R. Genzel, D. Lutz, T. Naab, et al. Kiloparsec view of a typical star-forming galaxy when the Universe was ∼1 Gyr old. Astronomy and Astrophysics, 665:L8, September 2022. [CrossRef]
- Pavel E. Mancera Pina, Filippo Fraternali, Elizabeth A. K. Adams, Antonino Marasco, Tom Oosterloo, Kyle A. Oman, Lukas Leisman, Enrico M. di Teodoro, Lorenzo Posti, Michael Battipaglia, et al. Off the Baryonic Tully-Fisher Relation: A Population of Baryon-dominated Ultra-diffuse Galaxies. Astrophysical Journal, 883(2):L33, September 2019. [CrossRef]
- Pavel E. Mancera Pina, Filippo Fraternali, Tom Oosterloo, Elizabeth A. K. Adams, Kyle A. Oman, and Lukas Leisman. No need for dark matter: resolved kinematics of the ultra-diffuse galaxy AGC 114905. Mon. Not. R. Astron Soc., December 2021. [CrossRef]
- Qi Guo, Huijie Hu, Zheng Zheng, Shihong Liao, Wei Du, Shude Mao, Linhua Jiang, Jing Wang, Yingjie Peng, Liang Gao, et al. Further evidence for a population of dark-matter-deficient dwarf galaxies. Nature Astronomy, 4(3):246–251, November 2019. [CrossRef]
- Pieter van Dokkum, Shany Danieli, Roberto Abraham, Charlie Conroy, and Aaron J. Romanowsky. A Second Galaxy Missing Dark Matter in the NGC 1052 Group. Astrophysical Journal, 874(1):L5, March 2019. [CrossRef]
- Sebastien Comeron, Ignacio Trujillo, Michele Cappellari, Fernando Buitrago, Luis E. Garduno, Javier Zaragoza-Cardiel, Igor A. Zinchenko, Maritza A. Lara-Lopez, Anna Ferre-Mateu, and Sami Dib. The massive relic galaxy NGC 1277 is dark matter deficient. From dynamical models of integral-field stellar kinematics out to five effective radii, March 2023. [CrossRef]
- Pieter van Dokkum, Zili Shen, Michael A. Keim, Sebastian Trujillo-Gomez, Shany Danieli, Dhruba Dutta Chowdhury, Roberto Abraham, Charlie Conroy, J. M. Diederik Kruijssen, et al. A trail of dark-matter-free galaxies from a bullet-dwarf collision. Nature, 605(7910):435–439, May 2022. [CrossRef]
- Aaron J. Romanowsky, Enrique Cabrera, and Steven R. Janssens. A Candidate Dark Matter Deficient Dwarf Galaxy in the Fornax Cluster Identified through Overluminous Star Clusters. Research Notes of the AAS, 8(8):202, August 2024. [CrossRef]
- Maria Luisa Buzzo, Duncan A. Forbes, Aaron J. Romanowsky, Lydia Haacke, Jonah S. Gannon, et al. A new class of dark matter-free dwarf galaxies? I. Clues from FCC 224, NGC 1052-DF2 and NGC 1052-DF4. Preprint, 2025. [CrossRef]
- J. Jimenez-Vicente, E. Mediavilla, C. S. Kochanek, and J. A. Munoz. Dark Matter Mass Fraction in Lens Galaxies: New Estimates from Microlensing. Astrophysical Journal, 799(2):149, January 2015. [CrossRef]
- J. Jimenez-Vicente, E. Mediavilla, J. A. Munoz, and C. S. Kochanek. A Robust Determination of the Size of Quasar Accretion Disks Using Gravitational Microlensing. Astrophysical Journal, 751(2):106, May 2012. [CrossRef]
- Man Ho Chan. Two mysterious universal dark matter–baryon relations in galaxies and galaxy clusters. Physics of the Dark Universe, 38:101142, December 2022. [CrossRef]
- Ewa L. Lokas and Gary A. Mamon. Dark matter distribution in the Coma cluster from galaxy kinematics: breaking the mass-anisotropy degeneracy. Monthly Notices of The Royal Astronomical Society, 343(2):401–412, August 2003. [CrossRef]
- Elena Rasia, Giuseppe Tormen, and Lauro Moscardini. A dynamical model for the distribution of dark matter and gas in galaxy clusters. Monthly Notices of The Royal Astronomical Society, 351(1):237–252, June 2004. [CrossRef]
- Lawrence Rudnick. The Stormy Life of Galaxy Clusters: astro version. Preprint, January 2019. [CrossRef]
- Lawrence Rudnick. The stormy life of galaxy clusters. Physics Today, January 2019. [CrossRef]
- R. L. Workman and Others. Review of Particle Physics. PTEP, 2022:083C01, 2022. [CrossRef]
- N. G. Busca, T. Delubac, J. Rich, S. Bailey, A. Font-Ribera, D. Kirkby, J.-M. Le Goff, M. M. Pieri, A. Slosar, E. Aubourg, et al. Baryon acoustic oscillations in the Lya forest of BOSS quasars. Astronomy and Astrophysics, 552(A96), April 2013. [CrossRef]
- S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, Groom, et al. Measurements of Ω and Λ from 42 high-redshift supernovae Ω. Astrophysical Journal, 517(2):565–586, June 1999. [CrossRef]
- Adam G. Riess, Alexei V. Filippenko, Peter Challis, Alejandro Clocchiatti, Alan Diercks, Peter M. Garnavich, Ron L. Gilliland, Craig J. Hogan, Saurabh Jha, Robert P. Kirshner, et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astronomical Journal, 116(3):1009–1038, September 1998. [CrossRef]
- Adam G. Riess, Louis-Gregory Strolger, John Tonry, Stefano Casertano, Henry C. Ferguson, Bahram Mobasher, Peter Challis, Alexei V. Filippenko, Saurabh Jha, Weidong Li, et al. Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution. Astrophysical Journal, 607(2):665–687, June 2004. [CrossRef]
- Eleonora Di Valentino, Olga Mena, Supriya Pan, Luca Visinelli, Weiqiang Yang, et al. In the realm of the Hubble tension - a review of solutions. Classical and Quantum Gravity, 38(15):153001, July 2021. [CrossRef]
- DESI Collaboration, K. Lodha, R. Calderon, W. L. Matthewson, A. Shafieloo, M. Ishak, et al. Extended Dark Energy analysis using DESI DR2 BAO measurements, 2025. [CrossRef]
- DES Collaboration, T. M. C. Abbott, M. Acevedo, M. Adamow, M. Aguena, et al. Dark Energy Survey: implications for cosmological expansion models from the final DES Baryon Acoustic Oscillation and Supernova data, 2025. [CrossRef]
- Christopher Wanjek. Dark Matter Appears to be a Smooth Operator. Mercury, 49(3):10–11, October 2020. URL: https://astrosociety.org/news-publications/mercury-online/mercury-online.html/article/2020/12/10/dark-matter-appears-to-be-a-smooth-operator.
- Charlie Wood. A New Cosmic Tension: The Universe Might Be Too Thin. Quanta Magazine, September 2020. URL: https://www.quantamagazine.org/a-new-cosmic-tension-the-universe-might-be-too-thin-20200908/.
- Maria Temming. Dark matter clumps in galaxy clusters bend light surprisingly well. Science News, September 2020. URL: https://www.sciencenews.org/article/dark-matter-clumps-galaxy-clusters-bend-light-surprisingly-well.
- Khaled Said, Matthew Colless, Christina Magoulas, John R. Lucey, and Michael J. Hudson. Joint analysis of 6dFGS and SDSS peculiar velocities for the growth rate of cosmic structure and tests of gravity. Monthly Notices of The Royal Astronomical Society, 497(1):1275–1293, July 2020. [CrossRef]
- Supranta S. Boruah, Michael J. Hudson, and Guilhem Lavaux. Cosmic flows in the nearby Universe: new peculiar velocities from SNe and cosmological constraints. Monthly Notices of The Royal Astronomical Society, August 2020. [CrossRef]
- Kyu-Hyun Chae, Federico Lelli, Harry Desmond, Stacy S. McGaugh, Pengfei Li, and James M. Schombert. Testing the Strong Equivalence Principle: Detection of the External Field Effect in Rotationally Supported Galaxies. The Astrophysical Journal, 904(1):51, November 2020. [CrossRef]
- Eleonora Di Valentino, Luis A. Anchordoqui, Ozgur Akarsu, Yacine Ali-Haimoud, Luca Amendola, et al. Cosmology intertwined III: fσ8 and S8. Astroparticle Physics, 131:102604, September 2021. [CrossRef]
- Ryo Terasawa, Xiangchong Li, Masahiro Takada, Takahiro Nishimichi, Satoshi Tanaka, et al. Exploring the baryonic effect signature in the Hyper Suprime-Cam Year 3 cosmic shear two-point correlations on small scales: The S8 tension remains present. Physical Review D, 111(6):063509, March 2025. [CrossRef]
- Thomas J. Buckholtz. Models for Physics of the Very Small and Very Large, volume 14 of Atlantis Studies in Mathematics for Engineering and Science. Springer, 2016. Series editor: Charles K. Chui. [CrossRef]
- S. Bilenky. Neutrino oscillations: from an historical perspective to the present status. Journal of Physics: Conference Series, 718:062005, May 2016. [CrossRef]
- Sudhakantha Girmohanta and Robert Shrock. Fitting a self-interacting dark matter model to data ranging from satellite galaxies to galaxy clusters. Physical Review D, 107(6):063006, March 2023. [CrossRef]
- Xingyu Zhang, Hai-Bo Yu, Daneng Yang, and Haipeng An. Self-interacting Dark Matter Interpretation of Crater II. The Astrophysical Journal Letters, 968(1):L13, June 2024. [CrossRef]
- D. Cross, G. Thoron, T. E. Jeltema, A. Swart, D. L. Hollowood, et al. Examining the self-interaction of dark matter through central cluster galaxy offsets. Monthly Notices of the Royal Astronomical Society, 529(1):52–58, February 2024. [CrossRef]
- David N. Spergel and Paul J. Steinhardt. Observational Evidence for Self-Interacting Cold Dark Matter. Physical Review Letters, 84(17):3760–3763, April 2000. [CrossRef]
- Daneng Yang, Ethan O. Nadler, and Hai-Bo Yu. Testing the parametric model for self-interacting dark matter using matched halos in cosmological simulations. Physics of the Dark Universe, 47:101807, February 2025. [CrossRef]
- Gonzalo Alonso-Alvarez, James M. Cline, and Caitlyn Dewar. Self-Interacting Dark Matter Solves the Final Parsec Problem of Supermassive Black Hole Mergers. Physical Review Letters, 133(2):021401, July 2024. [CrossRef]
- Xingyu Zhang, Hai-Bo Yu, Daneng Yang, and Ethan O. Nadler. The GD-1 Stellar Stream Perturber as a Core-collapsed Self-interacting Dark Matter Halo. The Astrophysical Journal Letters, 978(2):L23, January 2025. [CrossRef]
- Manuel A. Buen-Abad, Zackaria Chacko, Ina Flood, Can Kilic, et al. Atomic Dark Matter, Interacting Dark Radiation, and the Hubble Tension. 2024. [CrossRef]
- Isaac Newton. Philosophiae Naturalis Principia Mathematica. 1687. [CrossRef]
- M. Markevitch, A. H. Gonzalez, D. Clowe, A. Vikhlinin, W. Forman, C. Jones, S. Murray, and W. Tucker. Direct Constraints on the Dark Matter Self-Interaction Cross Section from the Merging Galaxy Cluster 1E 0657-56. Astrophysical Journal, 606(2):819–824, May 2004. [CrossRef]
- Emily M. Silich, Elena Bellomi, Jack Sayers, John ZuHone, Urmila Chadayammuri, et al. ICM-SHOX. I. Methodology Overview and Discovery of a Gas-Dark Matter Velocity Decoupling in the MACS J0018.5+1626 Merger. The Astrophysical Journal, 968(2):74, June 2024. [CrossRef]
- Alan H. Guth. Inflationary universe: A possible solution to the horizon and flatness problems. Physical Review D, 23(2):347–356, January 1981. [CrossRef]
- Martin Bucher, Alfred S. Goldhaber, and Neil Turok. Open universe from inflation. Phys. Rev. D, 52:3314–3337, September 1995. [CrossRef]
- Tao Zhu, Anzhong Wang, Gerald Cleaver, Klaus Kirsten, and Qin Sheng. Pre-inflationary universe in loop quantum cosmology. Phys. Rev. D, 96:083520, October 2017. [CrossRef]
- Brian Green. Until the End of Time: Mind, Matter, and Our Search for Meaning in an Evolving Universe. Alfred A. Knopf, February 2020. Link: https://www.penguinrandomhouse.com/books/549600/until-the-end-of-time-by-brian-greene/.
- Mark P. Hertzberg. Structure Formation in the Very Early Universe. Physics Magazine, 13(26), February 2020. [CrossRef]
- Robert Brandenberger and Patrick Peter. Bouncing Cosmologies: Progress and Problems. Foundations of Physics, 47(6):797–850, February 2017. [CrossRef]
- Georgios Minas, Emmanuel Saridakis, Panayiotis Stavrinos, and Alkiviadis Triantafyllopoulos. Bounce Cosmology in Generalized Modified Gravities. Universe, 5(3):74, March 2019. [CrossRef]
- Bartjan van Tent, Paola Delgado, and Ruth Durrer. Constraining the Bispectrum from Bouncing Cosmologies with Planck. Physical Review Letters, 130(19):191002, May 2023. [CrossRef]
- Kelvin K. S. Wu, Ofer Lahav, and Martin J. Rees. The large-scale smoothness of the Universe. Nature, 397(6716):225–230, January 1999. [CrossRef]
- J. R. L. Santos, P. H. R. S. Moraes, D. A. Ferreira, and D. C. Vilar Neta. Building analytical three-field cosmological models. The European Physical Journal C, 78(2), February 2018. [CrossRef]
- O Heaviside. A gravitational and electromagnetic analogy the electrician, 31 281-2 (1893). Reproduced in (1.) O. Heaviside, Electromagnetic Theory, 1:455–465.
- O. Heaviside. Electromagnetic Theory. Number v. 1 in AMS Chelsea Publishing Series. American Mathematical Society, 2003. ISBN: 9780821835579.
- Jairzinho Ramos Medina. Gravitoelectromagnetism (GEM): A Group Theoretical Approach. PhD thesis, Drexel University, August 2006. Link: https://core.ac.uk/download/pdf/190333514.pdf.
- Giorgio Papini. Some Classical and Quantum Aspects of Gravitoelectromagnetism. Entropy, 22(10):1089, September 2020. [CrossRef]
- Alexander L. Kholmetskii, Oleg V. Missevitch, and Tolga Yarman. RELATIVISTIC TRANSFORMATION OF MAGNETIC DIPOLE MOMENT. Progress In Electromagnetics Research B, 47:263–278, 2013. [CrossRef]
- Clifford M. Will. The confrontation between general relativity and experiment. Living Reviews in Relativity, 17(1), June 2014. [CrossRef]
| Phenomena | Explanation | Isomers | SPRISENG |
| Dark-matter elementary particles | Quantitative | x | |
| Dark-matter stuff | Quantitative | x | |
| DM:OM regarding some depletion of CMB | Quantitative | x | |
| Galaxy evolution and DM:OM regarding some galaxies | Quantitative | x | x |
| DM:OM regarding some galaxy clusters | Quantitative | x | |
| DM:OM densities of the universe | Quantitative | x | |
| Dark-energy gravitational phenomena | Qualitative | x | x |
| Eras in the rate of expansion of the universe | Qualitative | x | x |
| Hubble tension | Qualitative | x | x |
| S8 tension | Qualitative | x | x |
| Handedness | Flavours - quarks | Flavours - leptons | Stuff | PMN | ||
| 0 | 0 | Left | 1, 2, 3 | 1, 2, 3 | OM (SEA) | OM |
| 1 | 1 | Right | 1, 2, 3 | 3, 1, 2 | DM (MEA) | CDM |
| 2 | 2 | Left | 1, 2, 3 | 2, 3, 1 | DM (MEA) | CDM |
| 3 | 0 | Right | 1, 2, 3 | 1, 2, 3 | DM (SEA) | SIDM |
| 4 | 1 | Left | 1, 2, 3 | 3, 1, 2 | DM (MEA) | CDM |
| 5 | 2 | Right | 1, 2, 3 | 2, 3, 1 | DM (MEA) | CDM |
| One-body intrinsic property | Potential | Notes re potential | EM analog | ||
| Mass | 1 | 1 | Monopole | Zero-tensor | Charge |
| Angular momentum | 2 | 2 | Dipole | One-tensor | Magnetic moment |
| Moments of inertia | 3 | 3 | Quadrupole | Two-tensor | NNR |
| Moments-of-inertia rotation | 4 | 4 | Octupole | Three-tensor | NNR |
| NNR | 5 | 5 | Hexadecapole | Four-tensor | NNR |
| Object-A property | Object-P property | Force | RSD | Type | |
| Mass | 1 | Mass | Pull | Monopole | |
| Mass current | 2 | Mass | Push | Monopole | |
| Angular momentum | 2 | Mass | Push | Dipole | |
| Angular-momentum current | 3 | Mass | Pull | Dipole | |
| Moments of inertia | 3 | Mass | Pull | Quadrupole | |
| Moments-of-inertia current | 4 | Mass | Push | Quadrupole | |
| Moments-of-inertia rotation | 4 | Mass | Push | Octupole | |
| Moments-of-inertia-rotation current | 5 | Mass | Pull | Octupole | |
| Mass | 1 | Angular momentum | Push | Dipole | |
| Mass current | 2 | Angular momentum | Pull | Dipole | |
| Angular momentum | 2 | Angular momentum | Pull | Quadrupole | |
| Angular-momentum current | 3 | Angular momentum | Push | Quadrupole | |
| Moments of inertia | 3 | Angular momentum | Push | Octupole | |
| Moments-of-inertia current | 4 | Angular momentum | Pull | Octupole | |
| Moments-of-inertia rotation | 4 | Angular momentum | Pull | Hexadecapole |
| Type of property | Intrinsic property | Instances | Reach/instance | G2BF | |
| Gravitational | 1 | Mass | 1 | 6 | Pull |
| Gravitational | 2 | Internal angular momentum | 3 | 2 | Push |
| Gravitational | 3 | Moments of inertia | 6 | 1 | Pull |
| Gravitational | 4 | Rotating moments-of-inertia | TBD | TBD | Push |
| Electromagnetic | 1 | Charge | 6 | 1 | NR |
| Electromagnetic | 2 | Blackbody temperature | 6 | 1 | NR |
| Electromagnetic | 2 | Magnetic moment | TBD (6) | TBD (1) | NR |
| Electromagnetic | TBD | Hyperfine state | TBD (3 or 1) | TBD (2 or 6) | NR |
| SPRISENG properties (of objects) | General-relativistic properties (of regions) |
| Energy | Energy density |
| Energy minus rest mass | Pressure |
| Momentum | Momentum density and energy flux |
| Momentum minus mass-current | Momentum flux and shear stress |
| Phenomena | Explanation |
| Before inflation | Hexadecapole pull |
| Start of inflation | Pauli-exclusion bounce |
| Early inflationary epoch ROE | Octupole push (between proto NNCGC) |
| Start of the earlier multibillion-year era (decreasing ROE) | Quadrupole pull (between NNCGC) |
| Start of the later multibillion-year era (increasing ROE) | Dipole push (between NNCGC) |
| After the later multibillion-year era (decreasing ROE) | Monopole pull (between NNCGC) |
| Approximately at the start of ... | Dominant property | |||
| Inflation | Moments-of-inertia rotation | 4 | TBD | TBD |
| The multibillion-year era of decreasing rate | Moments of inertia | 3 | 6 | 1 |
| The multibillion-year era of increasing rate | Internal angular momentum | 2 | 3 | 2 |
| A possible future era | (None) | PNR | PNR | PNR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
