Submitted:
01 May 2025
Posted:
05 May 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Broad Classification of Tyrosine Kinases
1.2. Cancer-Associated Receptor Tyrosine Kinases
1.3. Cancer-Associated Non-Receptor Tyrosine Kinases
3. Structural and Regulatory Mechanism of Tyrosine Kinases
3.1. PTK Domain Architecture

3.2. Src Structure and Regulatory Mechanism
3.3. EGFR Structure and Regulatory Mechanism

3.4. Extracellular Structure of EGFR
3.5. EGFR Intracellular Kinase Structure Activation
4. The Role of Tyrosine Kinases in Cancers
4.1. Role of EFGR-Tyrosine Kinase in Cancers
4.2. Role of Src-Tyrosine Kinase in Cancers
5. Tyrosine Kinases as Therapeutic Targets
5.1. Development of TKIs
5.2. Resistance to TKIs and Strategies to Overcome Resistance
5.3. Resistance and Mechanism of Developing Resistance to Therapy
5.4. Combined Targeting EGFR and Src as a Potential Therapeutic Approach
5.5. Therapeutic Challenges and Limitations
6. Summary and Conclusion
Literature search and Methodology
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| EGFR | Epidermal growth factor receptor |
| Src | Sarcoma (proto-oncogene tyrosine-protein kinase Src) |
| TKI | Tyrosine kinase inhibitors |
| TNBC | Triple-negative breast cancer |
| MDR | Multi-drug resistance |
| PTK | Protein tyrosine kinase |
| FDA | Food and Drug Administration |
| RTK | Receptor tyrosine kinase |
| NRTK | Non-receptor tyrosine kinase |
| KD | Kinase domain |
| IDR | Intrinsically disordered regions |
References
- Blume-Jensen, P.; Hunter, T. Oncogenic kinase signalling. Nature 2001, 411, 355–365. [Google Scholar] [CrossRef]
- Díaz Galicia, M.E.; Aldehaiman, A.; Hong, S.; Arold, S.T.; Grünberg, R. Chapter Eight - Methods for the recombinant expression of active tyrosine kinase domains: Guidelines and pitfalls. In Methods in Enzymology, Shukla, A.K., Ed.; Academic Press: 2019; Volume 621, pp. 131-152.
- Hunter, T. Signaling--2000 and beyond. Cell 2000, 100, 113–127. [Google Scholar] [CrossRef] [PubMed]
- K. Bhanumathy, K.; Balagopal, A.; Vizeacoumar, F.S.; Vizeacoumar, F.J.; Freywald, A.; Giambra, V. Protein Tyrosine Kinases: Their Roles and Their Targeting in Leukemia. Cancers 2021, 13, 184. [Google Scholar] [CrossRef]
- Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 2000, 103, 211–225. [Google Scholar] [CrossRef]
- De Meyts, P. Receptor Tyrosine Kinase Signal Transduction and the Molecular Basis of Signalling Specificity. In Receptor Tyrosine Kinases: Structure, Functions and Role in Human Disease, Wheeler, D.L., Yarden, Y., Eds.; Springer New York: New York, NY, 2015; pp. 51–76. [Google Scholar]
- Zhao, M.; Jung, Y.; Jiang, Z.; Svensson, K.J. Regulation of Energy Metabolism by Receptor Tyrosine Kinase Ligands. Front Physiol 2020, 11, 354. [Google Scholar] [CrossRef] [PubMed]
- Mihwa, K.; Minwoo, B.; Dae Joon, K. Protein Tyrosine Signaling and its Potential Therapeutic Implications in Carcinogenesis. Current Pharmaceutical Design 2017, 23, 4226–4246. [Google Scholar] [CrossRef]
- Dutta, H.; Jain, N. Post-translational modifications and their implications in cancer. Front Oncol 2023, 13, 1240115. [Google Scholar] [CrossRef] [PubMed]
- Geffen, Y.; Anand, S.; Akiyama, Y.; Yaron, T.M.; Song, Y.; Johnson, J.L.; Govindan, A.; Babur, Ö.; Li, Y.; Huntsman, E.; et al. Pan-cancer analysis of post-translational modifications reveals shared patterns of protein regulation. Cell 2023, 186, 3945–3967.e3926. [Google Scholar] [CrossRef]
- Chen, L.; Liu, S.; Tao, Y. Regulating tumor suppressor genes: post-translational modifications. Signal Transduction and Targeted Therapy 2020, 5, 90. [Google Scholar] [CrossRef]
- Ardito, F.; Giuliani, M.; Perrone, D.; Troiano, G.; Lo Muzio, L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). Int J Mol Med 2017, 40, 271–280. [Google Scholar] [CrossRef]
- Singh, V.; Ram, M.; Kumar, R.; Prasad, R.; Roy, B.K.; Singh, K.K. Phosphorylation: Implications in Cancer. Protein J 2017, 36, 1–6. [Google Scholar] [CrossRef]
- Yoshida, K.; Yokoi, A.; Yamamoto, T.; Hayashi, Y.; Nakayama, J.; Yokoi, T.; Yoshida, H.; Kato, T.; Kajiyama, H.; Yamamoto, Y. Aberrant Activation of Cell-Cycle-Related Kinases and the Potential Therapeutic Impact of PLK1 or CHEK1 Inhibition in Uterine Leiomyosarcoma. Clin Cancer Res 2022, 28, 2147–2159. [Google Scholar] [CrossRef]
- Du, Z.; Lovly, C.M. Mechanisms of receptor tyrosine kinase activation in cancer. Molecular Cancer 2018, 17, 58. [Google Scholar] [CrossRef] [PubMed]
- Turdo, A.; D'Accardo, C.; Glaviano, A.; Porcelli, G.; Colarossi, C.; Colarossi, L.; Mare, M.; Faldetta, N.; Modica, C.; Pistone, G.; et al. Targeting Phosphatases and Kinases: How to Checkmate Cancer. Front Cell Dev Biol 2021, 9, 690306. [Google Scholar] [CrossRef]
- Yang, Y.; Li, S.; Wang, Y.; Zhao, Y.; Li, Q. Protein tyrosine kinase inhibitor resistance in malignant tumors: molecular mechanisms and future perspective. Signal Transduction and Targeted Therapy 2022, 7, 329. [Google Scholar] [CrossRef] [PubMed]
- Shyam Sunder, S.; Sharma, U.C.; Pokharel, S. Adverse effects of tyrosine kinase inhibitors in cancer therapy: pathophysiology, mechanisms and clinical management. Signal Transduction and Targeted Therapy 2023, 8, 262. [Google Scholar] [CrossRef] [PubMed]
- Cohen, P. Immune diseases caused by mutations in kinases and components of the ubiquitin system. Nat Immunol 2014, 15, 521–529. [Google Scholar] [CrossRef]
- Stenberg, K.A.; Riikonen, P.T.; Vihinen, M. KinMutBase, a database of human disease-causing protein kinase mutations. Nucleic Acids Res 2000, 28, 369–371. [Google Scholar] [CrossRef]
- Wilks, A.F. Structure and function of the protein tyrosine kinases. Progress in Growth Factor Research 1990, 2, 97–111. [Google Scholar] [CrossRef]
- Aschner, Y.; Downey, G.P. The Importance of Tyrosine Phosphorylation Control of Cellular Signaling Pathways in Respiratory Disease: pY and pY Not. Am J Respir Cell Mol Biol 2018, 59, 535–547. [Google Scholar] [CrossRef]
- Tautz, L.; Critton, D.A.; Grotegut, S. Protein tyrosine phosphatases: structure, function, and implication in human disease. Methods Mol Biol 2013, 1053, 179–221. [Google Scholar] [CrossRef] [PubMed]
- Vaparanta, K.; Jokilammi, A.; Tamirat, M.; Merilahti, J.A.M.; Salokas, K.; Varjosalo, M.; Ivaska, J.; Johnson, M.S.; Elenius, K. An extracellular receptor tyrosine kinase motif orchestrating intracellular STAT activation. Nat Commun 2022, 13, 6953. [Google Scholar] [CrossRef]
- Gonzalez-Magaldi, M.; McCabe, J.M.; Cartwright, H.N.; Sun, N.; Leahy, D.J. Conserved roles for receptor tyrosine kinase extracellular regions in regulating receptor and pathway activity. Biochem J 2020, 477, 4207–4220. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Stagljar, I. Multiple functions of protein phosphatases in receptor tyrosine kinase signaling revealed by interactome analysis. Mol Cell Oncol 2017, 4, e1297101. [Google Scholar] [CrossRef] [PubMed]
- Solouki, S.; August, A.; Huang, W. Non-receptor tyrosine kinase signaling in autoimmunity and therapeutic implications. Pharmacology & Therapeutics 2019, 201, 39–50. [Google Scholar] [CrossRef]
- Gocek, E.; Moulas, A.N.; Studzinski, G.P. Non-receptor protein tyrosine kinases signaling pathways in normal and cancer cells. Crit Rev Clin Lab Sci 2014, 51, 125–137. [Google Scholar] [CrossRef]
- Siveen, K.S.; Prabhu, K.S.; Achkar, I.W.; Kuttikrishnan, S.; Shyam, S.; Khan, A.Q.; Merhi, M.; Dermime, S.; Uddin, S. Role of Non Receptor Tyrosine Kinases in Hematological Malignances and its Targeting by Natural Products. Molecular Cancer 2018, 17, 31. [Google Scholar] [CrossRef]
- Tomuleasa, C.; Tigu, A.-B.; Munteanu, R.; Moldovan, C.-S.; Kegyes, D.; Onaciu, A.; Gulei, D.; Ghiaur, G.; Einsele, H.; Croce, C.M. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduction and Targeted Therapy 2024, 9, 201. [Google Scholar] [CrossRef]
- Zhou, B.; Lin, W.; Long, Y.; Yang, Y.; Zhang, H.; Wu, K.; Chu, Q. Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduction and Targeted Therapy 2022, 7, 95. [Google Scholar] [CrossRef]
- Wu, F.; Yang, J.; Liu, J.; Wang, Y.; Mu, J.; Zeng, Q.; Deng, S.; Zhou, H. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduction and Targeted Therapy 2021, 6, 218. [Google Scholar] [CrossRef]
- Hunter, T.; Cooper, J.A. Protein-tyrosine kinases. Annu Rev Biochem 1985, 54, 897–930. [Google Scholar] [CrossRef]
- Carpenter, G.; King, L., Jr.; Cohen, S. Epidermal growth factor stimulates phosphorylation in membrane preparations in vitro. Nature 1978, 276, 409–410. [Google Scholar] [CrossRef] [PubMed]
- Sawyers, C.L. Rational therapeutic intervention in cancer: kinases as drug targets. Curr Opin Genet Dev 2002, 12, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Li, Y. Receptor tyrosine kinases: biological functions and anticancer targeted therapy. MedComm (2020) 2023, 4, e446. [Google Scholar] [CrossRef]
- Yu, J.; Fang, T.; Yun, C.; Liu, X.; Cai, X. Antibody-Drug Conjugates Targeting the Human Epidermal Growth Factor Receptor Family in Cancers. Front Mol Biosci 2022, 9, 847835. [Google Scholar] [CrossRef] [PubMed]
- Ye, P.; Wang, Y.; Li, R.; Chen, W.; Wan, L.; Cai, P. The HER family as therapeutic targets in colorectal cancer. Crit Rev Oncol Hematol 2022, 174, 103681. [Google Scholar] [CrossRef]
- Nair, S.; Bonner, J.A.; Bredel, M. EGFR Mutations in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2022, 23. [Google Scholar] [CrossRef]
- Harrison, P.T.; Vyse, S.; Huang, P.H. Rare epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer. Semin Cancer Biol 2020, 61, 167–179. [Google Scholar] [CrossRef]
- Vigneri, P.G.; Tirrò, E.; Pennisi, M.S.; Massimino, M.; Stella, S.; Romano, C.; Manzella, L. The Insulin/IGF System in Colorectal Cancer Development and Resistance to Therapy. Front Oncol 2015, 5, 230. [Google Scholar] [CrossRef]
- Chen, P.H.; Chen, X.; He, X. Platelet-derived growth factors and their receptors: structural and functional perspectives. Biochim Biophys Acta 2013, 1834, 2176–2186. [Google Scholar] [CrossRef]
- Tomassetti, C.; Insinga, G.; Gimigliano, F.; Morrione, A.; Giordano, A.; Giurisato, E. Insights into CSF-1R Expression in the Tumor Microenvironment. Biomedicines 2024, 12, 2381. [Google Scholar] [CrossRef]
- Shibuya, M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies. Genes Cancer 2011, 2, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Cébe-Suarez, S.; Zehnder-Fjällman, A.; Ballmer-Hofer, K. The role of VEGF receptors in angiogenesis; complex partnerships. Cell Mol Life Sci 2006, 63, 601–615. [Google Scholar] [CrossRef]
- Liu, Z.-L.; Chen, H.-H.; Zheng, L.-L.; Sun, L.-P.; Shi, L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduction and Targeted Therapy 2023, 8, 198. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.; Khan, A.W.; Kim, M.S.; Choi, S. The Role of Fibroblast Growth Factor (FGF) Signaling in Tissue Repair and Regeneration. Cells 2021, 10. [Google Scholar] [CrossRef]
- Xie, Y.; Su, N.; Yang, J.; Tan, Q.; Huang, S.; Jin, M.; Ni, Z.; Zhang, B.; Zhang, D.; Luo, F.; et al. FGF/FGFR signaling in health and disease. Signal Transduction and Targeted Therapy 2020, 5, 181. [Google Scholar] [CrossRef] [PubMed]
- Berger, H.; Wodarz, A.; Borchers, A. PTK7 Faces the Wnt in Development and Disease. Front Cell Dev Biol 2017, 5, 31. [Google Scholar] [CrossRef]
- Ji, J.; Qian, Q.; Cheng, W.; Ye, X.; Jing, A.; Ma, S.; Ding, Y.; Ma, X.; Wang, Y.; Sun, Q.; et al. FOXP4-mediated induction of PTK7 activates the Wnt/β-catenin pathway and promotes ovarian cancer development. Cell Death & Disease 2024, 15, 332. [Google Scholar] [CrossRef]
- Cocco, E.; Scaltriti, M.; Drilon, A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol 2018, 15, 731–747. [Google Scholar] [CrossRef]
- Hechtman, J.F. NTRK insights: best practices for pathologists. Modern Pathology 2022, 35, 298–305. [Google Scholar] [CrossRef]
- Belliveau, D.J.; Krivko, I.; Kohn, J.; Lachance, C.; Pozniak, C.; Rusakov, D.; Kaplan, D.; Miller, F.D. NGF and neurotrophin-3 both activate TrkA on sympathetic neurons but differentially regulate survival and neuritogenesis. J Cell Biol 1997, 136, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Menck, K.; Heinrichs, S.; Baden, C.; Bleckmann, A. The WNT/ROR Pathway in Cancer: From Signaling to Therapeutic Intervention. Cells 2021, 10. [Google Scholar] [CrossRef]
- Song, P.; Gao, Z.; Bao, Y.; Chen, L.; Huang, Y.; Liu, Y.; Dong, Q.; Wei, X. Wnt/β-catenin signaling pathway in carcinogenesis and cancer therapy. Journal of Hematology & Oncology 2024, 17, 46. [Google Scholar] [CrossRef]
- Hubbard, S.R.; Gnanasambandan, K. Structure and activation of MuSK, a receptor tyrosine kinase central to neuromuscular junction formation. Biochim Biophys Acta 2013, 1834, 2166–2169. [Google Scholar] [CrossRef]
- Cao, M.; Koneczny, I.; Vincent, A. Myasthenia Gravis With Antibodies Against Muscle Specific Kinase: An Update on Clinical Features, Pathophysiology and Treatment. Front Mol Neurosci 2020, 13, 159. [Google Scholar] [CrossRef]
- Gao, C.F.; Woude, G.F.V. HGF/SF-Met signaling in tumor progression. Cell Research 2005, 15, 49–51. [Google Scholar] [CrossRef] [PubMed]
- Raj, S.; Kesari, K.K.; Kumar, A.; Rathi, B.; Sharma, A.; Gupta, P.K.; Jha, S.K.; Jha, N.K.; Slama, P.; Roychoudhury, S.; et al. Molecular mechanism(s) of regulation(s) of c-MET/HGF signaling in head and neck cancer. Molecular Cancer 2022, 21, 31. [Google Scholar] [CrossRef]
- Linger, R.M.; Keating, A.K.; Earp, H.S.; Graham, D.K. TAM receptor tyrosine kinases: biologic functions, signaling, and potential therapeutic targeting in human cancer. Adv Cancer Res 2008, 100, 35–83. [Google Scholar] [CrossRef] [PubMed]
- Tsou, W.I.; Nguyen, K.Q.; Calarese, D.A.; Garforth, S.J.; Antes, A.L.; Smirnov, S.V.; Almo, S.C.; Birge, R.B.; Kotenko, S.V. Receptor tyrosine kinases, TYRO3, AXL, and MER, demonstrate distinct patterns and complex regulation of ligand-induced activation. J Biol Chem 2014, 289, 25750–25763. [Google Scholar] [CrossRef]
- Aehnlich, P.; Powell, R.M.; Peeters, M.J.W.; Rahbech, A.; Thor Straten, P. TAM Receptor Inhibition-Implications for Cancer and the Immune System. Cancers (Basel) 2021, 13. [Google Scholar] [CrossRef]
- Graham, D.K.; DeRyckere, D.; Davies, K.D.; Earp, H.S. The TAM family: phosphatidylserine-sensing receptor tyrosine kinases gone awry in cancer. Nature Reviews Cancer 2014, 14, 769–785. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Bellón, N.; Martínez-Bosch, N.; García de Frutos, P.; Navarro, P. Hallmarks of pancreatic cancer: spotlight on TAM receptors. eBioMedicine 2024, 107. [Google Scholar] [CrossRef] [PubMed]
- Korhonen, E.A.; Lampinen, A.; Giri, H.; Anisimov, A.; Kim, M.; Allen, B.; Fang, S.; D'Amico, G.; Sipilä, T.J.; Lohela, M.; et al. Tie1 controls angiopoietin function in vascular remodeling and inflammation. J Clin Invest 2016, 126, 3495–3510. [Google Scholar] [CrossRef]
- Saharinen, P.; Eklund, L.; Alitalo, K. Therapeutic targeting of the angiopoietin–TIE pathway. Nature Reviews Drug Discovery 2017, 16, 635–661. [Google Scholar] [CrossRef]
- Leppänen, V.M.; Saharinen, P.; Alitalo, K. Structural basis of Tie2 activation and Tie2/Tie1 heterodimerization. Proc Natl Acad Sci U S A 2017, 114, 4376–4381. [Google Scholar] [CrossRef]
- Zhang, J.; Hughes, S. Role of the ephrin and Eph receptor tyrosine kinase families in angiogenesis and development of the cardiovascular system. J Pathol 2006, 208, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.-Y.; Patel, O.; Janes, P.W.; Murphy, J.M.; Lucet, I.S. Eph receptor signalling: from catalytic to non-catalytic functions. Oncogene 2019, 38, 6567–6584. [Google Scholar] [CrossRef]
- Darling, T.K.; Lamb, T.J. Emerging Roles for Eph Receptors and Ephrin Ligands in Immunity. Front Immunol 2019, 10, 1473. [Google Scholar] [CrossRef]
- Mahato, A.K.; Sidorova, Y.A. RET Receptor Tyrosine Kinase: Role in Neurodegeneration, Obesity, and Cancer. Int J Mol Sci 2020, 21. [Google Scholar] [CrossRef]
- Melillo, R.M.; Santoro, M. The RET Receptor Family. In Receptor Tyrosine Kinases: Family. In Receptor Tyrosine Kinases: Family and Subfamilies, Wheeler, D.L., Yarden, Y., Eds.; Springer International Publishing: Cham, 2015; pp. 559–591. [Google Scholar]
- Green, J.; Nusse, R.; van Amerongen, R. The role of Ryk and Ror receptor tyrosine kinases in Wnt signal transduction. Cold Spring Harb Perspect Biol 2014, 6. [Google Scholar] [CrossRef]
- Shi, F.; Mendrola, J.M.; Sheetz, J.B.; Wu, N.; Sommer, A.; Speer, K.F.; Noordermeer, J.N.; Kan, Z.-Y.; Perry, K.; Englander, S.W.; et al. ROR and RYK extracellular region structures suggest that receptor tyrosine kinases have distinct WNT-recognition modes. Cell Reports 2021, 37, 109834. [Google Scholar] [CrossRef] [PubMed]
- Leitinger, B. Discoidin domain receptor functions in physiological and pathological conditions. Int Rev Cell Mol Biol 2014, 310, 39–87. [Google Scholar] [CrossRef]
- Chen, L.; Kong, X.; Fang, Y.; Paunikar, S.; Wang, X.; Brown, J.A.L.; Bourke, E.; Li, X.; Wang, J. Recent Advances in the Role of Discoidin Domain Receptor Tyrosine Kinase 1 and Discoidin Domain Receptor Tyrosine Kinase 2 in Breast and Ovarian Cancer. Front Cell Dev Biol 2021, 9, 747314. [Google Scholar] [CrossRef] [PubMed]
- Toy, K.A.; Valiathan, R.R.; Núñez, F.; Kidwell, K.M.; Gonzalez, M.E.; Fridman, R.; Kleer, C.G. Tyrosine kinase discoidin domain receptors DDR1 and DDR2 are coordinately deregulated in triple-negative breast cancer. Breast Cancer Res Treat 2015, 150, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhou, J.; Li, J. Discoidin domain receptors orchestrate cancer progression: A focus on cancer therapies. Cancer Sci 2021, 112, 962–969. [Google Scholar] [CrossRef]
- Shenoy, G.P.; Pal, R.; Purwarga Matada, G.S.; Singh, E.; Raghavendra, N.M.; Dhiwar, P.S. Discoidin domain receptor inhibitors as anticancer agents: A systematic review on recent development of DDRs inhibitors, their resistance and structure activity relationship. Bioorganic Chemistry 2023, 130, 106215. [Google Scholar] [CrossRef]
- Aggarwal, V.; Tuli, H.S.; Varol, A.; Thakral, F.; Yerer, M.B.; Sak, K.; Varol, M.; Jain, A.; Khan, M.A.; Sethi, G. Role of Reactive Oxygen Species in Cancer Progression: Molecular Mechanisms and Recent Advancements. Biomolecules 2019, 9. [Google Scholar] [CrossRef]
- An, X.; Yu, W.; Liu, J.; Tang, D.; Yang, L.; Chen, X. Oxidative cell death in cancer: mechanisms and therapeutic opportunities. Cell Death & Disease 2024, 15, 556. [Google Scholar] [CrossRef]
- Ditsiou, A.; Gagliano, T.; Samuels, M.; Vella, V.; Tolias, C.; Giamas, G. The multifaceted role of lemur tyrosine kinase 3 in health and disease. Open Biol 2021, 11, 210218. [Google Scholar] [CrossRef]
- Mórotz, G.M.; Bradbury, N.A.; Caluseriu, O.; Hisanaga, S.-i.; Miller, C.C.J.; Swiatecka-Urban, A.; Lenz, H.-J.; Moss, S.J.; Giamas, G. A revised nomenclature for the lemur family of protein kinases. Communications Biology 2024, 7, 57. [Google Scholar] [CrossRef]
- Bencze, J.; Szarka, M.; Bencs, V.; Szabó, R.N.; Smajda, M.; Aarsland, D.; Hortobágyi, T. Neuropathological characterization of Lemur tyrosine kinase 2 (LMTK2) in Alzheimer’s disease and neocortical Lewy body disease. Scientific Reports 2019, 9, 17222. [Google Scholar] [CrossRef]
- Della Corte, C.M.; Viscardi, G.; Di Liello, R.; Fasano, M.; Martinelli, E.; Troiani, T.; Ciardiello, F.; Morgillo, F. Role and targeting of anaplastic lymphoma kinase in cancer. Molecular Cancer 2018, 17, 30. [Google Scholar] [CrossRef]
- Huang, H. Anaplastic Lymphoma Kinase (ALK) Receptor Tyrosine Kinase: A Catalytic Receptor with Many Faces. International Journal of Molecular Sciences 2018, 19, 3448. [Google Scholar] [CrossRef]
- Webb, T.R.; Slavish, J.; George, R.E.; Look, A.T.; Xue, L.; Jiang, Q.; Cui, X.; Rentrop, W.B.; Morris, S.W. Anaplastic lymphoma kinase: role in cancer pathogenesis and small-molecule inhibitor development for therapy. Expert Rev Anticancer Ther 2009, 9, 331–356. [Google Scholar] [CrossRef] [PubMed]
- Hallberg, B.; Palmer, R.H. The role of the ALK receptor in cancer biology. Annals of Oncology 2016, 27, iii4–iii15. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Chen, H.Y.; Cai, J.; Zhang, Y.; Qi, C.Y.; Gong, H.; Zhai, Y.X.; Fu, H.; Yang, G.Z.; Gao, C.F. Serine threonine tyrosine kinase 1 is a potential prognostic marker in colorectal cancer. BMC Cancer 2015, 15, 246. [Google Scholar] [CrossRef]
- Rajpurohit, Y.S.; Sharma, D.K.; Misra, H.S. Involvement of serine / threonine protein kinases in DNA damage response and cell division in bacteria. Research in Microbiology 2022, 173, 103883. [Google Scholar] [CrossRef] [PubMed]
- Siveen, K.S.; Prabhu, K.S.; Achkar, I.W.; Kuttikrishnan, S.; Shyam, S.; Khan, A.Q.; Merhi, M.; Dermime, S.; Uddin, S. Role of Non Receptor Tyrosine Kinases in Hematological Malignances and its Targeting by Natural Products. Mol Cancer 2018, 17, 31. [Google Scholar] [CrossRef]
- Hubbard, S.R.; Miller, W.T. Receptor tyrosine kinases: mechanisms of activation and signaling. Curr Opin Cell Biol 2007, 19, 117–123. [Google Scholar] [CrossRef]
- Kan, Y.; Paung, Y.; Seeliger, M.A.; Miller, W.T. Domain Architecture of the Nonreceptor Tyrosine Kinase Ack1. Cells 2023, 12. [Google Scholar] [CrossRef]
- Seok, S.H. Structural Insights into Protein Regulation by Phosphorylation and Substrate Recognition of Protein Kinases/Phosphatases. Life (Basel) 2021, 11. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Echagüe, V.; Gucwa, A.; Craddock, B.P.; Brown, D.A.; Miller, W.T. Cancer-associated mutations activate the nonreceptor tyrosine kinase Ack1. J Biol Chem 2010, 285, 10605–10615. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, S.R.; Till, J.H. Protein tyrosine kinase structure and function. Annu Rev Biochem 2000, 69, 373–398. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Ayrapetov, M.K. Dissection of the catalytic and regulatory structure-function relationships of Csk protein tyrosine kinase. Front Cell Dev Biol 2023, 11, 1148352. [Google Scholar] [CrossRef]
- Gan, W.; Roux, B. Binding specificity of SH2 domains: insight from free energy simulations. Proteins 2009, 74, 996–1007. [Google Scholar] [CrossRef]
- Pawson, T.; Gish, G.D.; Nash, P. SH2 domains, interaction modules and cellular wiring. Trends Cell Biol 2001, 11, 504–511. [Google Scholar] [CrossRef]
- Mahajan, K.; Mahajan, N.P. ACK1/TNK2 tyrosine kinase: molecular signaling and evolving role in cancers. Oncogene 2015, 34, 4162–4167. [Google Scholar] [CrossRef]
- Yokoyama, N.; Miller, W.T. Biochemical properties of the Cdc42-associated tyrosine kinase ACK1. Substrate specificity, authphosphorylation, and interaction with Hck. J Biol Chem 2003, 278, 47713–47723. [Google Scholar] [CrossRef]
- Yang, W.; Cerione, R.A. Cloning and Characterization of a Novel Cdc42-associated Tyrosine Kinase, ACK-2, from Bovine Brain*. Journal of Biological Chemistry 1997, 272, 24819–24824. [Google Scholar] [CrossRef]
- Prieto-Echagüe, V.; Miller, W.T. Regulation of ack-family nonreceptor tyrosine kinases. J Signal Transduct 2011, 2011, 742372. [Google Scholar] [CrossRef]
- Gajiwala, K.S.; Maegley, K.; Ferre, R.; He, Y.A.; Yu, X. Ack1: activation and regulation by allostery. PLoS One 2013, 8, e53994. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Miller, W.T. The noncatalytic regions of the tyrosine kinase Tnk1 are important for activity and substrate specificity. Journal of Biological Chemistry 2022, 298, 102664. [Google Scholar] [CrossRef] [PubMed]
- Sawant, M.; Wilson, A.; Sridaran, D.; Mahajan, K.; O'Conor, C.J.; Hagemann, I.S.; Luo, J.; Weimholt, C.; Li, T.; Roa, J.C.; et al. Epigenetic reprogramming of cell cycle genes by ACK1 promotes breast cancer resistance to CDK4/6 inhibitor. Oncogene 2023, 42, 2263–2277. [Google Scholar] [CrossRef]
- Sridaran, D.; Chouhan, S.; Mahajan, K.; Renganathan, A.; Weimholt, C.; Bhagwat, S.; Reimers, M.; Kim, E.H.; Thakur, M.K.; Saeed, M.A.; et al. Inhibiting ACK1-mediated phosphorylation of C-terminal Src kinase counteracts prostate cancer immune checkpoint blockade resistance. Nature Communications 2022, 13, 6929. [Google Scholar] [CrossRef] [PubMed]
- Yamaoka, K.; Saharinen, P.; Pesu, M.; Holt, V.E., 3rd; Silvennoinen, O.; O'Shea, J.J. The Janus kinases (Jaks). Genome Biol 2004, 5, 253. [Google Scholar] [CrossRef]
- Lupardus, P.J.; Ultsch, M.; Wallweber, H.; Bir Kohli, P.; Johnson, A.R.; Eigenbrot, C. Structure of the pseudokinase-kinase domains from protein kinase TYK2 reveals a mechanism for Janus kinase (JAK) autoinhibition. Proc Natl Acad Sci U S A 2014, 111, 8025–8030. [Google Scholar] [CrossRef]
- Ghoreschi, K.; Laurence, A.; O'Shea, J.J. Janus kinases in immune cell signaling. Immunol Rev 2009, 228, 273–287. [Google Scholar] [CrossRef]
- Caveney, N.A.; Saxton, R.A.; Waghray, D.; Glassman, C.R.; Tsutsumi, N.; Hubbard, S.R.; Garcia, K.C. Structural basis of Janus kinase trans-activation. Cell Rep 2023, 42, 112201. [Google Scholar] [CrossRef]
- Garrido-Trigo, A.; Salas, A. Molecular Structure and Function of Janus Kinases: Implications for the Development of Inhibitors. Journal of Crohn's and Colitis 2019, 14, S713–S724. [Google Scholar] [CrossRef]
- Xue, C.; Yao, Q.; Gu, X.; Shi, Q.; Yuan, X.; Chu, Q.; Bao, Z.; Lu, J.; Li, L. Evolving cognition of the JAK-STAT signaling pathway: autoimmune disorders and cancer. Signal Transduction and Targeted Therapy 2023, 8, 204. [Google Scholar] [CrossRef]
- Villarino, A.V.; Kanno, Y.; Ferdinand, J.R.; O'Shea, J.J. Mechanisms of Jak/STAT signaling in immunity and disease. J Immunol 2015, 194, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; li, J.; Fu, M.; Zhao, X.; Wang, W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduction and Targeted Therapy 2021, 6, 402. [Google Scholar] [CrossRef]
- Lv, Y.; Qi, J.; Babon, J.J.; Cao, L.; Fan, G.; Lang, J.; Zhang, J.; Mi, P.; Kobe, B.; Wang, F. The JAK-STAT pathway: from structural biology to cytokine engineering. Signal Transduction and Targeted Therapy 2024, 9, 221. [Google Scholar] [CrossRef] [PubMed]
- Rah, B.; Rather, R.A.; Bhat, G.R.; Baba, A.B.; Mushtaq, I.; Farooq, M.; Yousuf, T.; Dar, S.B.; Parveen, S.; Hassan, R.; et al. JAK/STAT Signaling: Molecular Targets, Therapeutic Opportunities, and Limitations of Targeted Inhibitions in Solid Malignancies. Front Pharmacol 2022, 13, 821344. [Google Scholar] [CrossRef]
- Groffen, J.; Heisterkamp, N.; Shibuya, M.; Hanafusa, H.; Stephenson, J.R. Transforming genes of avian (v-ƒps) and mammalian (v-ƒes) retroviruses correspond to a common cellular locus. Virology 1983, 125, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.W.B. FES/FER kinase signaling in hematopoietic cells and leukemias. FBL 2012, 17, 861–875. [Google Scholar] [CrossRef]
- Laurent, C.E.; Delfino, F.J.; Cheng, H.Y.; Smithgall, T.E. The human c-Fes tyrosine kinase binds tubulin and microtubules through separate domains and promotes microtubule assembly. Mol Cell Biol 2004, 24, 9351–9358. [Google Scholar] [CrossRef]
- Hellwig, S.; Miduturu, C.V.; Kanda, S.; Zhang, J.; Filippakopoulos, P.; Salah, E.; Deng, X.; Choi, H.G.; Zhou, W.; Hur, W.; et al. Small-molecule inhibitors of the c-Fes protein-tyrosine kinase. Chem Biol 2012, 19, 529–540. [Google Scholar] [CrossRef]
- Zhang, S.; Chitu, V.; Stanley, E.R.; Elliott, B.E.; Greer, P.A. Fes tyrosine kinase expression in the tumor niche correlates with enhanced tumor growth, angiogenesis, circulating tumor cells, metastasis, and infiltrating macrophages. Cancer Res 2011, 71, 1465–1473. [Google Scholar] [CrossRef]
- Ivanova, I.A.; Vermeulen, J.F.; Ercan, C.; Houthuijzen, J.M.; Saig, F.A.; Vlug, E.J.; van der Wall, E.; van Diest, P.J.; Vooijs, M.; Derksen, P.W.B. FER kinase promotes breast cancer metastasis by regulating α6- and β1-integrin-dependent cell adhesion and anoikis resistance. Oncogene 2013, 32, 5582–5592. [Google Scholar] [CrossRef]
- Ivanova, I.A.; Arulanantham, S.; Barr, K.; Cepeda, M.; Parkins, K.M.; Hamilton, A.M.; Johnston, D.; Penuela, S.; Hess, D.A.; Ronald, J.A.; et al. Targeting FER Kinase Inhibits Melanoma Growth and Metastasis. Cancers 2019, 11, 419. [Google Scholar] [CrossRef]
- Rogers, J.A.; Read, R.D.; Li, J.; Peters, K.L.; Smithgall, T.E. Autophosphorylation of the Fes Tyrosine Kinase: EVIDENCE FOR AN INTERMOLECULAR MECHANISM INVOLVING TWO KINASE DOMAIN TYROSINE RESIDUES*. Journal of Biological Chemistry 1996, 271, 17519–17525. [Google Scholar] [CrossRef]
- Menegon, A.; Burgaya, F.; Baudot, P.; Dunlap, D.D.; Girault, J.A.; Valtorta, F. FAK+ and PYK2/CAKbeta, two related tyrosine kinases highly expressed in the central nervous system: similarities and differences in the expression pattern. Eur J Neurosci 1999, 11, 3777–3788. [Google Scholar] [CrossRef]
- Tapial Martínez, P.; López Navajas, P.; Lietha, D. FAK Structure and Regulation by Membrane Interactions and Force in Focal Adhesions. Biomolecules 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Cooper, L.A.; Shen, T.L.; Guan, J.L. Regulation of focal adhesion kinase by its amino-terminal domain through an autoinhibitory interaction. Mol Cell Biol 2003, 23, 8030–8041. [Google Scholar] [CrossRef] [PubMed]
- Prutzman, K.C.; Gao, G.; King, M.L.; Iyer, V.V.; Mueller, G.A.; Schaller, M.D.; Campbell, S.L. The focal adhesion targeting domain of focal adhesion kinase contains a hinge region that modulates tyrosine 926 phosphorylation. Structure 2004, 12, 881–891. [Google Scholar] [CrossRef]
- Kadaré, G.; Gervasi, N.; Brami-Cherrier, K.; Blockus, H.; El Messari, S.; Arold, S.T.; Girault, J.A. Conformational dynamics of the focal adhesion targeting domain control specific functions of focal adhesion kinase in cells. J Biol Chem 2015, 290, 478–491. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Schaller, M.D. Focal adhesion targeting: the critical determinant of FAK regulation and substrate phosphorylation. Mol Biol Cell 1999, 10, 2507–2518. [Google Scholar] [CrossRef]
- Birge, R.B.; Kalodimos, C.; Inagaki, F.; Tanaka, S. Crk and CrkL adaptor proteins: networks for physiological and pathological signaling. Cell Communication and Signaling 2009, 7, 13. [Google Scholar] [CrossRef]
- Schlaepfer, D.D.; Hauck, C.R.; Sieg, D.J. Signaling through focal adhesion kinase. Prog Biophys Mol Biol 1999, 71, 435–478. [Google Scholar] [CrossRef]
- Rigiracciolo, D.C.; Cirillo, F.; Talia, M.; Muglia, L.; Gutkind, J.S.; Maggiolini, M.; Lappano, R. Focal Adhesion Kinase Fine Tunes Multifaced Signals toward Breast Cancer Progression. Cancers (Basel) 2021, 13. [Google Scholar] [CrossRef] [PubMed]
- Golubovskaya, V.M. Targeting FAK in human cancer: from finding to first clinical trials. Front Biosci (Landmark Ed) 2014, 19, 687–706. [Google Scholar] [CrossRef]
- Yoon, H.; Dehart, J.P.; Murphy, J.M.; Lim, S.T. Understanding the roles of FAK in cancer: inhibitors, genetic models, and new insights. J Histochem Cytochem 2015, 63, 114–128. [Google Scholar] [CrossRef] [PubMed]
- Murphy, J.M.; Rodriguez, Y.A.R.; Jeong, K.; Ahn, E.-Y.E.; Lim, S.-T.S. Targeting focal adhesion kinase in cancer cells and the tumor microenvironment. Experimental & Molecular Medicine 2020, 52, 877–886. [Google Scholar] [CrossRef]
- Kanteti, R.; Batra, S.K.; Lennon, F.E.; Salgia, R. FAK and paxillin, two potential targets in pancreatic cancer. Oncotarget 2016, 7, 31586–31601. [Google Scholar] [CrossRef]
- Davidson, C.; Taggart, D.; Sims, A.H.; Lonergan, D.W.; Canel, M.; Serrels, A. FAK promotes stromal PD-L2 expression associated with poor survival in pancreatic cancer. British Journal of Cancer 2022, 127, 1893–1905. [Google Scholar] [CrossRef]
- Roberts, J.M.; Tarafdar, S.; Joseph, R.E.; Andreotti, A.H.; Smithgall, T.E.; Engen, J.R.; Wales, T.E. Dynamics of the Tec-family tyrosine kinase SH3 domains. Protein Sci 2016, 25, 852–864. [Google Scholar] [CrossRef]
- Yin, Z.; Zou, Y.; Wang, D.; Huang, X.; Xiong, S.; Cao, L.; Zhang, Y.; Sun, Y.; Zhang, N. Regulation of the Tec family of non-receptor tyrosine kinases in cardiovascular disease. Cell Death Discovery 2022, 8, 119. [Google Scholar] [CrossRef]
- Yang, W.-C.; Ghiotto, M.; Barbarat, B.; Olive, D. The Role of Tec Protein-tyrosine Kinase in T Cell Signaling *. Journal of Biological Chemistry 1999, 274, 607–617. [Google Scholar] [CrossRef]
- Hussain, A.; Yu, L.; Faryal, R.; Mohammad, D.K.; Mohamed, A.J.; Smith, C.I. TEC family kinases in health and disease--loss-of-function of BTK and ITK and the gain-of-function fusions ITK-SYK and BTK-SYK. Febs j 2011, 278, 2001–2010. [Google Scholar] [CrossRef]
- Boggon, T.J.; Eck, M.J. Structure and regulation of Src family kinases. Oncogene 2004, 23, 7918–7927. [Google Scholar] [CrossRef]
- Engen, J.R.; Wales, T.E.; Hochrein, J.M.; Meyn, M.A., 3rd; Banu Ozkan, S.; Bahar, I.; Smithgall, T.E. Structure and dynamic regulation of Src-family kinases. Cell Mol Life Sci 2008, 65, 3058–3073. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, M.A.; Mikhailova, T.; Li, X.; Porter, B.A.; Bah, A.; Kotula, L. Src family kinases, adaptor proteins and the actin cytoskeleton in epithelial-to-mesenchymal transition. Cell Communication and Signaling 2021, 19, 67. [Google Scholar] [CrossRef]
- Kovács, M.; Németh, T.; Jakus, Z.; Sitaru, C.; Simon, E.; Futosi, K.; Botz, B.; Helyes, Z.; Lowell, C.A.; Mócsai, A. The Src family kinases Hck, Fgr, and Lyn are critical for the generation of the in vivo inflammatory environment without a direct role in leukocyte recruitment. J Exp Med 2014, 211, 1993–2011. [Google Scholar] [CrossRef] [PubMed]
- Marhäll, A.; Kazi, J.U.; Rönnstrand, L. The Src family kinase LCK cooperates with oncogenic FLT3/ITD in cellular transformation. Scientific Reports 2017, 7, 13734. [Google Scholar] [CrossRef]
- Pestina, T.I.; Stenberg, P.E.; Druker, B.J.; Steward, S.A.; Hutson, N.K.; Barrie, R.J.; Jackson, C.W. Identification of the Src family kinases, Lck and Fgr in platelets. Their tyrosine phosphorylation status and subcellular distribution compared with other Src family members. Arterioscler Thromb Vasc Biol 1997, 17, 3278–3285. [Google Scholar] [CrossRef] [PubMed]
- Abram, C.L.; Lowell, C.A. The diverse functions of Src family kinases in macrophages. Front Biosci 2008, 13, 4426–4450. [Google Scholar] [CrossRef]
- Pelaz, S.G.; Tabernero, A. Src: coordinating metabolism in cancer. Oncogene 2022, 41, 4917–4928. [Google Scholar] [CrossRef]
- Goel, R.K.; Lukong, K.E. Understanding the cellular roles of Fyn-related kinase (FRK): implications in cancer biology. Cancer Metastasis Rev 2016, 35, 179–199. [Google Scholar] [CrossRef]
- Goel, R.K.; Lukong, K.E. Tracing the footprints of the breast cancer oncogene BRK — Past till present. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2015, 1856, 39–54. [Google Scholar] [CrossRef]
- Goel, R.K.; Kim, N.; Lukong, K.E. Seeking a better understanding of the non-receptor tyrosine kinase, SRMS. Heliyon 2023, 9, e16421. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Lu, Y.; Wilkes, M.; Neubert, T.A.; Resh, M.D. The N-terminal SH4 region of the Src family kinase Fyn is modified by methylation and heterogeneous fatty acylation: role in membrane targeting, cell adhesion, and spreading. J Biol Chem 2004, 279, 8133–8139. [Google Scholar] [CrossRef] [PubMed]
- Fhu, C.W.; Ali, A. Protein Lipidation by Palmitoylation and Myristoylation in Cancer. Front Cell Dev Biol 2021, 9, 673647. [Google Scholar] [CrossRef] [PubMed]
- Bagnato, G.; Leopizzi, M.; Urciuoli, E.; Peruzzi, B. Nuclear Functions of the Tyrosine Kinase Src. International Journal of Molecular Sciences 2020, 21, 2675. [Google Scholar] [CrossRef]
- Goel, R.K.; Miah, S.; Black, K.; Kalra, N.; Dai, C.; Lukong, K.E. The unique N-terminal region of SRMS regulates enzymatic activity and phosphorylation of its novel substrate docking protein 1. Febs j 2013, 280, 4539–4559. [Google Scholar] [CrossRef]
- Sen, B.; Johnson, F.M. Regulation of SRC family kinases in human cancers. J Signal Transduct 2011, 2011, 865819. [Google Scholar] [CrossRef]
- Kinoshita-Kikuta, E.; Utsumi, T.; Miyazaki, A.; Tokumoto, C.; Doi, K.; Harada, H.; Kinoshita, E.; Koike, T. Protein-N-myristoylation-dependent phosphorylation of serine 13 of tyrosine kinase Lyn by casein kinase 1γ at the Golgi during intracellular protein traffic. Sci Rep 2020, 10, 16273. [Google Scholar] [CrossRef]
- Berclaz, G.; Altermatt, H.J.; Rohrbach, V.; Dreher, E.; Ziemiecki, A.; Andres, A.C. Hormone-dependent nuclear localization of the tyrosine kinase iyk in the normal human breast epithelium and loss of expression during carcinogenesis. Int J Cancer 2000, 85, 889–894. [Google Scholar] [CrossRef]
- Annerén, C.; Welsh, M.; Jansson, L. Glucose intolerance and reduced islet blood flow in transgenic mice expressing the FRK tyrosine kinase under the control of the rat insulin promoter. Am J Physiol Endocrinol Metab 2007, 292, E1183–1190. [Google Scholar] [CrossRef]
- Gu, J.J.; Ryu, J.R.; Pendergast, A.M. Abl tyrosine kinases in T-cell signaling. Immunol Rev 2009, 228, 170–183. [Google Scholar] [CrossRef]
- Colicelli, J. ABL tyrosine kinases: evolution of function, regulation, and specificity. Sci Signal 2010, 3, re6. [Google Scholar] [CrossRef] [PubMed]
- Panjarian, S.; Iacob, R.E.; Chen, S.; Engen, J.R.; Smithgall, T.E. Structure and Dynamic Regulation of Abl Kinases*. Journal of Biological Chemistry 2013, 288, 5443–5450. [Google Scholar] [CrossRef]
- Preyer, M.; Vigneri, P.; Wang, J.Y. Interplay between kinase domain autophosphorylation and F-actin binding domain in regulating imatinib sensitivity and nuclear import of BCR-ABL. PLoS One 2011, 6, e17020. [Google Scholar] [CrossRef]
- Underhill-Day, N.; Pierce, A.; Thompson, S.E.; Xenaki, D.; Whetton, A.D.; Owen-Lynch, P.J. Role of the C-terminal actin binding domain in BCR/ABL-mediated survival and drug resistance. Br J Haematol 2006, 132, 774–783. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.M.; Van Etten, R.A. Activation of c-Abl kinase activity and transformation by a chemical inducer of dimerization. J Biol Chem 2001, 276, 24372–24379. [Google Scholar] [CrossRef]
- Greuber, E.K.; Smith-Pearson, P.; Wang, J.; Pendergast, A.M. Role of ABL family kinases in cancer: from leukaemia to solid tumours. Nature Reviews Cancer 2013, 13, 559–571. [Google Scholar] [CrossRef]
- Ganguly, S.S.; Fiore, L.S.; Sims, J.T.; Friend, J.W.; Srinivasan, D.; Thacker, M.A.; Cibull, M.L.; Wang, C.; Novak, M.; Kaetzel, D.M.; et al. c-Abl and Arg are activated in human primary melanomas, promote melanoma cell invasion via distinct pathways, and drive metastatic progression. Oncogene 2012, 31, 1804–1816. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, S.S.; Plattner, R. Activation of abl family kinases in solid tumors. Genes Cancer 2012, 3, 414–425. [Google Scholar] [CrossRef]
- Woodside, D.G.; Obergfell, A.; Talapatra, A.; Calderwood, D.A.; Shattil, S.J.; Ginsberg, M.H. The N-terminal SH2 domains of Syk and ZAP-70 mediate phosphotyrosine-independent binding to integrin beta cytoplasmic domains. J Biol Chem 2002, 277, 39401–39408. [Google Scholar] [CrossRef]
- Isakov, N.; Wange, R.L.; Burgess, W.H.; Watts, J.D.; Aebersold, R.; Samelson, L.E. ZAP-70 binding specificity to T cell receptor tyrosine-based activation motifs: the tandem SH2 domains of ZAP-70 bind distinct tyrosine-based activation motifs with varying affinity. J Exp Med 1995, 181, 375–380. [Google Scholar] [CrossRef]
- Hobbs, H.T.; Shah, N.H.; Badroos, J.M.; Gee, C.L.; Marqusee, S.; Kuriyan, J. Differences in the dynamics of the tandem-SH2 modules of the Syk and ZAP-70 tyrosine kinases. Protein Sci 2021, 30, 2373–2384. [Google Scholar] [CrossRef]
- Mócsai, A.; Ruland, J.; Tybulewicz, V.L.J. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nature Reviews Immunology 2010, 10, 387–402. [Google Scholar] [CrossRef]
- Qu, C.; Zheng, D.; Li, S.; Liu, Y.; Lidofsky, A.; Holmes, J.A.; Chen, J.; He, L.; Wei, L.; Liao, Y.; et al. Tyrosine kinase SYK is a potential therapeutic target for liver fibrosis. Hepatology 2018, 68, 1125–1139. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Hu, J.; Ma, H.; Harrison, M.L.; Geahlen, R.L. Nucleocytoplasmic trafficking of the Syk protein tyrosine kinase. Mol Cell Biol 2006, 26, 3478–3491. [Google Scholar] [CrossRef]
- Stamos, J.; Sliwkowski, M.X.; Eigenbrot, C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J Biol Chem 2002, 277, 46265–46272. [Google Scholar] [CrossRef] [PubMed]
- Eigenbrot, C. Structure-function of EGFR kinase domain and its inhibitors. In EGFR Signaling Networks in Cancer Therapy, Haley, J.D., Gullick, W.J., Eds.; Humana Press: Totowa, NJ, 2008; pp. 30–44. [Google Scholar]
- Roskoski, R. Src protein–tyrosine kinase structure and regulation. Biochemical and Biophysical Research Communications 2004, 324, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, S.R. Structural analysis of receptor tyrosine kinases. Progress in Biophysics and Molecular Biology 1999, 71, 343–358. [Google Scholar] [CrossRef]
- Lawrence, M.C.; Ward, C.W. Structural Features of the Receptor Tyrosine Kinase Ectodomains. In Receptor Tyrosine Kinases: Structure, Functions and Role in Human Disease, Wheeler, D.L., Yarden, Y., Eds.; Springer New York: New York, NY, 2015; pp. 163–193. [Google Scholar]
- Süveges, D.; Jura, N. Structural Features of the Kinase Domain. In Receptor Tyrosine Kinases: Structure, Functions and Role in Human Disease, Wheeler, D.L., Yarden, Y., Eds.; Springer New York: New York, NY, 2015; pp. 195–223. [Google Scholar]
- Eshaq, A.M.; Flanagan, T.W.; Hassan, S.-Y.; Al Asheikh, S.A.; Al-Amoudi, W.A.; Santourlidis, S.; Hassan, S.-L.; Alamodi, M.O.; Bendhack, M.L.; Alamodi, M.O.; et al. Non-Receptor Tyrosine Kinases: Their Structure and Mechanistic Role in Tumor Progression and Resistance. Cancers 2024, 16, 2754. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.T.; Cooper, J.A. Regulation, substrates and functions of src. Biochim Biophys Acta 1996, 1287, 121–149. [Google Scholar] [CrossRef]
- Abram, C.L.; Courtneidge, S.A. Src family tyrosine kinases and growth factor signaling. Exp Cell Res 2000, 254, 1–13. [Google Scholar] [CrossRef]
- Roskoski, R., Jr. Src protein-tyrosine kinase structure and regulation. Biochem Biophys Res Commun 2004, 324, 1155–1164. [Google Scholar] [CrossRef]
- Xu, W.; Doshi, A.; Lei, M.; Eck, M.J.; Harrison, S.C. Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Mol Cell 1999, 3, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.C.; Weijland, A.; Gonfloni, S.; Thompson, A.; Courtneidge, S.A.; Superti-Furga, G.; Wierenga, R.K. The 2.35 A crystal structure of the inactivated form of chicken Src: a dynamic molecule with multiple regulatory interactions. J Mol Biol 1997, 274, 757–775. [Google Scholar] [CrossRef] [PubMed]
- Sicheri, F.; Moarefi, I.; Kuriyan, J. Crystal structure of the Src family tyrosine kinase Hck. Nature 1997, 385, 602–609. [Google Scholar] [CrossRef]
- Xu, W.; Harrison, S.C.; Eck, M.J. Three-dimensional structure of the tyrosine kinase c-Src. Nature 1997, 385, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Knighton, D.R.; Zheng, J.H.; Ten Eyck, L.F.; Ashford, V.A.; Xuong, N.H.; Taylor, S.S.; Sowadski, J.M. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 1991, 253, 407–414. [Google Scholar] [CrossRef]
- Okada, M.; Nakagawa, H. A protein tyrosine kinase involved in regulation of pp60c-src function. J Biol Chem 1989, 264, 20886–20893. [Google Scholar] [CrossRef]
- Zheng, X.M.; Resnick, R.J.; Shalloway, D. A phosphotyrosine displacement mechanism for activation of Src by PTPalpha. Embo j 2000, 19, 964–978. [Google Scholar] [CrossRef]
- EswarKumar, N.; Yang, C.-H.; Tewary, S.; Peng, W.-H.; Chen, G.-C.; Yeh, Y.-Q.; Yang, H.-C.; Ho, M.-C. An integrative approach unveils a distal encounter site for rPTPε and phospho-Src complex formation. Structure 2023, 31, 1567–1577.e1565. [Google Scholar] [CrossRef]
- Gazdar, A.F. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene 2009, 28 Suppl 1, S24–31. [Google Scholar] [CrossRef]
- Bazley, L.A.; Gullick, W.J. The epidermal growth factor receptor family. Endocr Relat Cancer 2005, 12 Suppl 1, S17–27. [Google Scholar] [CrossRef]
- Kumar, A.; Petri, E.T.; Halmos, B.; Boggon, T.J. Structure and clinical relevance of the epidermal growth factor receptor in human cancer. J Clin Oncol 2008, 26, 1742–1751. [Google Scholar] [CrossRef]
- Schmitz, K.R.; Bagchi, A.; Roovers, R.C.; van Bergen en Henegouwen, P.M.; Ferguson, K.M. Structural evaluation of EGFR inhibition mechanisms for nanobodies/VHH domains. Structure 2013, 21, 1214–1224. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, K.M. Structure-based view of epidermal growth factor receptor regulation. Annu Rev Biophys 2008, 37, 353–373. [Google Scholar] [CrossRef] [PubMed]
- Stamos, J.; Sliwkowski, M.X.; Eigenbrot, C. Structure of the Epidermal Growth Factor Receptor Kinase Domain Alone and in Complex with a 4-Anilinoquinazoline Inhibitor *. Journal of Biological Chemistry 2002, 277, 46265–46272. [Google Scholar] [CrossRef]
- Monsey, J.; Shen, W.; Schlesinger, P.; Bose, R. Her4 and Her2/neu Tyrosine Kinase Domains Dimerize and Activate in a Reconstituted <em>in Vitro</em> System *<sup> </sup>. Journal of Biological Chemistry 2010, 285, 7035–7044. [Google Scholar] [CrossRef] [PubMed]
- Jura, N.; Endres, N.F.; Engel, K.; Deindl, S.; Das, R.; Lamers, M.H.; Wemmer, D.E.; Zhang, X.; Kuriyan, J. Mechanism for Activation of the EGF Receptor Catalytic Domain by the Juxtamembrane Segment. Cell 2009, 137, 1293–1307. [Google Scholar] [CrossRef]
- Arkhipov, A.; Shan, Y.; Kim, E.T.; Dror, R.O.; Shaw, D.E. Her2 activation mechanism reflects evolutionary preservation of asymmetric ectodomain dimers in the human EGFR family. eLife 2013, 2, e00708. [Google Scholar] [CrossRef]
- Tsai, C.-J.; Nussinov, R. Emerging Allosteric Mechanism of EGFR Activation in Physiological and Pathological Contexts. Biophysical Journal 2019, 117, 5–13. [Google Scholar] [CrossRef]
- Schultz, D.F.; Billadeau, D.D.; Jois, S.D. EGFR trafficking: effect of dimerization, dynamics, and mutation. Frontiers in Oncology 2023, 13. [Google Scholar] [CrossRef]
- Jorissen, R.N.; Walker, F.; Pouliot, N.; Garrett, T.P.J.; Ward, C.W.; Burgess, A.W. Epidermal growth factor receptor: mechanisms of activation and signalling. Experimental Cell Research 2003, 284, 31–53. [Google Scholar] [CrossRef]
- Ono, M.; Kuwano, M. Molecular Mechanisms of Epidermal Growth Factor Receptor (EGFR) Activation and Response to Gefitinib and Other EGFR-Targeting Drugs. Clinical Cancer Research 2006, 12, 7242–7251. [Google Scholar] [CrossRef]
- Burgess, A.W.; Garrett, T.P.J. EGFR Receptor Family Extracellular Domain Structures and Functions. In EGFR Signaling Networks in Cancer Therapy, Haley, J.D., Gullick, W.J., Eds.; Humana Press: Totowa, NJ, 2008; pp. 2–13. [Google Scholar]
- Wan, S.; Wright, D.W.; Coveney, P.V. Mechanism of Drug Efficacy Within the EGF Receptor Revealed by Microsecond Molecular Dynamics Simulation. Molecular Cancer Therapeutics 2012, 11, 2394–2400. [Google Scholar] [CrossRef] [PubMed]
- Arkhipov, A.; Shan, Y.; Das, R.; Endres, Nicholas F. ; Eastwood, Michael P.; Wemmer, David E.; Kuriyan, J.; Shaw, David E. Architecture and Membrane Interactions of the EGF Receptor. Cell 2013, 152, 557–569. [Google Scholar] [CrossRef]
- Koland, J.G. Coarse-Grained Molecular Simulation of Epidermal Growth Factor Receptor Protein Tyrosine Kinase Multi-Site Self-Phosphorylation. PLOS Computational Biology 2014, 10, e1003435. [Google Scholar] [CrossRef] [PubMed]
- Songtawee, N.; Bevan, D.R.; Choowongkomon, K. Molecular dynamics of the asymmetric dimers of EGFR: Simulations on the active and inactive conformations of the kinase domain. Journal of Molecular Graphics and Modelling 2015, 58, 16–29. [Google Scholar] [CrossRef]
- Kaplan, M.; Narasimhan, S.; de Heus, C.; Mance, D.; van Doorn, S.; Houben, K.; Popov-Čeleketić, D.; Damman, R.; Katrukha, E.A.; Jain, P.; et al. EGFR Dynamics Change during Activation in Native Membranes as Revealed by NMR. Cell 2016, 167, 1241–1251.e1211. [Google Scholar] [CrossRef] [PubMed]
- EGFR Undergoes Ligand-Induced Conformational Changes during Activation. Cancer Discovery 2017, 7, 9–9. [CrossRef]
- Martin-Fernandez, M.L.; Clarke, D.T.; Roberts, S.K.; Zanetti-Domingues, L.C.; Gervasio, F.L. Structure and Dynamics of the EGF Receptor as Revealed by Experiments and Simulations and Its Relevance to Non-Small Cell Lung Cancer. Cells 2019, 8. [Google Scholar] [CrossRef]
- Levy, D.E.; Darnell, J.E., Jr. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 2002, 3, 651–662. [Google Scholar] [CrossRef]
- Darnell, J.E., Jr.; Kerr, I.M.; Stark, G.R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994, 264, 1415–1421. [Google Scholar] [CrossRef]
- Rane, S.G.; Reddy, E.P. JAK3: a novel JAK kinase associated with terminal differentiation of hematopoietic cells. Oncogene 1994, 9, 2415–2423. [Google Scholar] [PubMed]
- Shigematsu, H.; Gazdar, A.F. Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancers. Int J Cancer 2006, 118, 257–262. [Google Scholar] [CrossRef]
- Tatematsu, A.; Shimizu, J.; Murakami, Y.; Horio, Y.; Nakamura, S.; Hida, T.; Mitsudomi, T.; Yatabe, Y. Epidermal growth factor receptor mutations in small cell lung cancer. Clin Cancer Res 2008, 14, 6092–6096. [Google Scholar] [CrossRef] [PubMed]
- Yun, C.H.; Boggon, T.J.; Li, Y.; Woo, M.S.; Greulich, H.; Meyerson, M.; Eck, M.J. Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell 2007, 11, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, S.; Kukimoto-Niino, M.; Parker, L.; Handa, N.; Terada, T.; Fujimoto, T.; Terazawa, Y.; Wakiyama, M.; Sato, M.; Sano, S.; et al. Structural basis for the altered drug sensitivities of non-small cell lung cancer-associated mutants of human epidermal growth factor receptor. Oncogene 2013, 32, 27–38. [Google Scholar] [CrossRef]
- Doss, G.P.; Rajith, B.; Chakraborty, C.; NagaSundaram, N.; Ali, S.K.; Zhu, H. Structural signature of the G719S-T790M double mutation in the EGFR kinase domain and its response to inhibitors. Sci Rep 2014, 4, 5868. [Google Scholar] [CrossRef]
- Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging functions of the EGFR in cancer. Mol Oncol 2018, 12, 3–20. [Google Scholar] [CrossRef]
- Tan, X.; Lambert, P.F.; Rapraeger, A.C.; Anderson, R.A. Stress-Induced EGFR Trafficking: Mechanisms, Functions, and Therapeutic Implications. Trends Cell Biol 2016, 26, 352–366. [Google Scholar] [CrossRef]
- Jutten, B.; Keulers, T.G.; Schaaf, M.B.; Savelkouls, K.; Theys, J.; Span, P.N.; Vooijs, M.A.; Bussink, J.; Rouschop, K.M. EGFR overexpressing cells and tumors are dependent on autophagy for growth and survival. Radiother Oncol 2013, 108, 479–483. [Google Scholar] [CrossRef]
- Casanova, M.L.; Larcher, F.; Casanova, B.; Murillas, R.; Fernández-Aceñero, M.J.; Villanueva, C.; Martínez-Palacio, J.; Ullrich, A.; Conti, C.J.; Jorcano, J.L. A critical role for ras-mediated, epidermal growth factor receptor-dependent angiogenesis in mouse skin carcinogenesis. Cancer Res 2002, 62, 3402–3407. [Google Scholar] [PubMed]
- Ekstrand, A.J.; Sugawa, N.; James, C.D.; Collins, V.P. Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. Proc Natl Acad Sci U S A 1992, 89, 4309–4313. [Google Scholar] [CrossRef]
- Wong, A.J.; Ruppert, J.M.; Bigner, S.H.; Grzeschik, C.H.; Humphrey, P.A.; Bigner, D.S.; Vogelstein, B. Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc Natl Acad Sci U S A 1992, 89, 2965–2969. [Google Scholar] [CrossRef]
- Sugawa, N.; Ekstrand, A.J.; James, C.D.; Collins, V.P. Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas. Proc Natl Acad Sci U S A 1990, 87, 8602–8606. [Google Scholar] [CrossRef]
- Reynolds, A.B.; Roczniak-Ferguson, A. Emerging roles for p120-catenin in cell adhesion and cancer. Oncogene 2004, 23, 7947–7956. [Google Scholar] [CrossRef]
- Summy, J.M.; Gallick, G.E. Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev 2003, 22, 337–358. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.M. Role of STATs as downstream signal transducers in Src family kinase-mediated tumorigenesis. Oncogene 2004, 23, 8017–8023. [Google Scholar] [CrossRef]
- Miranda, M.B.; Johnson, D.E. Signal transduction pathways that contribute to myeloid differentiation. Leukemia 2007, 21, 1363–1377. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Lehnert, B.P.; Liu, J.; Neubarth, N.L.; Dickendesher, T.L.; Nwe, P.H.; Cassidy, C.; Woodbury, C.J.; Ginty, D.D. Genetic Identification of an Expansive Mechanoreceptor Sensitive to Skin Stroking. Cell 2015, 163, 1783–1795. [Google Scholar] [CrossRef]
- Ahmad, V.; Vadla, G.P.; Chabu, C.Y. Syd/JIP3 controls tissue size by regulating Diap1 protein turnover downstream of Yorkie/YAP. Dev Biol 2021, 469, 37–45. [Google Scholar] [CrossRef]
- Dong, Y.L.; Vadla, G.P.; Lu, J.J.; Ahmad, V.; Klein, T.J.; Liu, L.F.; Glazer, P.M.; Xu, T.; Chabu, C.Y. Cooperation between oncogenic Ras and wild-type p53 stimulates STAT non-cell autonomously to promote tumor radioresistance. Commun Biol 2021, 4, 374. [Google Scholar] [CrossRef] [PubMed]
- Guarino, M.; Rubino, B.; Ballabio, G. The role of epithelial-mesenchymal transition in cancer pathology. Pathology 2007, 39, 305–318. [Google Scholar] [CrossRef]
- Friedl, P.; Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 2003, 3, 362–374. [Google Scholar] [CrossRef] [PubMed]
- Delgado, L.; Monteiro, L.; Silva, P.; Bousbaa, H.; Garcez, F.; Silva, J.; Brilhante-Simões, P.; Pires, I.; Prada, J. BUBR1 as a Prognostic Biomarker in Canine Oral Squamous Cell Carcinoma. Animals (Basel) 2022, 12. [Google Scholar] [CrossRef]
- van der Geer, P.; Wiley, S.; Gish, G.D.; Pawson, T. The Shc adaptor protein is highly phosphorylated at conserved, twin tyrosine residues (Y239/240) that mediate protein-protein interactions. Curr Biol 1996, 6, 1435–1444. [Google Scholar] [CrossRef] [PubMed]
- Tokumitsu, Y.; Nakano, S.; Ueno, H.; Niho, Y. Suppression of malignant growth potentials of v-Src-transformed human gallbladder epithelial cells by adenovirus-mediated dominant negative H-Ras. J Cell Physiol 2000, 183, 221–227. [Google Scholar] [CrossRef]
- Jaber Chehayeb, R.; Stiegler, A.L.; Boggon, T.J. Crystal structures of p120RasGAP N-terminal SH2 domain in its apo form and in complex with a p190RhoGAP phosphotyrosine peptide. PLOS ONE 2020, 14, e0226113. [Google Scholar] [CrossRef]
- Biscardi, J.S.; Tice, D.A.; Parsons, S.J. c-Src, receptor tyrosine kinases, and human cancer. Adv Cancer Res 1999, 76, 61–119. [Google Scholar] [CrossRef]
- Ingley, E. Src family kinases: regulation of their activities, levels and identification of new pathways. Biochim Biophys Acta 2008, 1784, 56–65. [Google Scholar] [CrossRef]
- Cohen, P. Protein kinases--the major drug targets of the twenty-first century? Nat Rev Drug Discov 2002, 1, 309–315. [Google Scholar] [CrossRef]
- Yu, H.A.; Riely, G.J.; Lovly, C.M. Therapeutic strategies utilized in the setting of acquired resistance to EGFR tyrosine kinase inhibitors. Clin Cancer Res 2014, 20, 5898–5907. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Nie, D.; Wang, X.; Zhong, S.; Zeng, X.; Liu, X.; Qiu, K.; Peng, X.; Zhang, W.; Chen, S.; et al. Combined targeting of GPX4 and BCR-ABL tyrosine kinase selectively compromises BCR-ABL+ leukemia stem cells. Mol Cancer 2024, 23, 240. [Google Scholar] [CrossRef]
- Zhang, H.; To, K.K.W. Serum creatine kinase elevation following tyrosine kinase inhibitor treatment in cancer patients: Symptoms, mechanism, and clinical management. Clin Transl Sci 2024, 17, e70053. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Maity, T.; Kashyap, M.K.; Bansal, M.; Venugopalan, A.; Singh, S.; Awasthi, S.; Marimuthu, A.; Charles Jacob, H.K.; Belkina, N.; et al. Quantitative Tyrosine Phosphoproteomics of Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitor-treated Lung Adenocarcinoma Cells Reveals Potential Novel Biomarkers of Therapeutic Response. Mol Cell Proteomics 2017, 16, 891–910. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Zhao, Z.; Peng, X.; Zou, J.; Yang, S. Recent advances in small-molecular therapeutics for COVID-19. Precis Clin Med 2022, 5, pbac024. [Google Scholar] [CrossRef]
- Broekman, F.; Giovannetti, E.; Peters, G.J. Tyrosine kinase inhibitors: Multi-targeted or single-targeted? World J Clin Oncol 2011, 2, 80–93. [Google Scholar] [CrossRef]
- Krug, M.; Hilgeroth, A. Recent advances in the development of multi-kinase inhibitors. Mini Rev Med Chem 2008, 8, 1312–1327. [Google Scholar] [CrossRef]
- Agrawal, M.; Garg, R.J.; Cortes, J.; Quintás-Cardama, A. Tyrosine kinase inhibitors: the first decade. Curr Hematol Malig Rep 2010, 5, 70–80. [Google Scholar] [CrossRef]
- Yang, J.C.; Shih, J.Y.; Su, W.C.; Hsia, T.C.; Tsai, C.M.; Ou, S.H.; Yu, C.J.; Chang, G.C.; Ho, C.L.; Sequist, L.V.; et al. Afatinib for patients with lung adenocarcinoma and epidermal growth factor receptor mutations (LUX-Lung 2): a phase 2 trial. Lancet Oncol 2012, 13, 539–548. [Google Scholar] [CrossRef]
- Sequist, L.V.; Waltman, B.A.; Dias-Santagata, D.; Digumarthy, S.; Turke, A.B.; Fidias, P.; Bergethon, K.; Shaw, A.T.; Gettinger, S.; Cosper, A.K.; et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 2011, 3, 75ra26. [Google Scholar] [CrossRef]
- Sequist, L.V.; Besse, B.; Lynch, T.J.; Miller, V.A.; Wong, K.K.; Gitlitz, B.; Eaton, K.; Zacharchuk, C.; Freyman, A.; Powell, C.; et al. Neratinib, an irreversible pan-ErbB receptor tyrosine kinase inhibitor: results of a phase II trial in patients with advanced non-small-cell lung cancer. J Clin Oncol 2010, 28, 3076–3083. [Google Scholar] [CrossRef] [PubMed]
- Pietanza, M.C.; Lynch, T.J., Jr.; Lara, P.N., Jr.; Cho, J.; Yanagihara, R.H.; Vrindavanam, N.; Chowhan, N.M.; Gadgeel, S.M.; Pennell, N.A.; Funke, R.; et al. XL647--a multitargeted tyrosine kinase inhibitor: results of a phase II study in subjects with non-small cell lung cancer who have progressed after responding to treatment with either gefitinib or erlotinib. J Thorac Oncol 2012, 7, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Miller, V.A.; Hirsh, V.; Cadranel, J.; Chen, Y.M.; Park, K.; Kim, S.W.; Zhou, C.; Su, W.C.; Wang, M.; Sun, Y.; et al. Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): a phase 2b/3 randomised trial. Lancet Oncol 2012, 13, 528–538. [Google Scholar] [CrossRef]
- Katakami, N.; Atagi, S.; Goto, K.; Hida, T.; Horai, T.; Inoue, A.; Ichinose, Y.; Koboyashi, K.; Takeda, K.; Kiura, K.; et al. LUX-Lung 4: a phase II trial of afatinib in patients with advanced non-small-cell lung cancer who progressed during prior treatment with erlotinib, gefitinib, or both. J Clin Oncol 2013, 31, 3335–3341. [Google Scholar] [CrossRef] [PubMed]
- Reckamp, K.L.; Giaccone, G.; Camidge, D.R.; Gadgeel, S.M.; Khuri, F.R.; Engelman, J.A.; Koczywas, M.; Rajan, A.; Campbell, A.K.; Gernhardt, D.; et al. A phase 2 trial of dacomitinib (PF-00299804), an oral, irreversible pan-HER (human epidermal growth factor receptor) inhibitor, in patients with advanced non-small cell lung cancer after failure of prior chemotherapy and erlotinib. Cancer 2014, 120, 1145–1154. [Google Scholar] [CrossRef]
- Pollak, M. Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 2008, 8, 915–928. [Google Scholar] [CrossRef]
- Camidge, D.R.; Bazhenova, L.; Salgia, R.; Weiss, G.J.; Langer, C.J.; Shaw, A.T.; Narasimhan, N.I.; Dorer, D.J.; Rivera, V.M.; Zhang, J.; et al. First-in-human dose-finding study of the ALK/EGFR inhibitor AP26113 in patients with advanced malignancies: Updated results. Journal of Clinical Oncology 31, 8031. [Google Scholar] [CrossRef]
- Sequist, L.V.; Soria, J.-C.; Gadgeel, S.M.; Wakelee, H.A.; Camidge, D.R.; Varga, A.; Solomon, B.J.; Papadimitrakopoulou, V.; Jaw-Tsai, S.S.; Caunt, L.; et al. First-in-human evaluation of CO-1686, an irreversible, highly selective tyrosine kinase inhibitor of mutations of EGFR (activating and T790M). Journal of Clinical Oncology 32, 8010. [Google Scholar] [CrossRef]
- Jiang, T.; Zhou, C. Clinical activity of the mutant-selective EGFR inhibitor AZD9291 in patients with EGFR inhibitor-resistant non-small cell lung cancer. Transl Lung Cancer Res 2014, 3, 370–372. [Google Scholar] [CrossRef]
- Kim, D.-W.; Lee, D.H.; Kang, J.H.; Park, K.; Han, J.-Y.; Lee, J.-S.; Jang, I.-J.; Kim, H.-Y.; Son, J.; Kim, J.-H. Clinical activity and safety of HM61713, an EGFR-mutant selective inhibitor, in advanced non-small cell lung cancer (NSCLC) patients (pts) with EGFR mutations who had received EGFR tyrosine kinase inhibitors (TKIs). Journal of Clinical Oncology 32, 8011. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Azzoli, C.G.; Krug, L.M.; Pereira, L.K.; Rizvi, N.A.; Pietanza, M.C.; Kris, M.G.; Ginsberg, M.S.; Pao, W.; Miller, V.A.; et al. Phase I/II trial of cetuximab and erlotinib in patients with lung adenocarcinoma and acquired resistance to erlotinib. Clin Cancer Res 2011, 17, 2521–2527. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Smit, E.F.; Groen, H.J.; Horn, L.; Gettinger, S.; Camidge, D.R.; Riely, G.J.; Wang, B.; Fu, Y.; Chand, V.K.; et al. Dual inhibition of EGFR with afatinib and cetuximab in kinase inhibitor-resistant EGFR-mutant lung cancer with and without T790M mutations. Cancer Discov 2014, 4, 1036–1045. [Google Scholar] [CrossRef]
- Maemondo, M.; Inoue, A.; Kobayashi, K.; Sugawara, S.; Oizumi, S.; Isobe, H.; Gemma, A.; Harada, M.; Yoshizawa, H.; Kinoshita, I.; et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 2010, 362, 2380–2388. [Google Scholar] [CrossRef]
- Goldberg, S.B.; Oxnard, G.R.; Digumarthy, S.; Muzikansky, A.; Jackman, D.M.; Lennes, I.T.; Sequist, L.V. Chemotherapy with Erlotinib or chemotherapy alone in advanced non-small cell lung cancer with acquired resistance to EGFR tyrosine kinase inhibitors. Oncologist 2013, 18, 1214–1220. [Google Scholar] [CrossRef]
- Kelly, M.P.; Nikolaev, V.O.; Gobejishvili, L.; Lugnier, C.; Hesslinger, C.; Nickolaus, P.; Kass, D.A.; Pereira de Vasconcelos, W.; Fischmeister, R.; Brocke, S.; et al. Cyclic nucleotide phosphodiesterases as drug targets. Pharmacol Rev 2025, 77, 100042. [Google Scholar] [CrossRef] [PubMed]
- Ciardiello, F.; Tortora, G. A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin Cancer Res 2001, 7, 2958–2970. [Google Scholar] [PubMed]
- Pointreau, Y.; Azzopardi, N.; Ternant, D.; Calais, G.; Paintaud, G. Cetuximab Pharmacokinetics Influences Overall Survival in Patients With Head and Neck Cancer. Ther Drug Monit 2016, 38, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Douillard, J.Y.; Siena, S.; Cassidy, J.; Tabernero, J.; Burkes, R.; Barugel, M.; Humblet, Y.; Bodoky, G.; Cunningham, D.; Jassem, J.; et al. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol 2010, 28, 4697–4705. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Köhne, C.H.; Láng, I.; Folprecht, G.; Nowacki, M.P.; Cascinu, S.; Shchepotin, I.; Maurel, J.; Cunningham, D.; Tejpar, S.; et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol 2011, 29, 2011–2019. [Google Scholar] [CrossRef]
- Corkery, B.; Crown, J.; Clynes, M.; O'Donovan, N. Epidermal growth factor receptor as a potential therapeutic target in triple-negative breast cancer. Ann Oncol 2009, 20, 862–867. [Google Scholar] [CrossRef]
- Carey, L.A.; Rugo, H.S.; Marcom, P.K.; Mayer, E.L.; Esteva, F.J.; Ma, C.X.; Liu, M.C.; Storniolo, A.M.; Rimawi, M.F.; Forero-Torres, A.; et al. TBCRC 001: randomized phase II study of cetuximab in combination with carboplatin in stage IV triple-negative breast cancer. J Clin Oncol 2012, 30, 2615–2623. [Google Scholar] [CrossRef]
- Baselga, J.; Albanell, J.; Ruiz, A.; Lluch, A.; Gascón, P.; Guillém, V.; González, S.; Sauleda, S.; Marimón, I.; Tabernero, J.M.; et al. Phase II and tumor pharmacodynamic study of gefitinib in patients with advanced breast cancer. J Clin Oncol 2005, 23, 5323–5333. [Google Scholar] [CrossRef]
- Baselga, J.; Gómez, P.; Greil, R.; Braga, S.; Climent, M.A.; Wardley, A.M.; Kaufman, B.; Stemmer, S.M.; Pêgo, A.; Chan, A.; et al. Randomized phase II study of the anti-epidermal growth factor receptor monoclonal antibody cetuximab with cisplatin versus cisplatin alone in patients with metastatic triple-negative breast cancer. J Clin Oncol 2013, 31, 2586–2592. [Google Scholar] [CrossRef]
- Nabholtz, J.M.; Chalabi, N.; Radosevic-Robin, N.; Dauplat, M.M.; Mouret-Reynier, M.A.; Van Praagh, I.; Servent, V.; Jacquin, J.P.; Benmammar, K.E.; Kullab, S.; et al. Multicentric neoadjuvant pilot Phase II study of cetuximab combined with docetaxel in operable triple negative breast cancer. Int J Cancer 2016, 138, 2274–2280. [Google Scholar] [CrossRef]
- Nabholtz, J.M.; Abrial, C.; Mouret-Reynier, M.A.; Dauplat, M.M.; Weber, B.; Gligorov, J.; Forest, A.M.; Tredan, O.; Vanlemmens, L.; Petit, T.; et al. Multicentric neoadjuvant phase II study of panitumumab combined with an anthracycline/taxane-based chemotherapy in operable triple-negative breast cancer: identification of biologically defined signatures predicting treatment impact. Ann Oncol 2014, 25, 1570–1577. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Armstrong, E.A.; Benavente, S.; Chinnaiyan, P.; Harari, P.M. Dual-agent molecular targeting of the epidermal growth factor receptor (EGFR): combining anti-EGFR antibody with tyrosine kinase inhibitor. Cancer Res 2004, 64, 5355–5362. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, D.A.; Gaborit, N.; Maron, R.; Cohen-Dvashi, H.; Porat, Z.; Pareja, F.; Lavi, S.; Lindzen, M.; Ben-Chetrit, N.; Sela, M.; et al. Inhibition of triple-negative breast cancer models by combinations of antibodies to EGFR. Proc Natl Acad Sci U S A 2013, 110, 1815–1820. [Google Scholar] [CrossRef]
- Matar, P.; Rojo, F.; Cassia, R.; Moreno-Bueno, G.; Di Cosimo, S.; Tabernero, J.; Guzmán, M.; Rodriguez, S.; Arribas, J.; Palacios, J.; et al. Combined epidermal growth factor receptor targeting with the tyrosine kinase inhibitor gefitinib (ZD1839) and the monoclonal antibody cetuximab (IMC-C225): superiority over single-agent receptor targeting. Clin Cancer Res 2004, 10, 6487–6501. [Google Scholar] [CrossRef] [PubMed]
- Garrett, J.T.; Arteaga, C.L. Resistance to HER2-directed antibodies and tyrosine kinase inhibitors: mechanisms and clinical implications. Cancer Biol Ther 2011, 11, 793–800. [Google Scholar] [CrossRef]
- Huang, L.; Jiang, S.; Shi, Y. Tyrosine kinase inhibitors for solid tumors in the past 20 years (2001–2020). Journal of Hematology & Oncology 2020, 13, 143. [Google Scholar] [CrossRef]
- Kumar, R.; Goel, H.; Solanki, R.; Rawat, L.; Tabasum, S.; Tanwar, P.; Pal, S.; Sabarwal, A. Recent developments in receptor tyrosine kinase inhibitors: A promising mainstay in targeted cancer therapy. Medicine in Drug Discovery 2024, 23, 100195. [Google Scholar] [CrossRef]
- Sankarapandian, V.; Rajendran, R.L.; Miruka, C.O.; Sivamani, P.; Maran, B.A.V.; Krishnamoorthy, R.; Gangadaran, P.; Ahn, B.-C. A review on tyrosine kinase inhibitors for targeted breast cancer therapy. Pathology - Research and Practice 2024, 263, 155607. [Google Scholar] [CrossRef]
- Nagampalli, R.S.; Vadla, G.P.; Nadendla, E.K. Emerging Strategies to Overcome Chemoresistance: Structural Insights and Therapeutic Targeting of Multidrug Resistance-Linked ATP-Binding Cassette Transporters. International Journal of Translational Medicine 2025, 5. [Google Scholar] [CrossRef]
- Juliano, R.L.; Ling, V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 1976, 455, 152–162. [Google Scholar] [CrossRef]
- Pamphlett, R.; Bishop, D.P. Elemental biomapping of human tissues suggests toxic metals such as mercury play a role in the pathogenesis of cancer. Front Oncol 2024, 14, 1420451. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhang, Z. Understanding the Genetic Mechanisms of Cancer Drug Resistance Using Genomic Approaches. Trends Genet 2016, 32, 127–137. [Google Scholar] [CrossRef]
- Ou, S.H.; Soo, R.A. Dacomitinib in lung cancer: a "lost generation" EGFR tyrosine-kinase inhibitor from a bygone era? Drug Des Devel Ther 2015, 9, 5641–5653. [Google Scholar] [CrossRef]
- Lim, S.M.; Syn, N.L.; Cho, B.C.; Soo, R.A. Acquired resistance to EGFR targeted therapy in non-small cell lung cancer: Mechanisms and therapeutic strategies. Cancer Treat Rev 2018, 65, 1–10. [Google Scholar] [CrossRef]
- Ramalingam, S.S.; Vansteenkiste, J.; Planchard, D.; Cho, B.C.; Gray, J.E.; Ohe, Y.; Zhou, C.; Reungwetwattana, T.; Cheng, Y.; Chewaskulyong, B.; et al. Overall Survival with Osimertinib in Untreated, EGFR-Mutated Advanced NSCLC. N Engl J Med 2020, 382, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Soria, J.C.; Ohe, Y.; Vansteenkiste, J.; Reungwetwattana, T.; Chewaskulyong, B.; Lee, K.H.; Dechaphunkul, A.; Imamura, F.; Nogami, N.; Kurata, T.; et al. Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. N Engl J Med 2018, 378, 113–125. [Google Scholar] [CrossRef]
- Mok, T.S.; Wu, Y.L.; Ahn, M.J.; Garassino, M.C.; Kim, H.R.; Ramalingam, S.S.; Shepherd, F.A.; He, Y.; Akamatsu, H.; Theelen, W.S.; et al. Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer. N Engl J Med 2017, 376, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Arulananda, S.; Do, H.; Musafer, A.; Mitchell, P.; Dobrovic, A.; John, T. Combination Osimertinib and Gefitinib in C797S and T790M EGFR-Mutated Non-Small Cell Lung Cancer. J Thorac Oncol 2017, 12, 1728–1732. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, J.J.; Huang, J.; Ye, J.Y.; Zhang, X.C.; Tu, H.Y.; Han-Zhang, H.; Wu, Y.L. Lung Adenocarcinoma Harboring EGFR T790M and In Trans C797S Responds to Combination Therapy of First- and Third-Generation EGFR TKIs and Shifts Allelic Configuration at Resistance. J Thorac Oncol 2017, 12, 1723–1727. [Google Scholar] [CrossRef]
- Okura, N.; Nishioka, N.; Yamada, T.; Taniguchi, H.; Tanimura, K.; Katayama, Y.; Yoshimura, A.; Watanabe, S.; Kikuchi, T.; Shiotsu, S.; et al. ONO-7475, a Novel AXL Inhibitor, Suppresses the Adaptive Resistance to Initial EGFR-TKI Treatment in EGFR-Mutated Non-Small Cell Lung Cancer. Clin Cancer Res 2020, 26, 2244–2256. [Google Scholar] [CrossRef] [PubMed]
- Leonetti, A.; Sharma, S.; Minari, R.; Perego, P.; Giovannetti, E.; Tiseo, M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br J Cancer 2019, 121, 725–737. [Google Scholar] [CrossRef]
- Bertoli, E.; De Carlo, E.; Del Conte, A.; Stanzione, B.; Revelant, A.; Fassetta, K.; Spina, M.; Bearz, A. Acquired Resistance to Osimertinib in EGFR-Mutated Non-Small Cell Lung Cancer: How Do We Overcome It? Int J Mol Sci 2022, 23. [Google Scholar] [CrossRef]
- Choudhury, N.J.; Marra, A.; Sui, J.S.Y.; Flynn, J.; Yang, S.R.; Falcon, C.J.; Selenica, P.; Schoenfeld, A.J.; Rekhtman, N.; Gomez, D.; et al. Molecular Biomarkers of Disease Outcomes and Mechanisms of Acquired Resistance to First-Line Osimertinib in Advanced EGFR-Mutant Lung Cancers. J Thorac Oncol 2023, 18, 463–475. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Bai, R.; Cui, J. Precision targeted therapy for EGFR mutation-positive NSCLC: Dilemmas and coping strategies. Thorac Cancer 2023, 14, 1121–1134. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Tan, E.H.; O'Byrne, K.; Zhang, L.; Boyer, M.; Mok, T.; Hirsh, V.; Yang, J.C.; Lee, K.H.; Lu, S.; et al. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, open-label, randomised controlled trial. Lancet Oncol 2016, 17, 577–589. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, L.; Liu, X.; Zhou, C.; Zhang, L.; Zhang, S.; Wang, D.; Li, Q.; Qin, S.; Hu, C.; et al. Icotinib versus gefitinib in previously treated advanced non-small-cell lung cancer (ICOGEN): a randomised, double-blind phase 3 non-inferiority trial. Lancet Oncol 2013, 14, 953–961. [Google Scholar] [CrossRef]
- Shepherd, F.A.; Rodrigues Pereira, J.; Ciuleanu, T.; Tan, E.H.; Hirsh, V.; Thongprasert, S.; Campos, D.; Maoleekoonpiroj, S.; Smylie, M.; Martins, R.; et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 2005, 353, 123–132. [Google Scholar] [CrossRef]
- Johnson, J.R.; Cohen, M.; Sridhara, R.; Chen, Y.F.; Williams, G.M.; Duan, J.; Gobburu, J.; Booth, B.; Benson, K.; Leighton, J.; et al. Approval summary for erlotinib for treatment of patients with locally advanced or metastatic non-small cell lung cancer after failure of at least one prior chemotherapy regimen. Clin Cancer Res 2005, 11, 6414–6421. [Google Scholar] [CrossRef]
- Solca, F.; Dahl, G.; Zoephel, A.; Bader, G.; Sanderson, M.; Klein, C.; Kraemer, O.; Himmelsbach, F.; Haaksma, E.; Adolf, G.R. Target binding properties and cellular activity of afatinib (BIBW 2992), an irreversible ErbB family blocker. J Pharmacol Exp Ther 2012, 343, 342–350. [Google Scholar] [CrossRef]
- Karachaliou, N.; Fernandez-Bruno, M.; Bracht, J.W.P.; Rosell, R. EGFR first- and second-generation TKIs-there is still place for them in EGFR-mutant NSCLC patients. Transl Cancer Res 2019, 8, S23–s47. [Google Scholar] [CrossRef] [PubMed]
- Wissner, A.; Mansour, T.S. The development of HKI-272 and related compounds for the treatment of cancer. Arch Pharm (Weinheim) 2008, 341, 465–477. [Google Scholar] [CrossRef] [PubMed]
- Xuhong, J.C.; Qi, X.W.; Zhang, Y.; Jiang, J. Mechanism, safety and efficacy of three tyrosine kinase inhibitors lapatinib, neratinib and pyrotinib in HER2-positive breast cancer. Am J Cancer Res 2019, 9, 2103–2119. [Google Scholar] [PubMed]
- Ellis, P.M.; Shepherd, F.A.; Millward, M.; Perrone, F.; Seymour, L.; Liu, G.; Sun, S.; Cho, B.C.; Morabito, A.; Leighl, N.B.; et al. Dacomitinib compared with placebo in pretreated patients with advanced or metastatic non-small-cell lung cancer (NCIC CTG BR.26): a double-blind, randomised, phase 3 trial. Lancet Oncol 2014, 15, 1379–1388. [Google Scholar] [CrossRef]
- Engelman, J.A.; Zejnullahu, K.; Gale, C.M.; Lifshits, E.; Gonzales, A.J.; Shimamura, T.; Zhao, F.; Vincent, P.W.; Naumov, G.N.; Bradner, J.E.; et al. PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res 2007, 67, 11924–11932. [Google Scholar] [CrossRef]
- Takeda, M.; Nakagawa, K. First- and Second-Generation EGFR-TKIs Are All Replaced to Osimertinib in Chemo-Naive EGFR Mutation-Positive Non-Small Cell Lung Cancer? Int J Mol Sci 2019, 20. [Google Scholar] [CrossRef]
- Ma, F.; Ouyang, Q.; Li, W.; Jiang, Z.; Tong, Z.; Liu, Y.; Li, H.; Yu, S.; Feng, J.; Wang, S.; et al. Pyrotinib or Lapatinib Combined With Capecitabine in HER2-Positive Metastatic Breast Cancer With Prior Taxanes, Anthracyclines, and/or Trastuzumab: A Randomized, Phase II Study. J Clin Oncol 2019, 37, 2610–2619. [Google Scholar] [CrossRef]
- Lin, Y.; Lin, M.; Zhang, J.; Wang, B.; Tao, Z.; Du, Y.; Zhang, S.; Cao, J.; Wang, L.; Hu, X. Real-World Data of Pyrotinib-Based Therapy in Metastatic HER2-Positive Breast Cancer: Promising Efficacy in Lapatinib-Treated Patients and in Brain Metastasis. Cancer Res Treat 2020, 52, 1059–1066. [Google Scholar] [CrossRef]
- Kian, W.; Christopoulos, P.; Remilah, A.A.; Levison, E.; Dudnik, E.; Shalata, W.; Krayim, B.; Marei, R.; Yakobson, A.; Faehling, M.; et al. Real-world efficacy and safety of mobocertinib in EGFR exon 20 insertion-mutated lung cancer. Front Oncol 2022, 12, 1010311. [Google Scholar] [CrossRef]
- Vasconcelos, P.; Kobayashi, I.S.; Kobayashi, S.S.; Costa, D.B. Preclinical characterization of mobocertinib highlights the putative therapeutic window of this novel EGFR inhibitor to EGFR exon 20 insertion mutations. JTO Clin Res Rep 2021, 2. [Google Scholar] [CrossRef]
- Takeda, M.; Okamoto, I.; Nishimura, Y.; Nakagawa, K. Nimotuzumab, a novel monoclonal antibody to the epidermal growth factor receptor, in the treatment of non-small cell lung cancer. Lung Cancer (Auckl) 2011, 2, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Mazorra, Z.; Chao, L.; Lavastida, A.; Sanchez, B.; Ramos, M.; Iznaga, N.; Crombet, T. Nimotuzumab: beyond the EGFR signaling cascade inhibition. Semin Oncol 2018, 45, 18–26. [Google Scholar] [CrossRef]
- Garnock-Jones, K.P.; Keating, G.M.; Scott, L.J. Trastuzumab: A review of its use as adjuvant treatment in human epidermal growth factor receptor 2 (HER2)-positive early breast cancer. Drugs 2010, 70, 215–239. [Google Scholar] [CrossRef] [PubMed]
- Boekhout, A.H.; Beijnen, J.H.; Schellens, J.H. Trastuzumab. Oncologist 2011, 16, 800–810. [Google Scholar] [CrossRef]
- Kim, H.Y.; Choi, J.H.; Haque, M.M.; Park, J.H.; Kim, I.H.; Choi, B.K.; Lee, A.; Park, S. Combined treatment with anti-HER2/neu and anti-4-1BB monoclonal antibodies induces a synergistic antitumor effect but requires dose optimization to maintain immune memory for protection from lethal rechallenge. Cancer Immunol Immunother 2022, 71, 967–978. [Google Scholar] [CrossRef] [PubMed]
- Gallois, C.; Bergen, E.S.; Auclin, É.; Pernot, S.; Higué, J.; Trouilloud, I.; Touchefeu, Y.; Turpin, A.; Mazard, T.; Sartore-Bianchi, A.; et al. Efficacy and safety of the combination of encorafenib/cetuximab with or without binimetinib in patients with BRAF V600E-mutated metastatic colorectal cancer: an AGEO real-world multicenter study. ESMO Open 2024, 9, 103696. [Google Scholar] [CrossRef]
- Zwart, K.; van Nassau, S.; van der Baan, F.H.; Koopman, M.; Snaebjornsson, P.; van Gestel, A.J.; Vink, G.R.; Roodhart, J.M.L. Efficacy-effectiveness analysis on survival in a population-based real-world study of BRAF-mutated metastatic colorectal cancer patients treated with encorafenib-cetuximab. Br J Cancer 2024, 131, 110–116. [Google Scholar] [CrossRef]
- Mendelsohn, J. Jeremiah Metzger Lecture. Targeted cancer therapy. Trans Am Clin Climatol Assoc 2000, 111, 95–110. [Google Scholar]
- Park, S.; Jiang, Z.; Mortenson, E.D.; Deng, L.; Radkevich-Brown, O.; Yang, X.; Sattar, H.; Wang, Y.; Brown, N.K.; Greene, M.; et al. The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell 2010, 18, 160–170. [Google Scholar] [CrossRef]
- Nahta, R.; Yu, D.; Hung, M.C.; Hortobagyi, G.N.; Esteva, F.J. Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol 2006, 3, 269–280. [Google Scholar] [CrossRef]
- Tseng, P.H.; Wang, Y.C.; Weng, S.C.; Weng, J.R.; Chen, C.S.; Brueggemeier, R.W.; Shapiro, C.L.; Chen, C.Y.; Dunn, S.E.; Pollak, M.; et al. Overcoming trastuzumab resistance in HER2-overexpressing breast cancer cells by using a novel celecoxib-derived phosphoinositide-dependent kinase-1 inhibitor. Mol Pharmacol 2006, 70, 1534–1541. [Google Scholar] [CrossRef] [PubMed]
- Molina, M.A.; Codony-Servat, J.; Albanell, J.; Rojo, F.; Arribas, J.; Baselga, J. Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res 2001, 61, 4744–4749. [Google Scholar] [PubMed]
- Scaltriti, M.; Rojo, F.; Ocaña, A.; Anido, J.; Guzman, M.; Cortes, J.; Di Cosimo, S.; Matias-Guiu, X.; Ramon y Cajal, S.; Arribas, J.; et al. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J Natl Cancer Inst 2007, 99, 628–638. [Google Scholar] [CrossRef]
- Geyer, C.E.; Forster, J.; Lindquist, D.; Chan, S.; Romieu, C.G.; Pienkowski, T.; Jagiello-Gruszfeld, A.; Crown, J.; Chan, A.; Kaufman, B.; et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 2006, 355, 2733–2743. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Köhne, C.H.; Hitre, E.; Zaluski, J.; Chang Chien, C.R.; Makhson, A.; D'Haens, G.; Pintér, T.; Lim, R.; Bodoky, G.; et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 2009, 360, 1408–1417. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, D.; Humblet, Y.; Siena, S.; Khayat, D.; Bleiberg, H.; Santoro, A.; Bets, D.; Mueser, M.; Harstrick, A.; Verslype, C.; et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 2004, 351, 337–345. [Google Scholar] [CrossRef]
- Van Emburgh, B.O.; Sartore-Bianchi, A.; Di Nicolantonio, F.; Siena, S.; Bardelli, A. Acquired resistance to EGFR-targeted therapies in colorectal cancer. Mol Oncol 2014, 8, 1084–1094. [Google Scholar] [CrossRef]
- Karapetis, C.S.; Khambata-Ford, S.; Jonker, D.J.; O'Callaghan, C.J.; Tu, D.; Tebbutt, N.C.; Simes, R.J.; Chalchal, H.; Shapiro, J.D.; Robitaille, S.; et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 2008, 359, 1757–1765. [Google Scholar] [CrossRef]
- Benvenuti, S.; Sartore-Bianchi, A.; Di Nicolantonio, F.; Zanon, C.; Moroni, M.; Veronese, S.; Siena, S.; Bardelli, A. Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Res 2007, 67, 2643–2648. [Google Scholar] [CrossRef]
- Amado, R.G.; Wolf, M.; Peeters, M.; Van Cutsem, E.; Siena, S.; Freeman, D.J.; Juan, T.; Sikorski, R.; Suggs, S.; Radinsky, R.; et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 2008, 26, 1626–1634. [Google Scholar] [CrossRef]
- De Roock, W.; Claes, B.; Bernasconi, D.; De Schutter, J.; Biesmans, B.; Fountzilas, G.; Kalogeras, K.T.; Kotoula, V.; Papamichael, D.; Laurent-Puig, P.; et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 2010, 11, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Sartore-Bianchi, A.; Martini, M.; Molinari, F.; Veronese, S.; Nichelatti, M.; Artale, S.; Di Nicolantonio, F.; Saletti, P.; De Dosso, S.; Mazzucchelli, L.; et al. PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies. Cancer Res 2009, 69, 1851–1857. [Google Scholar] [CrossRef] [PubMed]
- Nahta, R.; Hung, M.C.; Esteva, F.J. The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res 2004, 64, 2343–2346. [Google Scholar] [CrossRef]
- Baselga, J.; Cameron, D.; Miles, D.; Verma, S.; Climent, M.; Ross, G.; Gimenez, V.; Gelmon, K. Objective response rate in a phase II multicenter trial of pertuzumab (P), a HER2 dimerization inhibiting monoclonal antibody, in combination with trastuzumab (T) in patients (pts) with HER2-positive metastatic breast cancer (MBC) which has progressed during treatment with T. Journal of Clinical Oncology 25, 1004. [Google Scholar] [CrossRef]
- Baselga, J.; Swain, S.M. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer 2009, 9, 463–475. [Google Scholar] [CrossRef] [PubMed]
- Desmonts, G.; Daffos, F.; Forestier, F.; Capella-Pavlovsky, M.; Thulliez, P.; Chartier, M. Prenatal diagnosis of congenital toxoplasmosis. Lancet 1985, 1, 500–504. [Google Scholar] [CrossRef]
- Masuda, H.; Zhang, D.; Bartholomeusz, C.; Doihara, H.; Hortobagyi, G.N.; Ueno, N.T. Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res Treat 2012, 136, 331–345. [Google Scholar] [CrossRef]
- Viale, G.; Rotmensz, N.; Maisonneuve, P.; Bottiglieri, L.; Montagna, E.; Luini, A.; Veronesi, P.; Intra, M.; Torrisi, R.; Cardillo, A.; et al. Invasive ductal carcinoma of the breast with the "triple-negative" phenotype: prognostic implications of EGFR immunoreactivity. Breast Cancer Res Treat 2009, 116, 317–328. [Google Scholar] [CrossRef]
- Finn, R.S. Targeting Src in breast cancer. Ann Oncol 2008, 19, 1379–1386. [Google Scholar] [CrossRef]
- Zheng, R.; Gagan, J.R.; Botten, G.A.; Koduru, P.; Weinberg, O.K.; Chen, M.; Cantu, M.D.; Jaso, J.; Germans, S.; Luu, H.S.; et al. Genomic Landscape of Mixed Phenotype Acute Leukemia Associated With Immunophenotypic Lineage Predominance: Impact on Diagnosis and Treatment. Eur J Haematol 2025. [Google Scholar] [CrossRef]
- Irby, R.B.; Yeatman, T.J. Role of Src expression and activation in human cancer. Oncogene 2000, 19, 5636–5642. [Google Scholar] [CrossRef]
- Zhang, J.; Kalyankrishna, S.; Wislez, M.; Thilaganathan, N.; Saigal, B.; Wei, W.; Ma, L.; Wistuba, II; Johnson, F. M.; Kurie, J.M. SRC-family kinases are activated in non-small cell lung cancer and promote the survival of epidermal growth factor receptor-dependent cell lines. Am J Pathol 2007, 170, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Ishizawar, R.C.; Miyake, T.; Parsons, S.J. c-Src modulates ErbB2 and ErbB3 heterocomplex formation and function. Oncogene 2007, 26, 3503–3510. [Google Scholar] [CrossRef] [PubMed]
- Tryfonopoulos, D.; Walsh, S.; Collins, D.M.; Flanagan, L.; Quinn, C.; Corkery, B.; McDermott, E.W.; Evoy, D.; Pierce, A.; O'Donovan, N.; et al. Src: a potential target for the treatment of triple-negative breast cancer. Ann Oncol 2011, 22, 2234–2240. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Dering, J.; Ginther, C.; Wilson, C.A.; Glaspy, P.; Tchekmedyian, N.; Slamon, D.J. Dasatinib, an orally active small molecule inhibitor of both the src and abl kinases, selectively inhibits growth of basal-type/"triple-negative" breast cancer cell lines growing in vitro. Breast Cancer Res Treat 2007, 105, 319–326. [Google Scholar] [CrossRef]
- Canonici, A.; Browne, A.L.; Ibrahim, M.F.K.; Fanning, K.P.; Roche, S.; Conlon, N.T.; O'Neill, F.; Meiller, J.; Cremona, M.; Morgan, C.; et al. Combined targeting EGFR and SRC as a potential novel therapeutic approach for the treatment of triple negative breast cancer. Ther Adv Med Oncol 2020, 12, 1758835919897546. [Google Scholar] [CrossRef]
- Belli, S.; Esposito, D.; Servetto, A.; Pesapane, A.; Formisano, L.; Bianco, R. c-Src and EGFR Inhibition in Molecular Cancer Therapy: What Else Can We Improve? Cancers (Basel) 2020, 12. [Google Scholar] [CrossRef]
- Yoshida, T.; Zhang, G.; Smith, M.A.; Lopez, A.S.; Bai, Y.; Li, J.; Fang, B.; Koomen, J.; Rawal, B.; Fisher, K.J.; et al. Tyrosine phosphoproteomics identifies both codrivers and cotargeting strategies for T790M-related EGFR-TKI resistance in non-small cell lung cancer. Clin Cancer Res 2014, 20, 4059–4074. [Google Scholar] [CrossRef]
- Shyam Sunder, S.; Sharma, U.C.; Pokharel, S. Adverse effects of tyrosine kinase inhibitors in cancer therapy: pathophysiology, mechanisms and clinical management. Signal Transduct Target Ther 2023, 8, 262. [Google Scholar] [CrossRef]
- Zhou, Y.; Yao, Z.; Lin, Y.; Zhang, H. From Tyrosine Kinases to Tyrosine Phosphatases: New Therapeutic Targets in Cancers and Beyond. Pharmaceutics 2024, 16. [Google Scholar] [CrossRef]
| Class | Family | Receptors |
|---|---|---|
| I | EGF/ErbB | EGFR, ErbB2/HER2, ErbB3/HER3, ErbB4/HER3 |
| II | Ins | InsR, IGF1R, InsRR |
| III | PDGF | PDGFRα, PDGFRβ, CSF1R, KIT, FLT3 |
| IV | VEGF | VEGFR1/Flt1, VEGFR2/KDR, VEGFR3/Flt4 |
| V | FGF | FGFR1, FGFR2, FGFR3, FGER4 |
| VI | PKT7 | PKT7/CCK4 |
| VII | TRK | TRKA, TRKB, TRKC |
| VIII | ROR | ROR1, ROR2 |
| IX | MuSK | MuSK |
| X | HGF | MET, MST1R(RON) |
| XI | TAM | AXL, MER, TYRO3 |
| XII | TIIE | TIE1, TEK(TIE2) |
| XIII | Eph | EphA1-8, EphA10, EphB1-4, EphB6 |
| XIV | RET | RET |
| XV | RYK | RYK |
| XVI | DDR | DDR1, DDR2 |
| XVII | ROS | ROS |
| XVIII | LMR | LMR1, LMR2, LMR3 |
| XIX | ALK | LTK, ALK |
| XX | STYK1 | STYK1 |
| Class of Tyrosine Kinase | Cancer type |
| EGFR (HER1, HER2, HER3, HER4) | Epithelial tumors-Lung, Breast and Colon[39,40]. |
| VEGFR-1-3 | Regulates angiogenesis and cell migration in tumors[44,45,46] |
| FGFR-1-4 | Tissue cancer [47] |
| TRKA, TRKB, TRKC (NTRK family) | Neuronal cancer[51,52] |
| RET | Implicated in multiple cancers[71,72] |
| RYK | Contributes to tumorigenesis[73,74] |
| DDR1, DDR2 | Regulate adhesion, invasion, survival in collagen-rich tumors[75,76,77] |
| ROS | Present in many cancers types[79] |
| LMTK/LMR | Cancer-linked; influence proliferation, migration [84,85] |
| ALK, LTK | Fusion-driven cancers (e.g., ALK fusions in lymphoma, lung cancer[86,88,89] |
| STYK | Involved in proliferation, survival; emerging cancer target [90] |
| Ack1 | Promotes tumor growth, chemoresistance, gene amplification[94,95] |
| JAK1, JAK2, JAK3, TYK2 | Crucial for immune modulation in cancers [108,109] |
| Fes, Fer | Signal for migration, survival; linked to oncogenesis[122,123,125] |
| FAK family | Adhesion, motility; high expression in aggressive tumors[135,136] |
| Src family | Major signaling mediators; upregulated in various tumors[151] |
| Abl, Arg | Leukemia[169,170,171] |
| Syk, Zap70 | Hematologic cancers[176] |
| TKIs from clinical studies, research studies result from patients with EGFR-mutated lung cancer drug target | TKI | Clinical phase | #pts (%EGFRm+) | RR% | Reference |
|---|---|---|---|---|---|
| 1st/2nd-generation EGFR TKI | Neratinib | II | 91 (100) | 3 | [258] |
| XL647 | II | 33 (53) | 3 | [259] | |
| Afatinib (A) vs. placebo (P) | IIB/III) | 585 (16) | 7 (A)<1 (P) | [260] | |
| Afatinib | II | 62 (73) | 8 | [261] | |
| Dacomitinib | II | 62 (73) | 8 | [262] | |
| MM-121 + erlotinib | II | 50 (48) | 9 | [263] | |
| AP26113 | I | 32 (35) | 3a | [264] | |
| Mutant-specific TKI | CO-1686 | I | 40 T790M+ (100) | 58 | [265] |
| AZD9291 | I | 107 T790M+ (100) | 64 | [266] | |
| HM61713 | I | 48 T790M+ (100) | 29 | [267] | |
| EGFR antibodies | Cetuximab + erlotinib | II | 19 (84) | 0 | [268] |
| Cetuximab + afatinib | IB | 126 (98) | 29 | [269] | |
| Chemotherapy | Carboplatin/paclitaxel | III | 52 (100) | 28.8 | [270] |
| Chemo/erlotinib (CE) vs. chemo (C) | Retro | 78 (100) | 41 (CE); 18 (C) | [271] | |
| Pemetrexed + gefitinib or erlotinib | II | 27 (100) | 25.9 | [272] |
| TKI | Family targeted | Inhibitor name | Application | Adverse effects (Cardio related) | Extra-cardio adverse effects |
|---|---|---|---|---|---|
| TKI-first generation | EGFR/ERBB family | Gefitinib[306] | NSCLC | MI | Skin rashes, nausea, diarrhea, anorexia, stomatitis, nausea, |
| TKI-first generation | EGFR/ERBB family | Icotinib[307] | NSCLC | HTN | Diarrhea, nausea, skin rashes, loss of appetite |
| TKI-first generation | EGFR/ERBB family | Lapatinib[308,309] | Breast cancer | HF, LVD | Skin rashes, diarrhea, nausea |
| TKI-first generation | EGFR/ERBB family | Erlotinib[308,309] | NSCLC and prostate cancer | Edema | Skin rashes, diarrhea, nausea, loss of appetite, fatigue, neuropathy, alopecia |
| TKI-second generation | EGFR/ERBB family | Afatinib[310,311] | NSCLC | HTN | Severe diarrhea, loss of appetite, paronmychia, dry skin, rashes |
| TKI-second generation | EGFR/ERBB family | Neratinib[312,313] | Breast cancer | Low rates and decline in LVEF and QT prolongation | GI related disorders, headache, fatigue, diarrhea |
| TKI-second generation | EGFR/ERBB family | Dacomitinib[314,315] | EGFR-mutated NSCLC | HTN | Dry Skin, appetite loss, diarrhea, Weight Loss, Alopecia, Cough, Hemorrhoids, Wound, Back pain, Headache |
| TKI-third generation | EGFR/ERBB family | Osimertinib[316] | NSCLC | MI, pericardial effusion, LVD, HF | Diarrhea, nausea, fatigue, stomatitis |
| TKI-third generation | EGFR/ERBB family | Pyrotinib[317,318] | HER2-postive | Diarrhea, Hand-foot syndrome, Leukopenia, Neutropenia, GI disorders, Increased ALT, Anemia, Asthenia | |
| TKI-third generation | EGFR/ERBB family | mobocertinib[319,320] | EGFR-mutation driven NSCLC | Dermatitis acneiform, GI Disorders, Rash, Dry skin, Stomatitis, Fatigue, Rash, Paronychia, Anemia |
| mAbs | Nature of molecule | Binds to | Antibody dependent cell mediated cytotoxicity (ADCC) |
Type of cancer tested |
Mechanism | Side effects | Clinical approved |
|---|---|---|---|---|---|---|---|
| Nimotuzumab[321] | Humanized, mouse mAb | Extracellular domain of EGFR, | - | Squamous cell carcinoma of head and neck (SCCHN), glioma and nasopharyngeal cancer | Prevents binding of EGF | Reported | Yes, III (approved for treating HNSCC in non-USA countries) |
| Zalutumumab[322] | Humanized IgG1 | Extracellular domain of EGFR | Squamous cell carcinoma of head and neck (SCCHN) | preventing the binding of ligands like EGF and TGF-alpha, thereby inhibiting EGFR signaling | YES, III | ||
| Trastuzumab[323,324] | Humanized IgG1 | Juxtamembrane domain IV | Yes | Several HER2-postive cancers including Breast and gastric cancer | Inhibits HER2 homodimers and ligand-independent HER2–HER3 dimers | Reported | YES |
| Pertuzumab[325] | Humanized IgG1 | Heterodimerization domain II | Yes | HER2-postive cancer such as breast cancer | Inhibits ligand-induced HER2-containing heterodimers | Reported | YES |
| Cetuximab[326,327] | Humanized IgG1 | Extracellular domain of EGFR | preventing the binding of ligands like EGF and TGF-alpha, thereby inhibiting EGFR signaling | Certain advanced colorectal, head and neck cancer | EGFR | Reported | Approved |
| Panitumumab[328] | Humanized IgG1 | Extracellular domain of EGFR | preventing the binding of ligands like EGF and TGF-alpha, thereby inhibiting EGFR signaling | Certain types of metastatic colorectal cancer (mCRC) | EGFR | Reported | Yes, III |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
