Submitted:
30 April 2025
Posted:
30 April 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Design and Procedure
2.2. Participants and Setting
2.3. Instrument Development
2.3.1. Item Generation
2.3.2. Expert Panel Review and Refinement
- Digital Fatigue (5 items)
- Technostress (5 items)
- Digital Disengagement (5 items)
- Work-Life Digital Boundaries (5 items)
2.4. Data Collection
2.5. Statistical Analysis
2.5.1. Exploratory Factor Analysis (EFA)
2.5.2. Confirmatory Factor Analysis (CFA)
2.5.3. Reliability Testing
2.5.4. Validity Testing
2.5.5. Regression Analysis
3. Results
3.1. Participant Characteristics
3.2. Item and Scale Descriptives
3.3. Exploratory Factor Analysis (EFA)
3.4. Confirmatory Factor Analysis (CFA)
3.5. Reliability Analysis
3.6. Convergent Validity
3.7. Regression Analysis
3.8. Item-Level Analysis of the DSC (Table 4)
3.8.1. Digital Fatigue (Items 1–5)
Impact on Clinical Focus and Job Satisfaction
Physical Strain and Documentation Preferences
Technostress
Digital Disengagement
Work-Life Digital Boundaries
4. Discussion
4.1. Digital Fatigue and Cognitive Overload
4.2. Technostress and System Complexity
4.3. Digital Disengagement and Therapeutic Erosion
4.4. Work-Life Digital Boundaries and Hyperconnectivity
4.5. Overall Scale Performance and Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ayyagari, R.; Grover, V.; Purvis, R. Technostress: Technological Antecedents and Implications. MIS Q. 2011, 35, 831–858. [Google Scholar] [CrossRef]
- Demerouti, E.; Bakker, A.B.; Nachreiner, F.; Schaufeli, W.B. The Job Demands-Resources Model of Burnout. J. Appl. Psychol. 2001, 86, 499–512. [Google Scholar] [CrossRef]
- Moloney, M.E.; Dietrich, D.M.; Strickland, P.O.; Myerburg, S. Using Electronic Health Records in Nursing Education: A Pilot Study to Support Learning. J. Nurs. Educ. 2019, 58, 93–96. [Google Scholar]
- Tarafdar, M.; Tu, Q.; Ragu-Nathan, T.S.; Ragu-Nathan, B.S. The Impact of Technostress on Role Stress and Productivity. J. Manag. Inf. Syst. 2007, 24, 301–328. [Google Scholar] [CrossRef]
- Derks, D.; Bakker, A.B. Smartphone Use, Work–Home Interference, and Burnout: A Diary Study on the Role of Recovery. Appl. Psychol. 2014, 63, 411–440. [Google Scholar] [CrossRef]
- Lee, J.; Clarke, C.L.; Carson, M.N. Health professionals’ Technostress: Validation of a New Scale. J. Adv. Nurs. 2019, 75, 2639–2649. [Google Scholar]
- Ferguson, C.; Jacobs, S.; Yates, P.; Mitchell, M.; White, K.M. Telehealth Use in Nursing Homes During COVID-19: Barriers and Facilitators. J. Clin. Nurs. 2021, 30, 2943–2952. [Google Scholar]
- Ragu-Nathan, T.S.; Tarafdar, M.; Ragu-Nathan, B.S.; Tu, Q. The Consequences of Technostress for End Users in Organizations: Conceptual Development and Empirical Validation. Inf. Syst. Res. 2008, 19, 417–433. [Google Scholar] [CrossRef]
- van der Vaart, R.; Drossaert, C.H.C. Development of the Digital Health Literacy Instrument: Measuring a Broad Spectrum of Health 1.0 and Health 2.0 Skills. J. Med. Internet Res. 2017, 19, e27. [Google Scholar] [CrossRef]
- Villagran, M.A. Cultural Competence in Research. Sch. Inf. Stud. Res. J. 2022, 12, 3. [Google Scholar] [CrossRef]
- Kaphle, S.; Hungerford, C.; Blanchard, D.; Doyle, K.; Ryan, C.; Cleary, M. Cultural Safety or Cultural Competence: How Can We Address Inequities in Culturally Diverse Groups? Issues Ment. Health Nurs. 2021, 43, 698–702. [Google Scholar] [CrossRef]
- Fischer, T.; Riedl, R.; Hess, T. Technostress Research: A Nurturing Ground for Measurement Pluralism? Commun. Assoc. Inf. Syst. 2019, 45, 20. [Google Scholar] [CrossRef]
- Salanova, M.; Llorens, S.; Cifre, E. The Dark Side of Technologies: Technostress among Users of Information and Communication Technologies. Int. J. Psychol. 2013, 48, 422–436. [Google Scholar] [CrossRef]
- Day, A.; Paquet, S.; Scott, N.; Hambley, L. Perceived Information and Communication Technology (ICT) Demands on Employee Outcomes: The Moderating Effect of Organizational ICT Support. J. Occup. Health Psychol. 2012, 17, 473–491. [Google Scholar] [CrossRef]
- La Torre, G.; Esposito, A.; Sciarra, I.; Chiappetta, M. Definition, Symptoms and Risk of Technostress: A Systematic Review. Int. Arch. Occup. Environ. Health 2019, 92, 13–35. [Google Scholar] [CrossRef]
- Argyriadis, A.; Paoullis, P.; Samsari, E.; Argyriadi, A. Self-Assessment Inclusion Scale (SAIS): A Tool for Measuring Inclusive Competence and Sensitivity. Perspect. Educ. 2023, 41, 34–49. [Google Scholar] [CrossRef]
- Carayon, P.; Smith, P. Work Organization and Ergonomics. Appl. Ergon. 2000, 31, 649–662. [Google Scholar] [CrossRef]
- Gaudioso, F.; Turel, O.; Galimberti, C. The Mediating Roles of Strain Facets and Coping Strategies in Translating Technostressors into Adverse Job Outcomes. Comput. Hum. Behav. 2017, 69, 189–196. [Google Scholar] [CrossRef]
- Marchiori, D.M.; Mainardes, E.W.; Rodrigues, R.G. Do Individual Characteristics Influence the Types of Technostress Reported by Workers? Int. J. Hum. Comput. Interact. 2019, 35, 218–230. [Google Scholar] [CrossRef]
- Sonnentag, S.; Fritz, C. The Recovery Experience Questionnaire: Development and Validation of a Measure for Assessing Recuperation and Unwinding from Work. J. Occup. Health Psychol. 2007, 12, 204–221. [Google Scholar] [CrossRef]
- Porter, G.; Kakabadse, N.K. HRM Perspectives on Addiction to Technology and Work. J. Manag. Dev. 2006, 25, 535–560. [Google Scholar] [CrossRef]
- Salanova, M.; Llorens, S.; Cifre, E. The Dark Side of Technologies: Technostress among Users of Information and Communication Technologies. Int. J. Psychol. 2013, 48, 422–436. [Google Scholar] [CrossRef]
- Rosen, L.D.; Lim, A.F.; Carrier, L.M.; Cheever, N.A. An Empirical Examination of the Educational Impact of Text Message-Induced Task Switching in the Classroom: Educational Implications and Strategies to Enhance Learning. Educ. Psychol. 2011, 31, 93–104. [Google Scholar] [CrossRef]
- Bennett, P.; Noble, S.; Johnston, S.; Jones, D.; Hunter, R. COVID-19 Confessions: A Qualitative Exploration of Healthcare Workers Experiences of Working During the Pandemic. BMJ Open 2020, 10, e043949. [Google Scholar] [CrossRef]
- Gagnon, M.P.; Ghandour el, K.; Talla, P.K.; Simonyan, D.; Godin, G.; Labrecque, M.; Ouimet, M.; Rousseau, M. Electronic Health Record Acceptance by Physicians: Testing an Integrated Theoretical Model. J. Biomed. Inform. 2014, 48, 17–27. [Google Scholar] [CrossRef]
- Kwon, M.; Lee, J.Y.; Won, W.Y.; Park, J.W.; Min, J.A.; Hahn, C.; Kim, D.J. Development and Validation of a Smartphone Addiction Scale (SAS). PLOS ONE 2013, 8, e56936. [Google Scholar] [CrossRef]
- Statista Research Department. Average Daily Time Spent on Digital Devices Worldwide 2019–2023. Statista 2023. Available online: https://www.statista.com (accessed on 20 March 2025).
- World Health Organization (WHO). Mental Health Atlas 2020. Geneva: WHO Press 2021. Available online: https://www.who.int/publications/i/item/9789240036703 (accessed on 20 March 2025).
- Argyriadis, A.; Patelarou, E.; Paoullis, P.; Patelarou, A.; Dimitrakopoulos, I.; Zisi, V.; Argyriadi, A. Self-Assessment of Health Professionals’ Cultural Competence: Knowledge, Skills, and Mental Health Concepts for Optimal Health Care. Int. J. Environ. Res. Public Health 2022, 19, 11282. [Google Scholar] [CrossRef]
- Argyriadis, A.; Fradelos, E.C.; Argyriadi, A.; Ziegler, E.; Kaba, E. Advancing Access to Quality LGBTQIA+ Health Care: Gender Discrimination, Socio-Cultural, and Mental Health Issues: A Mixed-Method Study. Int. J. Environ. Res. Public Health 2023, 20, 4767. [Google Scholar] [CrossRef]
| Variable | Value |
| Total Participants | 423 |
| Mean Age (years) | 39.4 |
| Standard Deviation (Age) | 6.2 |
| Gender - Female (%) | 71.4% |
| Gender - Male (%) | 28.6% |
| Mean Years of Experience | 9.8 |
| Standard Deviation (Experience) | 5.1 |
| Inpatient Setting (%) | 62% |
| Outpatient Setting (%) | 38% |
| Item No. | Subscale | EFA Loading | CFA Loading |
| 1 | Digital Fatigue | 0.78 | 0.74 |
| 2 | Digital Fatigue | 0.75 | 0.72 |
| 3 | Digital Fatigue | 0.81 | 0.78 |
| 4 | Digital Fatigue | 0.72 | 0.69 |
| 5 | Digital Fatigue | 0.69 | 0.67 |
| 6 | Technostress | 0.82 | 0.79 |
| 7 | Technostress | 0.79 | 0.76 |
| 8 | Technostress | 0.84 | 0.82 |
| 9 | Technostress | 0.76 | 0.74 |
| 10 | Technostress | 0.74 | 0.71 |
| 11 | Digital Disengagement | 0.8 | 0.77 |
| 12 | Digital Disengagement | 0.77 | 0.75 |
| 13 | Digital Disengagement | 0.73 | 0.71 |
| 14 | Digital Disengagement | 0.78 | 0.76 |
| 15 | Digital Disengagement | 0.71 | 0.69 |
| 16 | Work-Life Boundaries | 0.83 | 0.81 |
| 17 | Work-Life Boundaries | 0.79 | 0.78 |
| 18 | Work-Life Boundaries | 0.76 | 0.74 |
| 19 | Work-Life Boundaries | 0.81 | 0.8 |
| 20 | Work-Life Boundaries | 0.74 | 0.72 |
| Predictor | Beta Coefficient (β) | Standard Error | t-value | p-value |
| Digital Fatigue | 0.35 | 0.04 | 8.75 | < 0.001 |
| Technostress | 0.28 | 0.05 | 5.6 | < 0.001 |
| Digital Disengagement | 0.22 | 0.04 | 5.5 | < 0.001 |
| Work-Life Digital Boundaries | 0.26 | 0.05 | 5.2 | < 0.001 |
| Item No. | Item Description | Mean | SD | Item-Total Correlation (r) | Correlation with Burnout | Correlation with Stress | Correlation with Job Satisfaction |
| 1 | Mentally exhausted after EHR use | 3.41 | 1.27 | 0.71 | 0.67 | 0.59 | -0.58 |
| 2 | Overwhelmed by multiple digital platforms | 3.35 | 1.33 | 0.69 | 0.52 | 0.55 | -0.47 |
| 3 | Digital tasks reduce patient focus | 3.38 | 1.22 | 0.74 | 0.61 | 0.57 | -0.56 |
| 4 | Physical strain from screen use | 3.18 | 1.36 | 0.63 | 0.48 | 0.51 | -0.42 |
| 5 | Prefer paper over digital documentation | 3.04 | 1.41 | 0.59 | 0.46 | 0.45 | -0.4 |
| 6 | Stress from learning new systems | 3.56 | 1.3 | 0.73 | 0.65 | 0.63 | -0.5 |
| 7 | Frequent updates disrupt workflow | 3.42 | 1.29 | 0.7 | 0.57 | 0.58 | -0.46 |
| 8 | Technical problems cause frustration | 3.49 | 1.34 | 0.76 | 0.59 | 0.6 | -0.48 |
| 9 | Too many alerts/notifications | 3.29 | 1.37 | 0.68 | 0.51 | 0.61 | -0.44 |
| 10 | Inadequate training in digital tools | 3.11 | 1.42 | 0.66 | 0.54 | 0.53 | -0.43 |
| 11 | Digital tools reduce human connection | 3.52 | 1.27 | 0.71 | 0.64 | 0.6 | -0.64 |
| 12 | More time on screens than with patients | 3.33 | 1.34 | 0.7 | 0.55 | 0.56 | -0.53 |
| 13 | Emotionally detached due to documentation | 3.14 | 1.38 | 0.65 | 0.58 | 0.52 | -0.58 |
| 14 | Telepsychiatry feels less personal | 3.27 | 1.31 | 0.67 | 0.53 | 0.54 | -0.51 |
| 15 | Technology limits holistic care | 3.1 | 1.35 | 0.61 | 0.5 | 0.49 | -0.49 |
| 16 | Check work messages outside shifts | 3.61 | 1.36 | 0.75 | 0.62 | 0.68 | -0.68 |
| 17 | Hard to disconnect from work | 3.47 | 1.33 | 0.72 | 0.6 | 0.66 | -0.62 |
| 18 | Digital work affects sleep | 3.28 | 1.37 | 0.68 | 0.56 | 0.58 | -0.59 |
| 19 | Expected to be available after hours | 3.5 | 1.34 | 0.73 | 0.61 | 0.65 | -0.6 |
| 20 | Less time for self-care due to digital work | 3.17 | 1.39 | 0.66 | 0.49 | 0.5 | -0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
