Submitted:
29 April 2025
Posted:
30 April 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Background and Related Work
2.1. Carbon Storage Modeling Approaches Across Dimensional Scales
2.2. Sources of Uncertainty in 2D Versus 3D Carbon Storage Models
2.3. Machine Learning for Cross-Dimensional Surrogate Modeling
2.4. Uncertainty Quantification Techniques for Dimensional Transfer
3. Materials and Methods
3.1. Mathematical Formulation of Carbon Storage Models
3.1.1. 2D Carbon Storage Model
3.1.2. 3D Carbon Storage Model
3.2. Dataset Generation
3.2.1. Parameter Space Sampling
3.2.2. Simulation Setup
3.2.3. Data Preprocessing
3.3. Dimension-Adaptive Machine Learning Architecture
3.3.1. Overall Framework
3.3.2. Dimension-Adaptive Neural Network
3.3.3. Bayesian Formulation for Uncertainty Quantification
3.3.4. Cross-Dimensional Transfer Learning
3.3.5. Network Architecture Details
3.3.6. Training Procedure and Loss Function
3.4. Evaluation Metrics
4. Results
4.1. Prediction Accuracy Across Dimensional Scales
4.2. Uncertainty Quantification Performance
4.3. Parameter Interdependencies and Dimensional Uncertainty Gap
4.4. Computational Efficiency
4.5. Application to Risk Assessment
4.6. Generalizability to Different Geological Settings
5. Discussion
5.1. Implications for Carbon Storage Modeling
5.2. Advantages and Limitations of the Machine Learning Approach
5.3. Computational Considerations and Scalability
5.4. Implementation Challenges and Regulatory Considerations
5.5. Real-World Field Data Integration and Preprocessing
5.6. Dimensional Uncertainty Gap and Monitoring Implications
6. Conclusions
References
- Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Barret, K.; et al. IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland. 2023.
- Haque, F.; Santos, R.M.; Chiang, Y.W. Urban farming with enhanced rock weathering as a prospective climate stabilization wedge. Environmental Science & Technology 2021, 55, 13575–13578. [Google Scholar]
- Fentaw, J.W.; Emadi, H.; Hussain, A.; Fernandez, D.M.; Thiyagarajan, S.R. Geochemistry in Geological CO2 Sequestration: A Comprehensive Review. Energies 2024, 17, 5000. [Google Scholar] [CrossRef]
- Dai, S.; Liao, T.; Wu, Y. Progress of CO2 geological storage research, policy development and suggestions in China. Carbon Management 2025, 16, 2485104. [Google Scholar] [CrossRef]
- Zuberi, M.J.S.; Shehabi, A.; Rao, P. Cross-sectoral assessment of CO2 capture from US industrial flue gases for fuels and chemicals manufacture. International Journal of Greenhouse Gas Control 2024, 135, 104137. [Google Scholar] [CrossRef]
- Flemisch, B.; Nordbotten, J.M.; Fernø, M.; Juanes, R.; Both, J.W.; Class, H.; Delshad, M.; Doster, F.; Ennis-King, J.; Franc, J.; et al. The FluidFlower validation benchmark study for the storage of CO 2. Transport in Porous Media 2024, 151, 865–912. [Google Scholar] [CrossRef]
- Wen, G.; Li, Z.; Long, Q.; Azizzadenesheli, K.; Anandkumar, A.; Benson, S.M. Real-time high-resolution CO 2 geological storage prediction using nested Fourier neural operators. Energy & Environmental Science 2023, 16, 1732–1741. [Google Scholar]
- Enyi, Y.; Yuan, D.; Hui, W.; Xiaopeng, C.; Qingfu, Z.; Chuanbao, Z. Numerical simulation on risk analysis of CO 2 geological storage under multi-field coupling: a review. Chinese Journal of Theoretical and Applied Mechanics 2023, 55, 2075–2090. [Google Scholar]
- Mahjour, S.K.; Faroughi, S.A. Risks and uncertainties in carbon capture, transport, and storage projects: A comprehensive review. Gas Science and Engineering 2023, 119, 205117. [Google Scholar] [CrossRef]
- Saad, B.M.; Alexanderian, A.; Prudhomme, S.; Knio, O.M. Probabilistic modeling and global sensitivity analysis for CO2 storage in geological formations: a spectral approach. Applied Mathematical Modelling 2018, 53, 584–601. [Google Scholar] [CrossRef]
- Brown, C.F.; Lackey, G.; Mitchell, N.; Baek, S.; Schwartz, B.; Dean, M.; Dilmore, R.; Blanke, H.; O’Brien, S.; Rowe, C. Integrating risk assessment methods for carbon storage: A case study for the quest carbon capture and storage facility. International Journal of Greenhouse Gas Control 2023, 129, 103972. [Google Scholar] [CrossRef]
- Köppel, M.; Franzelin, F.; Kröker, I.; Oladyshkin, S.; Santin, G.; Wittwar, D.; Barth, A.; Haasdonk, B.; Nowak, W.; Pflüger, D.; et al. Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario. Computational Geosciences 2019, 23, 339–354. [Google Scholar] [CrossRef]
- Mahjour, S.K.; Santos, A.A.S.; Santos, S.M.d.G.; Schiozer, D.J. Selection of representative scenarios using multiple simulation outputs for robust well placement optimization in greenfields. In Proceedings of the SPE Annual Technical Conference and Exhibition? SPE, 2021, p. D011S020R003.
- Jenkins, C.; Pestman, P.; Carragher, P.; Constable, R. Long-term risk assessment of subsurface carbon storage: analogues, workflows and quantification. Geoenergy 2024, 2, geoenergy2024–014. [Google Scholar] [CrossRef]
- Alqahtani, A.; He, X.; Yan, B.; Hoteit, H. Uncertainty analysis of CO2 storage in deep saline aquifers using machine learning and Bayesian optimization. Energies 2023, 16, 1684. [Google Scholar] [CrossRef]
- Abdellatif, A.; Elsheikh, A.H.; Busby, D.; Berthet, P. Generation of non-stationary stochastic fields using Generative Adversarial Networks with limited training data. arXiv 2022, arXiv:2205.05469. [Google Scholar]
- Chandrasekaran, S.; Gorman, C.; Mhaskar, H.N. Minimum Sobolev norm interpolation of scattered derivative data. Journal of Computational Physics 2018, 365, 149–172. [Google Scholar] [CrossRef]
- Mura, M.; Sharma, M.M. Mechanisms of Degradation of Cement in CO2 Injection Wells: Maintaining the Integrity of CO2 Seals. In Proceedings of the SPE International Conference and Exhibition on Formation Damage Control. SPE, 2024, p. D011S006R004.
- Wang, Q.Y. High order difference schemes for nonlinear Riesz space variable-order fractional diffusion equations. Computers & Mathematics with Applications 2025, 188, 221–243. [Google Scholar]
- Hermans, T.; Goderniaux, P.; Jougnot, D.; Fleckenstein, J.H.; Brunner, P.; Nguyen, F.; Linde, N.; Huisman, J.A.; Bour, O.; Lopez Alvis, J.; et al. Advancing measurements and representations of subsurface heterogeneity and dynamic processes: towards 4D hydrogeology. Hydrology and Earth System Sciences 2023, 27, 255–287. [Google Scholar] [CrossRef]
- Kutsienyo, E.J.; Appold, M.S.; White, M.D.; Ampomah, W. Numerical modeling of CO2 sequestration within a five-spot well pattern in the morrow B sandstone of the farnsworth hydrocarbon field: Comparison of the toughreact, stomp-eor, and gem simulators. Energies 2021, 14, 5337. [Google Scholar] [CrossRef]
- Kim, K.Y.; Oh, J.; Han, W.S.; Park, K.G.; Shinn, Y.J.; Park, E. Two-phase flow visualization under reservoir conditions for highly heterogeneous conglomerate rock: A core-scale study for geologic carbon storage. Scientific reports 2018, 8, 4869. [Google Scholar] [CrossRef]
- ALAMARA, H.; BLONDEAU, C.; THIBEAU, S.; BOGDANOV, I. Vertical Equilibrium Simulation for Industrial-Scale CO2 Storage in Heterogeneous Aquifers 2025.
- Templeton, D.C.; Schoenball, M.; Layland-Bachmann, C.; Foxall, W.; Guglielmi, Y.; Kroll, K.; Burghardt, J.; Dilmore, R.; White, J. Recommended practices for managing induced seismicity risk associated with geologic Carbon storage. Technical report, Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States …, 2021.
- Juanes, R.; MacMinn, C.W.; Szulczewski, M.L. The footprint of the CO 2 plume during carbon dioxide storage in saline aquifers: storage efficiency for capillary trapping at the basin scale. Transport in porous media 2010, 82, 19–30. [Google Scholar] [CrossRef]
- Khan, S.; Han, H.; Ansari, S.; Khosravi, N. An integrated geomechanics workflow for Caprock-integrity analysis of a potential carbon storage. In Proceedings of the SPE International Conference on CO2 Capture, Storage, and Utilization. SPE, 2010, pp. SPE–139477.
- Postma, T.; Bandilla, K.; Peters, C.; Celia, M. Field-Scale Modeling of CO2 Mineral Trapping in Reactive Rocks: A Vertically Integrated Approach. Water Resources Research 2022, 58, e2021WR030626. [Google Scholar] [CrossRef]
- Ahmadinia, M.; Shariatipour, S.M.; Andersen, O.; Sadri, M. Benchmarking of vertically integrated models for the study of the impact of caprock morphology on CO2 migration. International Journal of Greenhouse Gas Control 2019, 90, 102802. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Y.; Zhang, Q.; Wang, Q.; Song, H.; Sun, H.; Zhang, L.; Zhong, J.; Zhang, K.; Yao, J. Pore scale modeling of wettability impact on CO2 capillary and dissolution trapping in natural porous media. Advances in Water Resources 2025, 104982. [Google Scholar] [CrossRef]
- Bachu, S. Review of CO2 storage efficiency in deep saline aquifers. International Journal of Greenhouse Gas Control 2015, 40, 188–202. [Google Scholar] [CrossRef]
- Zhang, Q.; Hirsch, R.M. River water-quality concentration and flux estimation can be improved by accounting for serial correlation through an autoregressive model. Water Resources Research 2019, 55, 9705–9723. [Google Scholar] [CrossRef]
- Joel, A.S.; Wang, M.; Ramshaw, C.; Oko, E. Process analysis of intensified absorber for post-combustion CO2 capture through modelling and simulation. International Journal of Greenhouse Gas Control 2014, 21, 91–100. [Google Scholar] [CrossRef]
- Li, B.; Li, Y.E. Neural network-based co2 interpretation from 4d sleipner seismic images. Journal of Geophysical Research: Solid Earth 2021, 126, e2021JB022524. [Google Scholar] [CrossRef]
- Wang, H.; Kou, Z.; Ji, Z.; Wang, S.; Li, Y.; Jiao, Z.; Johnson, M.; McLaughlin, J.F. Investigation of enhanced CO2 storage in deep saline aquifers by WAG and brine extraction in the Minnelusa sandstone, Wyoming. Energy 2023, 265, 126379. [Google Scholar] [CrossRef]
- Hamed, M.; Shirif, E. Sustainable CO2 Storage Assessment in Saline Aquifers Using a Hybrid ANN and Numerical Simulation Model Across Different Trapping Mechanisms. Sustainability 2025, 17, 2904. [Google Scholar] [CrossRef]
- Hamed, M.; Shirif, E. Sustainable CO2 Storage Assessment in Saline Aquifers Using a Hybrid ANN and Numerical Simulation Model Across Different Trapping Mechanisms. Sustainability 2025, 17, 2904. [Google Scholar] [CrossRef]
- Kim, S.; Hosseini, S.A. Above-zone pressure monitoring and geomechanical analyses for a field-scale CO2 injection project in Cranfield, MS. Greenhouse Gases: Science and Technology 2014, 4, 81–98. [Google Scholar] [CrossRef]
- James, O.; Alokla, K.; Voulanas, D.; Okoroafor, R. Exploring Sparsity-Promoting Dynamic Mode Decomposition for Data-Driven Reduced Order Modeling of Geological CO2 Storage. In Proceedings of the SPE Annual Technical Conference and Exhibition? SPE, 2024, p. D021S028R006.
- Zhou, Z.; Zabaras, N.; Tartakovsky, D.M. Deep learning for simultaneous inference of hydraulic and transport properties. Water Resources Research 2022, 58, e2021WR031438. [Google Scholar] [CrossRef]
- Panda, N.; Osthus, D.; Srinivasan, G.; O’Malley, D.; Chau, V.; Wen, D.; Godinez, H. Mesoscale informed parameter estimation through machine learning: A case-study in fracture modeling. Journal of Computational Physics 2020, 420, 109719. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Zhang, N. Advancing practical geological CO2 sequestration simulations through transfer learning integration and physics-informed networks. Gas Science and Engineering 2025, 134, 205523. [Google Scholar] [CrossRef]
- Kazemi, A.; Esmaeili, M. Reservoir Surrogate Modeling Using U-Net with Vision Transformer and Time Embedding. Processes 2025, 13, 958. [Google Scholar] [CrossRef]
- Hillier, M.; Wellmann, F.; Brodaric, B.; de Kemp, E.; Schetselaar, E. Three-dimensional structural geological modeling using graph neural networks. Mathematical geosciences 2021, 53, 1725–1749. [Google Scholar] [CrossRef]
- Wang, Y.; Chu, H.; Lyu, X. Deep learning in CO2 geological utilization and storage: Recent advances and perspectives. Advances in Geo-Energy Research 2024, 13, 161–165. [Google Scholar] [CrossRef]
- Kamil, H.; Soulaïmani, A.; Beljadid, A. A transfer learning physics-informed deep learning framework for modeling multiple solute dynamics in unsaturated soils. Computer Methods in Applied Mechanics and Engineering 2024, 431, 117276. [Google Scholar] [CrossRef]
- Le, V.H.; Caumon, M.C.; Tarantola, A. FRAnCIs calculation program with universal Raman calibration data for the determination of PVX properties of CO2–CH4–N2 and CH4–H2O–NaCl systems and their uncertainties. Computers & Geosciences 2021, 156, 104896. [Google Scholar]
- Amrouche, F.; Xu, D.; Short, M.; Iglauer, S.; Vinogradov, J.; Blunt, M.J. Experimental study of electrical heating to enhance oil production from oil-wet carbonate reservoirs. Fuel 2022, 324, 124559. [Google Scholar] [CrossRef]
- Sun, L.; Gao, H.; Pan, S.; Wang, J.X. Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data. Computer Methods in Applied Mechanics and Engineering 2020, 361, 112732. [Google Scholar] [CrossRef]
- Zhu, L.; Lu, W.; Luo, C. A high-precision and interpretability-enhanced direct inversion framework for groundwater contaminant source identification using multiple machine learning techniques. Journal of Hydrology 2025, 133237. [Google Scholar] [CrossRef]
- Kovshov, V.; Lukyanova, M.; Zalilova, Z.; Frolova, O.; Galin, Z. International regional competitiveness of rural territories as a factor of their socio-economic development: Methodological aspects. Heliyon 2024, 10. [Google Scholar] [CrossRef] [PubMed]
- Faghani, S.; Gamble, C.; Erickson, B.J. Uncover this tech term: uncertainty quantification for deep learning. Korean Journal of Radiology 2024, 25, 395. [Google Scholar] [CrossRef]
- Mahjour, S.K.; Badhan, J.H.; Faroughi, S.A. Uncertainty Quantification in CO2 Trapping Mechanisms: A Case Study of PUNQ-S3 Reservoir Model Using Representative Geological Realizations and Unsupervised Machine Learning. Energies 2024, 17, 1180. [Google Scholar] [CrossRef]
- Faghani, S.; Moassefi, M.; Rouzrokh, P.; Khosravi, B.; Baffour, F.I.; Ringler, M.D.; Erickson, B.J. Quantifying uncertainty in deep learning of radiologic images. Radiology 2023, 308, e222217. [Google Scholar] [CrossRef]
- Mahjour, S.K.; Santos, A.A.S.; Correia, M.G.; Schiozer, D.J. Scenario reduction methodologies under uncertainties for reservoir development purposes: distance-based clustering and metaheuristic algorithm. Journal of Petroleum Exploration and Production Technology 2021, 11, 3079–3102. [Google Scholar] [CrossRef]
- Tartakovsky, A.M.; Marrero, C.O.; Perdikaris, P.; Tartakovsky, G.D.; Barajas-Solano, D. Physics-informed deep neural networks for learning parameters and constitutive relationships in subsurface flow problems. Water Resources Research 2020, 56, e2019WR026731. [Google Scholar] [CrossRef]
- Moortgat, J.; Amooie, M.A.; Soltanian, M.R. Implicit finite volume and discontinuous Galerkin methods for multicomponent flow in unstructured 3D fractured porous media. Advances in water resources 2016, 96, 389–404. [Google Scholar] [CrossRef]
- Berends, K.D.; Ji, U.; Penning, W.E.; Warmink, J.J.; Kang, J.; Hulscher, S.J. Stream-scale flow experiment reveals large influence of understory growth on vegetation roughness. Advances in Water Resources 2020, 143, 103675. [Google Scholar] [CrossRef]
- Xiao, W.; Shen, Y.; Zhao, J.; Lv, L.; Chen, J.; Zhao, W. An Adaptive Multi-Fidelity Surrogate Model for Uncertainty Propagation Analysis. Applied Sciences 2025, 15, 3359. [Google Scholar] [CrossRef]
- Mahjour, S.K.; da Silva, L.O.M.; Meira, L.A.A.; Coelho, G.P.; dos Santos, A.A.d.S.; Schiozer, D.J. Evaluation of unsupervised machine learning frameworks to select representative geological realizations for uncertainty quantification. Journal of Petroleum Science and Engineering 2022, 209, 109822. [Google Scholar] [CrossRef]
- Fernández-Godino, M.G. Review of multi-fidelity models. arXiv 2016, arXiv:1609.07196. [Google Scholar]
- Nole, M.; Bartrand, J.; Naim, F.; Hammond, G. Modeling commercial-scale CO 2 storage in the gas hydrate stability zone with PFLOTRAN v6. 0. Geoscientific Model Development 2025, 18, 1413–1425. [Google Scholar] [CrossRef]
- Alzahrani, M.K.; Shapoval, A.; Chen, Z.; Rahman, S.S. MicroGraphNets: Automated characterization of the micro-scale wettability of porous media using graph neural networks. Capillarity 2024, 12, 57–71. [Google Scholar] [CrossRef]
- Fang, X.; Lv, Y.; Yuan, C.; Zhu, X.; Guo, J.; Liu, W.; Li, H. Effects of reservoir heterogeneity on CO2 dissolution efficiency in randomly multilayered formations. Energies 2023, 16, 5219. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, Y.; Pang, H.; Lin, B. Upscaling for Full-Physics Models of CO2 Injection Into Saline Aquifers. SPE Journal 2025, 1–18. [Google Scholar] [CrossRef]
- Shah, S.Y.A.; Du, J.; Iqbal, S.M.; Du, L.; Khan, U.; Zhang, B.; Tan, J. Integrated Three-Dimensional Structural and Petrophysical Modeling for Assessment of CO2 Storage Potential in Gas Reservoir. Lithosphere 2024, 2024, lithosphere_2024_222. [Google Scholar] [CrossRef]
- Vo Thanh, H.; Sugai, Y.; Sasaki, K. Impact of a new geological modelling method on the enhancement of the CO2 storage assessment of E sequence of Nam Vang field, offshore Vietnam. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2020, 42, 1499–1512. [Google Scholar] [CrossRef]
- Rathmaier, D.; Naim, F.; William, A.C.; Chakraborty, D.; Conwell, C.; Imhof, M.; Holmes, G.M.; Zerpa, L.E. A reservoir modeling study for the evaluation of CO2 storage upscaling at the decatur site in the Eastern Illinois Basin. Energies 2024, 17, 1212. [Google Scholar] [CrossRef]
- Petríková, D.; Cimrák, I. Survey of recent deep neural networks with strong annotated supervision in histopathology. Computation 2023, 11, 81. [Google Scholar] [CrossRef]
- Bachu, S. Review of CO2 storage efficiency in deep saline aquifers. International Journal of Greenhouse Gas Control 2015, 40, 188–202. [Google Scholar] [CrossRef]
- Duchanoy, C.A.; Calvo, H.; Moreno-Armendáriz, M.A. ASAMS: An adaptive sequential sampling and automatic model selection for artificial intelligence surrogate modeling. Sensors 2020, 20, 5332. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Spycher, N.; Doughty, C.; Pruess, K. ECO2N V2. 0: A TOUGH2 fluid property module for modeling CO2-H2O-NACL systems to elevated temperatures of up to 300° C. Greenhouse Gases: Science and Technology 2017, 7, 313–327. [Google Scholar] [CrossRef]
- Liu, N.; Deng, W.; Li, F.; Wang, Z.; Wu, H.; Gao, J. Recent advances on deep residual learning based seismic data reconstruction: an overview. Journal of Geophysics and Engineering 2025, gxaf011. [Google Scholar] [CrossRef]
- Mao, S.; Carbonero, A.; Mehana, M. Deep learning for subsurface flow: A comparative study of U-net, Fourier neural operators, and transformers in underground hydrogen storage. Journal of Geophysical Research: Machine Learning and Computation 2025, 2, e2024JH000401. [Google Scholar] [CrossRef]
- Bera, P.; Bhanja, S. Quantification of Uncertainties in Probabilistic Deep Neural Network by Implementing Boosting of Variational Inference. arXiv 2025, arXiv:2503.13909. [Google Scholar]
- Kummaraka, U.; Srisuradetchai, P. Monte Carlo Dropout Neural Networks for Forecasting Sinusoidal Time Series: Performance Evaluation and Uncertainty Quantification. Applied Sciences 2025, 15, 4363. [Google Scholar] [CrossRef]
- Li, Z.; Hu, X.; Qian, J.; Zhao, T.; Xu, D.; Wang, Y. Self-Supervised Feature Contrastive Learning for Small Weak Object Detection in Remote Sensing. Remote Sensing 2025, 17, 1438. [Google Scholar] [CrossRef]
- Guo, Y.; Fu, Z.; Min, J.; Lin, S.; Liu, X.; Rashed, Y.F.; Zhuang, X. Long-term simulation of physical and mechanical behaviors using curriculum-transfer-learning based physics-informed neural networks. arXiv 2025, arXiv:2502.07325. [Google Scholar]
- Chen, Y.; Wan, Z.; Zhuang, Y.; Liu, N.; Lo, D.; Yang, X. Understanding the OSS Communities of Deep Learning Frameworks: A Comparative Case Study of PyTorch and TensorFlow. ACM Transactions on Software Engineering and Methodology 2025, 34, 1–30. [Google Scholar] [CrossRef]
- Yang, J.; Long, Q. A modification of adaptive moment estimation (adam) for machine learning. Journal of Industrial and Management Optimization 2024, 20, 2516–2540. [Google Scholar] [CrossRef]
- Loshchilov, I.; Hutter, F. Sgdr: Stochastic gradient descent with warm restarts. arXiv 2016, arXiv:1608.03983. [Google Scholar]
- Garain, B.C.; Pinheiro Jr, M.; Bispo, M.O.; Barbatti, M. Enhancing Uncertainty Quantification in Molecular Machine Learning: A Comparative Study of Deep Evidential Regression and Ensembles with Posthoc Calibration 2025.












| Feature | This work | Zhu & Zabaras [17] | 3D CNNs [43] | Dropout-based UQ [49] |
|---|---|---|---|---|
| Dimensional capability | 2D and 3D with cross-dimensional transfer | Single dimension (2D) | Single dimension (3D) | Single dimension (2D) |
| UQ approach | Bayesian neural networks with aleatoric and epistemic uncertainty separation | Bayesian deep convolutional encoder-decoder | Deterministic with ensemble-based UQ | Monte Carlo dropout |
| Physical constraints | Explicit physics-informed constraints | Implicit through data | None | None |
| Parameter interdependencies | Explicitly modeled | Not addressed | Not addressed | Not addressed |
| Computational efficiency | × vs. Monte Carlo | × vs. Monte Carlo | × vs. Monte Carlo | × vs. Monte Carlo |
| Real-world applicability | Tested on multiple geological scenarios | Limited to synthetic cases | Single reservoir type | Single reservoir type |
| Parameter | Minimum | Maximum | Units |
|---|---|---|---|
| Log-permeability mean (aquifer) | -14 | -12 | log() |
| Log-permeability mean (aquitard) | -17 | -15 | log() |
| Log-permeability variance | 0.5 | 2.0 | log()2 |
| Porosity mean (aquifer) | 0.1 | 0.3 | - |
| Porosity mean (aquitard) | 0.05 | 0.15 | - |
| Porosity variance | 0.001 | 0.01 | - |
| Residual saturation | 0.05 | 0.3 | - |
| Residual brine saturation | 0.1 | 0.4 | - |
| Brooks-Corey exponent () | 1.5 | 4.0 | - |
| Brooks-Corey exponent (brine) | 1.5 | 4.0 | - |
| Entry pressure | Pa | ||
| Pore size distribution index | 0.3 | 0.7 | - |
| Anisotropy ratio (/) | 0.01 | 0.5 | - |
| Horizontal correlation length | 500 | 5000 | m |
| Vertical correlation length | 5 | 50 | m |
| Injection rate | 0.5 | 2.0 | Mt/year |
| Injection duration | 10 | 30 | years |
| Regional pressure gradient | 0 | 500 | Pa/m |
| Model | Saturation RMSE | Pressure RMSE (MPa) | ||
|---|---|---|---|---|
| 2D | 3D | 2D | 3D | |
| Dimension-specific | 0.035 | 0.058 | 0.17 | 0.31 |
| Dimension-adaptive (ours) | 0.031 | 0.042 | 0.15 | 0.22 |
| Improvement | 11.4% | 27.6% | 11.8% | 29.0% |
| Method | PICP (%) | MPIW | ||
|---|---|---|---|---|
| 2D | 3D | 2D | 3D | |
| Monte Carlo Dropout | 89.5 | 86.2 | 0.16 | 0.21 |
| Deep Ensembles | 92.3 | 90.5 | 0.19 | 0.26 |
| Gaussian Process | 94.2 | N/A | 0.22 | N/A |
| Our Framework | 93.8 | 92.1 | 0.18 | 0.24 |
| Method | Computation Time | Speedup Factor | Memory (MB) |
|---|---|---|---|
| Full Physics Simulation (2D) | 20 min | 1× | N/A |
| Full Physics Simulation (3D) | 8 hours | 1× | N/A |
| Monte Carlo UQ (1000 samples, 2D) | 14 days | 1× | N/A |
| Monte Carlo UQ (1000 samples, 3D) | 333 days | 1× | N/A |
| Polynomial Chaos Expansion | 2-6 hours | -10 | 50-100 |
| Sparse Grid Interpolation | 1-4 hours | -10 | 100-200 |
| Our Framework (2D prediction) | 0.2 sec | 6×10 | 125 |
| Our Framework (3D prediction) | 1.5 sec | 1.9×10 | 400 |
| Our Framework (UQ, 2D) | 15 sec | 8×10 | 125 |
| Our Framework (UQ, 3D) | 2 min | 2.4×10 | 400 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).