Submitted:
28 April 2025
Posted:
28 April 2025
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Materials & Methods
2.1. Review Methodology
2.1.1. Asset Pricing Model: Fama-French Five-Factor Model
2.1.2. ESG Risk Ratings Data Sources
2.2. Panel Data Regression Analysis
3. Results
3.1. Theoretical Background and Literature Review
3.1.1. International E-commerce and Digital Marketing Landscape
3.1.2. Emergent Technologies in Marketing: Artificial Intelligence (AI), Agentic AI, Metaverse and Extended Reality (XR)
3.1.3. Other Relevant Technologies
3.1.4. Core Marketing Concepts in the Technologically-Mediated International Context and Consumer Behavior
3.1.5. Customer Relationship Management (CRM), Branding and Reputation Management
3.1.6. Sustainability and Ethical Marketing
3.1.7. Theoretical Frameworks: Technology Adoption (UTAUT/UTAUT2)
3.1.8. Cross-Cultural Adaptation (Hofstede’s Cultural Dimensions)
3.1.9. Value Creation (Service-Dominant (S-D) Logic)
3.2. Results of the Test of Model Selection
3.2.1. Analysis of Pooled OLS with Interactions Model (Formula Type—Pooled Spec Robust SE).
3.2.2. Analysis of Random Effects RE_Simple Model, Formula Type - RE Spec
3.2.3. Preferred Model: Entity Fixed Effects Analysis
4. Discussion
4.1. Summary of Key Findings
4.2. Theoretical Implications
4.3. Practical and Managerial Implications
4.4. Limitations
4.5. Future Research Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflict of Interest
Abbreviations
| AI: | Artificial Intelligence |
| AR: | Augmented Reality |
| CAPM: | Capital Asset Pricing Model |
| CMA: | Conservative Minus Aggressive (Fama-French Factor) |
| CRM: | Customer Relationship Management |
| ESG: | Environmental, Social, and Governance |
| EU: | European Union |
| FE: | Fixed Effects |
| GMM: | Generalized Method of Moments |
| GRI: | Global Reporting Initiative |
| HML: | High Minus Low (Fama-French Factor) |
| MICE: | Multiple Imputation by Chained Equations |
| MKT: | Market Risk Premium (Fama-French Factor) |
| MR: | Mixed Reality |
| NLP: | Natural Language Processing |
| OLS: | Ordinary Least Squares |
| RE: | Random Effects |
| RMW: | Robust Minus Weak (Fama-French Factor) |
| S-D Logic: | Service-Dominant Logic |
| SASB: | Sustainability Accounting Standards Board |
| SDGs: | Sustainable Development Goals |
| SMB: | Small Minus Big (Fama-French Factor) |
| UN: | United Nations |
| UTAUT: | Unified Theory of Acceptance and Use of Technology |
| UTAUT2: | Unified Theory of Acceptance and Use of Technology 2 |
| VIF: | Variance Inflation Factor |
| VR: | Virtual Reality |
| XR: | Extended Reality |
References
- Abid, M. F., Shamim, A., Thaichon, P., Quach, S., & Siddique, J. (2025). Designing an information technology-enabled framework in the retail service ecosystem. Technological Forecasting and Social Change, 215, 124078. [CrossRef]
- Al-Adwan, A. S., Yaseen, H., Alkhwaldi, A. F., Jafar, R. M. S., Fauzi, M. A., & Abdullah, A. (2025). Treasure Hunting for Brands: Metaverse Marketing Gamification Effects on Purchase Intention, WOM, and Loyalty. Journal of Global Marketing. Advance online publication. [CrossRef]
- Alimamy, S., & Nadeem, W. (2022). Is this real? Cocreation of value through authentic experiential augmented reality: the mediating effect of perceived ethics and customer engagement. Information Technology & People, 35(2), 577–599. [CrossRef]
- Alsharif, A. H., & Isa, S. M. (2025). Electroencephalography Studies on Marketing Stimuli: A Literature Review and Future Research Agenda. International Journal of Consumer Studies, 49(1). [CrossRef]
- Ameen, N., Sharma, G. D., Tarba, S., Rao, A., & Chopra, R. (2022). Toward advancing theory on creativity in marketing and artificial intelligence. Psychology & Marketing, 39(9), 1802–1825. [CrossRef]
- Anwar, W., Abbasi, A. Z., Albashrawi, M., Abbasi, G. A., & Umm-e-Habiba. (2024). Asymmetric and symmetric approaches to the extension of UTAUT2 in the M-payment adoption of Pakistani apps. Journal of Financial Services Marketing, 29(3), 1175–1193. [CrossRef]
- Axcell, S., & Ellis, D. (2023). Exploring the attitudes and behaviour of Gen Z students towards branded mobile apps in an emerging market: UTAUT2 model extension. Young Consumers, 24(2), 184–202. [CrossRef]
- Bamberger, B., Reinartz, W., & Ulaga, W. (2025). Navigating the future of B2B marketing: The transformative impact of the industrial metaverse. Journal of Business Research, 188, 115057. [CrossRef]
- Bubphapant, J., & Brandão, A. (2024). Content marketing research: A review and research agenda. International Journal of Consumer Studies, 48(1). [CrossRef]
- Chatterjee, S., Rana, N. P., & Dwivedi, Y. K. (2022). Assessing Consumers’ Co-production and Future Participation on Value Co-creation and Business Benefit: an F-P-C-B Model Perspective. Information Systems Frontiers, 24(3), 945–964. [CrossRef]
- Chotisarn, N., & Phuthong, T. (2025). Mapping the landscape of marketing technology: trends, theories and trajectories in ecosystem research. Cogent Business & Management, 12(1), 2448608. [CrossRef]
- Cripps, H., Singh, A., Mejtoft, T., & Salo, J. (2020). The use of Twitter for innovation in business markets. Marketing Intelligence & Planning, 38(5), 587–601. [CrossRef]
- Deryl, M. D., Verma, S., & Srivastava, V. (2025). 8-T Framework for Artificial Intelligence-Driven Branding: A Strategic Typology. International Journal of Consumer Studies, 49(1). [CrossRef]
- Díaz-Meneses, G., Amador-Marrero, M., & Guedes, C. S. (2023). The Criteria of Inbound Marketing to Segment and Explain the Domain Authority of the Cellars’ E-Commerce in the Canary Islands. Systems, 11(11), 527. [CrossRef]
- Dwivedi, Y. K., Ismagilova, E., Hughes, D. L., Carlson, J., Filieri, R., Jacobson, J., Jain, V., Karjaluoto, H., Kefi, H., Krishen, A. S., Kumar, V., Rahman, M. M., Raman, R., Rauschnabel, P. A., Rowley, J., Salo, J., Tran, G. A., & Wang, Y. (2021). Setting the future of digital and social media marketing research: Perspectives and research propositions. International Journal of Information Management, 59, 102168. [CrossRef]
- Fama, E. F., & French, K. R. (2015). A five-factor asset pricing model. Journal of Financial Economics, 116(1), 1–22. [CrossRef]
- Ford, J., Jain, V., Wadhwani, K., & Gupta, D. G. (2023). AI advertising: An overview and guidelines. Journal of Business Research, 166, 114124. [CrossRef]
- Garganas, O. (2024). Digital Video Advertising: Breakthrough or Extension of TV Advertising in the New Digital Media Landscape? Journalism and Media, 5(2), 749–765. [CrossRef]
- Gibson, S., Dahl, A. J., Hsu, M. K., & Moreno, G. (2024). Understanding the complexities of omnichannel retailing through a service-dominant logic framework: exploring the role of digitalization in the retail ecosystem. The International Review of Retail, Distribution and Consumer Research, 34(5), 669–702. [CrossRef]
- Handarkho, Y. D. (2020). The intentions to use social commerce from social, technology, and personal trait perspectives: analysis of direct, indirect, and moderating effects. Journal of Research in Interactive Marketing, 14(3), 305–336. [CrossRef]
- Hentzen, J. K., Hoffmann, A., Dolan, R., & Pala, E. (2022). Artificial intelligence in customer-facing financial services: a systematic literature review and agenda for future research. International Journal of Bank Marketing, 40(6), 1299–1336. [CrossRef]
- Herzallah, D., Muñoz-Leiva, F., & Liébana-Cabanillas, F. (2022). Selling on Instagram: Factors that Determine the Adoption of Instagram Commerce. International Journal of Human–Computer Interaction, 38(11), 1004–1022. [CrossRef]
- Hofstede, G. (2001). Culture’s consequences: Comparing values, behaviors, institutions and organizations across nations (2nd ed.). Sage Publications.
- Hofstede, G. (2011). Dimensionalizing Cultures: The Hofstede Model in Context. Online Readings in Psychology and Culture, 2(1). [CrossRef]
- Iqbal-Firdaus, M., A. Utama, C., Gayatri, G., & Rofianto, W. (2023). Co-creation experience in Indonesian mobile commerce: A self-determination theory perspective. Innovative Marketing, 19(3), 145–158. [CrossRef]
- Karampournioti, E., & Wiedmann, K.-P. (2022). Storytelling in online shops: the impacts on explicit and implicit user experience, brand perceptions and behavioral intention. Internet Research, 32(7), 228–259. [CrossRef]
- Kimiagari, S., & Baei, F. (2022). Extending Intention to Use Electronic Services Based on the Human–Technology Interaction Approach and Social Cognition Theory: Emerging Market Case. IEEE Transactions on Engineering Management, 71, 1470–1489. [CrossRef]
- Kumar, A., Shankar, A., Hollebeek, L. D., Behl, A., & Lim, W. M. (2025a). Generative artificial intelligence (GenAI) revolution: A deep dive into GenAI adoption. Journal of Business Research, 189, 115160. [CrossRef]
- Kumar, S., Srivastava, M., & Sivaramakrishnan, S. (2025b). Getting the scoop on native advertising – a bibliometric and TCCM-based review. Marketing Intelligence & Planning. [CrossRef]
- Lathifah, A., Putro, U. S., Rinawan, F. R., Novani, S., Hasyimi, V., & Tiara, A. R. (2023). Understanding Participation in Value Co-Creation and Acceptance of iPosyandu by Extending UTAUT among Community Health Workers. CommIT (Communication and Information Technology) Journal, 17(2), 185–197. [CrossRef]
- Lim, W. M., Rasul, T., Kumar, S., & Ala, M. (2022). Past, present, and future of customer engagement. Journal of Business Research, 140, 439–458. [CrossRef]
- Moradi, M., & Dass, M. (2022). Applications of artificial intelligence in B2B marketing: Challenges and future directions. Industrial Marketing Management, 107, 300–314. [CrossRef]
- Morningstar-Sustainalytics. (2024). Morningstar Sustainalytics ESG Risk Ratings Data.
- MSCI. (2024). MSCI ESG Ratings Data. Available online: https://www.msci.com/zh/esg-ratings.
- Muna, N., Pratiwi, M. R., & Alkhaliq, B. (2020). Loyalty of m-wallet user from a service-dominant logic perspective. Jurnal Manajemen dan Pemasaran Jasa, 13(2), 245–262. [CrossRef]
- Nalbant, K. G., & Aydin, S. (2025). A bibliometric approach to the evolution of artificial intelligence in digital marketing. International Marketing Review. Advance online publication. [CrossRef]
- Núnez-Barriopedro, E., Cuesta-Valiño, P., & Mansori-Amar, S. (2023). The role of perceived usefulness and annoyance on programmatic advertising: the moderating effect of Internet user privacy and cookies. Corporate Communications: An International Journal, 28(2), 311–324. [CrossRef]
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
- Perera, C. H., Nayak, R., & Van Nguyen, L. T. (2023). The impact of social media marketing and brand credibility on higher education institutes’ brand equity in emerging countries. Journal of Marketing Communications, 29(8), 770–795. [CrossRef]
- Petersen, J. A., Paulich, B. J., Khodakarami, F., Spyropoulou, S., & Kumar, V. (2022). Customer-based execution strategy in a global digital economy. International Journal of Research in Marketing, 39(2), 566–582. [CrossRef]
- Seabold, S., & Perktold, J. (2010). Statsmodels: Econometric and statistical modeling with Python. Proceedings of the 9th Python in Science Conference, 325, 93-97. [CrossRef]
- Sharma, K., Trott, S., Sahadev, S., & Singh, R. (2023). Emotions and consumer behaviour: A review and research agenda. International Journal of Consumer Studies, 47(6), 2396–2416. [CrossRef]
- Srivastava, M., Sivaramakrishnan, S., & Pandey, N. (2024). Demystifying customer engagement in B2B markets. Journal of Business & Industrial Marketing, 39(11), 2364–2385. [CrossRef]
- Stocchi, L., Pourazad, N., Michaelidou, N., Tanusondjaja, A., & Harrigan, P. (2022). Marketing research on Mobile apps: past, present and future. Journal of the Academy of Marketing Science, 50(2), 195–225. [CrossRef]
- Suraña-Sánchez, C., & Aramendia-Muneta, M. E. (2024). Impact of artificial intelligence on customer engagement and advertising engagement: A review and future research agenda. International Journal of Consumer Studies, 48(2). [CrossRef]
- Taheri, B., Yousaf, A., Gannon, M., & Mishra, A. (2024). e-commerce website customer engagement: Delineating the role of UTAUT, vividness, and compulsion. Journal of Retailing and Consumer Services, 79, 103835. [CrossRef]
- Tam, F. Y., & Lung, J. (2025). Digital marketing strategies for luxury fashion brands: A systematic literature review. International Journal of Information Management Data Insights, 5(1), 100309. [CrossRef]
- Tang, J., & Yang, F. (2025). Value-in-Use and Sustaining Use Intention on E-Commerce Platforms: The Service-Dominant Logic Perspective. Sustainability, 17(3), 1335. [CrossRef]
- Thaichon, P., Quach, S., Barari, M., & Nguyen, M. (2023). Exploring the Role of Omnichannel Retailing Technologies: Future Research Directions. Australasian Marketing Journal (AMJ), 32(2), 162–177. [CrossRef]
- Thompson, F. M., & Brouthers, K. D. (2021). Digital Consumer Engagement: National Cultural Differences and Cultural Tightness. Journal of International Marketing, 29(4), 22–44. [CrossRef]
- Vargo, S. L., & Lusch, R. F. (2004). Evolving to a New Dominant Logic for Marketing. Journal of Marketing, 68(1), 1–17. [CrossRef]
- Vargo, S. L., & Lusch, R. F. (2008). Service-dominant logic: continuing the evolution. Journal of the Academy of Marketing Science, 36(1), 1–10. [CrossRef]
- Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425–478. [CrossRef]
- Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157–178. [CrossRef]
- Vlačić, B., Corbo, L., Costa e Silva, S., & Dabić, M. (2021). The evolving role of artificial intelligence in marketing: A review and research agenda. Journal of Business Research, 128, 187–203. [CrossRef]
- Xavier, J., & Picoto, W. N. (2023). Regulation of data-driven marketing and management theory: bibliometric analysis, systematic literature review and research agenda. International Journal of Law and Management, 65(5), 461–482. [CrossRef]
- Yang, Q., & Lee, Y.-C. (2024). Enhancing Financial Advisory Services with GenAI: Consumer Perceptions and Attitudes Through Service-Dominant Logic and Artificial Intelligence Device Use Acceptance Perspectives. Journal of Risk and Financial Management, 17(10), 470. [CrossRef]
- Yu, B. T. W., & Liu, S. T. X. (2024). Deep learning application for marketing engagement – its thematic evolution. Journal of Research in Interactive Marketing. Advance online publication. [CrossRef]
| Metric | FE_Simple | RE_Simple | |
|---|---|---|---|
| Dep. Variable | ExcessReturn | ExcessReturn | |
| Estimator | PanelOLS | RandomEffects | |
| No. Observations | 720 | 720 | |
| Cov. Est. | Clustered | Clustered | |
| R-squared | 0.1466 | 0.1445 | |
| R-Squared (Within) | 0.1466 | 0.1455 | |
| R-Squared (Between) | -1.7862 | -0.2648 | |
| R-Squared (Overall) | 0.1418 | 0.1445 | |
| F-statistic | 17.1980 | 17.1800 | |
| P-value (F-stat) | 0.0000 | 0.0000 | |
| Intercept | -0.2717 | -0.2213 | |
| Intercept (T-stat) | -4.5211 | -9.1294 | |
| Cma | 1.6383 | 1.6558 | |
| cma (T-stat) | 4.1215 | 4.1354 | |
| Hml | -1.2748 | -1.3344 | |
| hml (T-stat) | -5.0490 | -5.0673 | |
| mkt_rf | 0.9972 | 0.9967 | |
| mkt_rf (T-stat) | 7.8957 | 7.9510 | |
| Mom | -0.1277 | -0.1193 | |
| mom (T-stat) | -1.4699 | -1.3415 | |
| Rmw | 1.6720 | 1.5771 | |
| rmw (T-stat) | 5.3881 | 5.0870 | |
| Smb | 3.7817 | 3.7328 | |
| smb (T-stat) | 10.5780 | 10.6340 | |
| esg_total_score_lag1 | 0.0042 | 0.0020 | |
| esg_total_score_lag1 (T-stat) | 1.5676 | 1.7180 | |
| Test | Details | P-value | Conclusion |
| Hausman (FE vs RE–Simple) | FE Chi-square=32.1 | 0.01 | Preferred the Fixed Effects model over the Random Effects specification. |
| F-test (Poolability–Entity) | F (0, 701) = 0.3104 | 0.9838 | Cannot Reject Pooling (Pooled OK) |
| Metric | Value | |||
|---|---|---|---|---|
| Dep. Variable | ExcessReturn | |||
| Estimator | PanelOLS | |||
| No. Observations | 720 | |||
| Cov. Estimator | Robust | |||
| R-squared | 0.15 | |||
| R-squared (Within) | 0.15 | |||
| R-squared (Overall) | 0.15 | |||
| F-statistic (robust) | 10.97 | |||
| P-value (F-stat robust) | 0.00 | |||
| Variable | Parameter | Std. Err. | T-stat | P-value |
| Intercept | -0.24 | 0.04 | -5.83 | 0.00 |
| Cma | 1.63 | 0.73 | 2.23 | 0.03 |
| Hml | -1.26 | 0.53 | -2.39 | 0.02 |
| mkt_rf | 1.01 | 0.18 | 5.47 | 0.00 |
| Mom | -0.10 | 0.32 | -0.32 | 0.75 |
| Rmw | 1.67 | 0.64 | 2.62 | 0.01 |
| Smb | 3.79 | 0.57 | 6.63 | 0.00 |
| esg_total_score_lag1 | 0.00 | 0.00 | 1.54 | 0.12 |
| C (ESG_Category_lag1, Treatment(reference='Middle'))[T.High] | 0.04 | 0.06 | 0.74 | 0.46 |
| C (ESG_Category_lag1, Treatment(reference='Middle'))[T.Low] | -0.77 | 0.39 | -1.97 | 0.05 |
| esg_total_score_lag1:C (ESG_Category_lag1, Treatment(reference='Middle'))[T.High] | 0.00 | 0.00 | -0.78 | 0.43 |
| esg_total_score_lag1:C (ESG_Category_lag1, Treatment(reference='Middle'))[T.Low] | 0.04 | 0.02 | 2.00 | 0.05 |
| Metric | Value | |||
|---|---|---|---|---|
| Dep. Variable | ExcessReturn | |||
| Estimator | RandomEffects | |||
| No. Observations | 720 | |||
| Cov. Estimator | Clustered | |||
| R-squared | 0.14 | |||
| R-squared (Within) | 0.15 | |||
| R-squared (Overall) | 0.14 | |||
| F-statistic (robust) | 157.33 | |||
| P-value (F-stat robust) | 0.00 | |||
| Variable | Parameter | Std. Err. | T-stat | P-value |
| Intercept | -0.22 | 0.02 | -9.13 | 0.00 |
| cma | 1.66 | 0.40 | 4.14 | 0.00 |
| hml | -1.33 | 0.26 | -5.07 | 0.00 |
| mkt_rf | 1.00 | 0.13 | 7.95 | 0.00 |
| mom | -0.12 | 0.09 | -1.34 | 0.18 |
| rmw | 1.58 | 0.31 | 5.09 | 0.00 |
| smb | 3.73 | 0.35 | 10.63 | 0.00 |
| esg_total_score_lag1 | 0.00 | 0.00 | 1.72 | 0.09 |
| Metric | Value | |||
|---|---|---|---|---|
| Dep. Variable | ExcessReturn | |||
| Estimator | PanelOLS | |||
| No. Observations | 720 | |||
| Cov. Estimator | Clustered | |||
| R-squared | 0.15 | |||
| R-squared (Within) | 0.15 | |||
| R-squared (Overall) | 0.14 | |||
| F-statistic (robust) | 139.88 | |||
| P-value (F-stat robust) | 0.00 | |||
| Variable | Parameter | Std. Err. | T-stat | P-value |
| Intercept | -0.27 | 0.06 | -4.52 | 0.00 |
| Cma | 1.64 | 0.40 | 4.12 | 0.00 |
| Hml | -1.27 | 0.25 | -5.05 | 0.00 |
| mkt_rf | 1.00 | 0.13 | 7.90 | 0.00 |
| Mom | -0.13 | 0.09 | -1.47 | 0.14 |
| Rmw | 1.67 | 0.31 | 5.39 | 0.00 |
| Smb | 3.78 | 0.36 | 10.58 | 0.00 |
| esg_total_score_lag1 | 0.00 | 0.00 | 1.57 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
