Submitted:
22 April 2025
Posted:
22 April 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction

2. Geological Outline of the Akrotiri Peninsula


3. The Stavros Quarry at Akrotiri

3.1. Mineral Composition of the Aeolianites and Beach Sands
4. Rhizoliths
4.1. Rhizoliths Morphology and Classification
4.2. Related Work: Global Distribution of Rhizoliths Studies
4.3. Rhizoliths Within Carbonate Aeolianites
5. Methodology and Restrictions
6. Findings
6.1. Paleosols, Beachrock, Aeolianites and Calcretes
6.2. Rhizoliths
6.3. Microstructural Analysis
6.4. Fossilized Trunks, Stumps and Tree Branches
6.5. Dissolution Pipes
- Stemflow, whereby rainfall is directed down tree trunks, concentrating infiltration at the tree base, which then accelerates dissolution due to the enriched acidity and CO₂ from organic matter decomposition;
- Roots play a critical role by creating macropores and fissures in soils that facilitate downward water movement, and upon decay, leave tubular voids that promote further water infiltration. The high levels of CO₂ produced by root respiration greatly enhance the dissolution capacity of infiltrating water [115];
- Surface hollows concentrate infiltrating water, creating focal points for intensified dissolution beneath these depressions;
- Variations in the porosity of the hard-pan layers direct subsurface water flow toward areas of original porosity, creating preferential dissolution routes [79].
7. Discussion
8. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moody, J.; Rackham, O.; Rapp, G. Environmental Archaeology of Prehistoric NW Crete. J Field Archaeol 1996, 23. [Google Scholar] [CrossRef]
- Melfi Milena Cretan Nymphs: An Attic Hypothesis. In Essays in Classical Archaeology for Eleni Hatzivassiliou 1977-2007; Kurtz D, Meyer C, Saunders D, Tsingarida A, Harris N, Eds.; The Beazley Archive and Archaeopress, 2008; Vol. IV, pp. 221–227.
- Tziligkaki, E. The Ancient Quarries of Crete. PhD Thesis, University of Crete: Rethymno, 2014.
- Tziligkaki, E. Quarrying the Coasts of Crete in Antiquity; Some Geoarchaeological Considerations. Bulletin of the Geological Society of Greece 2018, 53. [Google Scholar] [CrossRef]
- Kokkorou-Alevras, G.; Poupaki, E.; Chatziconstantinou, A.; Efstathopoulos, A. Corpus of Ancient Greek Quarries. Asmosia VII. Actes du VIIe colloque international de l’ASMOSIA . Organisé par l’École française d’Athènes, le National Center for Scientific Research “DIMOKRITOS”, la 18e éphorie des antiquités préhistoriques et classiques (Kavala) et l’Institute of Geolo 2009.
- Manoutsoglou E. Rhizoliths within Aeolianites at the Ancient Quarry of Stavros Akrotiri Chania Greece. In Proceedings of the Proceedings of 16th International Congress of the Geological Society of Greece, Patras, Greece, October 17-19, 2022, Bulletin of the Geological Society of Greece, ; 2022; p. 193.
- Velitzelos, E.; Petrescu, I.; Symeonidis, N. Tertiäre Pflanzenreste Aus Der Ägäis. Die Makroflora Der Insel Lesvos (Griechenland). Ann. Géol. Pays Hellén, 1981, 30, 500–514. [Google Scholar]
- Zouros, N.C. Geomorphosite Assessment and Management in Protected Areas of Greece Case Study of the Lesvos Island – Coastal Geomorphosites. Geogr Helv 2007, 62, 169–180. [Google Scholar] [CrossRef]
- Velitzelos, D.; Iamandei, S.; Iamandei, E.; Velitzelos, E. Palaeoxylotomical Studies in the Cenozoic Petrified Forests of Greece. Part One – Palms. Acta Palaeobotanica 2019, 59. [Google Scholar] [CrossRef]
- Masi, U.; Azzaro, E.; Kyriakopoulos, K.; Magganas, A. Geochemical Features of the «plattenkalk» Series from the Hordaki Area (Western Crete, Greece). Periodico di Mineralogia 2000, 69. [Google Scholar]
- Economou, N.; Kritikakis, G.; Manoutsoglou, E.; Vafidis, A. Fast and Efficient Void Detection in Carbonates by Combined ERT and Borehole Data: A Case Study from Chania Airport in Greece. Leading Edge 2022, 41. [Google Scholar] [CrossRef]
- Karageorgiou, D.; Tsaila - Monopolis, S. Basic Geological Map of Greece, Scale 1:50.000, Khania Sheet, 1971, . Geological map 1971.
- Freudenthal, T. Stratigraphy of Neogene Deposits in the Khania Province, Crete, with Special Reference to Foraminifera of the Family Planorbulinidae and the Genus Heterostegina. Utrecht Micropaleontological Bulletins 1969, 1, 1–208. [Google Scholar]
- Zamani, A.; Maroukian, H. A Morphotectonic Investigation in Northwestern Crete: The Peninsula of Akrotiri. Zeitschrift fur Geomorphologie, Supplementband 1981, 40. [Google Scholar]
- Fytrolakis, Ν. Geological Investigation of Certain Occurrences of Aeolian Sediments in Crete. Bulletin of the Geological Society of Greece 1986, 18, 243–267. [Google Scholar]
- Stiros, S.C. The 8.5+ Magnitude, AD365 Earthquake in Crete: Coastal Uplift, Topography Changes, Archaeological and Historical Signature. Quaternary International 2010, 216. [Google Scholar] [CrossRef]
- Mourtzas, N.; Kolaiti, E.; Anzidei, M. Vertical Land Movements and Sea Level Changes along the Coast of Crete (Greece) since Late Holocene. Quaternary International 2016, 401. [Google Scholar] [CrossRef]
- Kelletat, D. Geomorphologische Studien an Den Küsten Kretas. Beiträge zur regionalen Küstenmorphologie des Mittel-meerraumes. Abhandlungen der Akademie der Wissenschaften in Göttingen, Mathematisch-Physikalische Klasse, Dritte Folge 1979, 32, 1–105. [Google Scholar]
- Moody, J.A. The Environmental and Cultural Prehistory of the Khania Region of West Crete: Neolithic through Late Minoan III. Ph.D. Thesis, , University of Minnesot : Minnesota, 1987.
- Pyökäri, M. Beach Sediments of Crete: Texture, Composition, Roundness, Source and Transport. J Coast Res 1999, 15. [Google Scholar]
- Klappa, C.F. Rhizoliths in Terrestrial Carbonates: Classification, Recognition, Genesis and Significance. Sedimentology 1980, 27. [Google Scholar] [CrossRef]
- Khechai, S.; Daoud, Y. Characterization and Origin of Gypsum Rhizoliths of Ziban Oases Soil-Algeria. World Appl Sci J 2016, 34. [Google Scholar]
- Jones, B.; Renaut, R.W.; Rosen, M.R.; Klyen, L. Primary Siliceous Rhizoliths from Loop Road Hot Springs, North Island, New Zealand. Journal of Sedimentary Research 1998, 68. [Google Scholar] [CrossRef]
- Gocke, M.; Kuzyakov, Y.; Wiesenberg, G.L.B. Rhizoliths in Loess - Evidence for Post-Sedimentary Incorporation of Root-Derived Organic Matter in Terrestrial Sediments as Assessed from Molecular Proxies. Org Geochem 2010, 41. [Google Scholar] [CrossRef]
- Gocke, M.; Gulyás, S.; Hambach, U.; Jovanović, M.; Kovács, G.; Marković, S.B.; Wiesenberg, G.L.B. Biopores and Root Features as New Tools for Improving Paleoecological Understanding of Terrestrial Sediment-Paleosol Sequences. Palaeogeogr Palaeoclimatol Palaeoecol 2014, 394. [Google Scholar] [CrossRef]
- Sun, Q.; Zamanian, K.; Huguet, A.; Bayat, O.; Wang, H.; Badawy, H.S. Genesis and Soil Environmental Implications of Intact In-Situ Rhizoliths in Dunes of the Badain Jaran Desert, Northwestern China. Acta Geochimica 2022, 41. [Google Scholar] [CrossRef]
- Sun, Q.; Zamanian, K.; Huguet, A.; Fa, K.; Wang, H. Characterization and Formation of the Pristine Rhizoliths around Artemisia Roots in Dune Soils of Tengeri Desert, NW China. Catena (Amst) 2020, 193. [Google Scholar] [CrossRef]
- McNear, D.H. The Rhizosphere-Roots, Soil and Everything In Between Meeting the Global Challenge of Sustainable Food, Fuel and Fiber Production. Nature Education Knowledge 2013, 4. [Google Scholar]
- Alonso-Zarza, A.M. Study of a Modern Calcrete Forming in Guadalajara, Central Spain: An Analogue for Ancient Root Calcretes. Sediment Geol 2018, 373. [Google Scholar] [CrossRef]
- Gocke, M.; Pustovoytov, K.; Kühn, P.; Wiesenberg, G.L.B.; Löscher, M.; Kuzyakov, Y. Carbonate Rhizoliths in Loess and Their Implications for Paleoenvironmental Reconstruction Revealed by Isotopic Composition: Δ13C, 14C. Chem Geol 2011, 283. [Google Scholar] [CrossRef]
- Esperante, R.; Rodríguez-Tovar, F.J.; Nalin, R. Rhizoliths in Lower Pliocene Alluvial Fan Deposits of the Sorbas Basin (Almería, SE Spain). Palaeogeogr Palaeoclimatol Palaeoecol 2021, 567. [Google Scholar] [CrossRef]
- Kraus, M.J.; Hasiotis, S.T. Significance of Different Modes of Rhizolith Preservation to Interpreting Paleoenvironmental and Paleohydrologic Settings: Examples from Paleogene Paleosols, Bighorn Basin, Wyoming, U.S.A. Journal of Sedimentary Research 2006, 76. [Google Scholar] [CrossRef]
- Luciano do Nascimento, D.; Batezelli, A.; Bernardes Ladeira, F.S. First Record of Lobed Trace Fossils in Brazil’s Upper Cretaceous Paleosols: Rhizoliths or Evidence of Insects and Their Social Behavior? J South Am Earth Sci 2017, 79. [Google Scholar] [CrossRef]
- do Nascimento, D.L.; Batezelli, A.; Ladeira, F.S.B. The Paleoecological and Paleoenvironmental Importance of Root Traces: Plant Distribution and Topographic Significance of Root Patterns in Upper Cretaceous Paleosols. Catena (Amst) 2019, 172. [Google Scholar] [CrossRef]
- Shumilov, I.K.; Tel’nova, O.P. In Situ Root Systems in the Devonian Paleosols of the Middle Timan. Eurasian Soil Science 2024, 57. [Google Scholar] [CrossRef]
- McLaren, S.J. Early Carbonate Diagenetic Fabrics in the Rhizosphere of Late Pleistocene Aeolian Sediments. Journal - Geological Society (London) 1995, 152. [Google Scholar] [CrossRef]
- Alonso-Zarza, A.M.; Sanz, M.E.; Calvo, J.P.; Estévez, P. Calcified Root Cells in Miocene Pedogenic Carbonates of the Madrid Basin: Evidence for the Origin of Microcodium b. Sediment Geol 1998, 116. [Google Scholar] [CrossRef]
- Golubtsov, V.A.; Khokhlova, O.S.; Cherkashina, A.A. Carbonate Rhizoliths in Dune Sands of the Belaya River Valley (Upper Angara Region). Eurasian Soil Science 2019, 52. [Google Scholar] [CrossRef]
- Karasev, E. V.; Sennikov, A.G.; Mizintsev, D.S. Rhizoliths and Signs of Pedogenesis in the Late Permian of Central Russia. Paleontological Journal 2023, 57. [Google Scholar] [CrossRef]
- Huguet, A.; Bernard, S.; El Khatib, R.; Gocke, M.I.; Wiesenberg, G.L.B.; Derenne, S. Multiple Stages of Plant Root Calcification Deciphered by Chemical and Micromorphological Analyses. Geobiology 2021, 19. [Google Scholar] [CrossRef] [PubMed]
- Woody, D.T.; Smith, J.J.; Kraus, M.J.; Hasiotis, S.T. Manganese-Bearing Rhizocretions in the Willwood Formation, Wyoming, U.S.A.: Implications for Paleoclimate during the Paleocene-Eocene Thermal Maximum. Palaios 2014, 29. [Google Scholar] [CrossRef]
- Bagheri, M.; Feiznia, S.; Arian, M.; Shabanian, R.; Mahari, R. Continental Trace Fossils in the Semnan Area (Northern Iran). Open Journal of Geology 2013, 03. [Google Scholar] [CrossRef]
- Pokorný, R. Rhizobial Root Nodules in Aeolian Sandstones on Madeira (Piedade Beds, Pleistocene) and Their Significance for Palaeonvironmental and “Originator” Hypotheses. Rev Palaeobot Palynol 2022, 306. [Google Scholar] [CrossRef]
- Owen, R.A.; Owen, R.B.; Renaut, R.W.; Scott, J.J.; Jones, B.; Ashley, G.M. Mineralogy and Origin of Rhizoliths on the Margins of Saline, Alkaline Lake Bogoria, Kenya Rift Valley. Sediment Geol 2008, 203. [Google Scholar] [CrossRef]
- Jones, B.; Booker, S. Diagenetic Development of Rhizoliths in the Ironshore Formation (Pleistocene) of the Cayman Islands. Sediment Geol 2024, 465, 106635. [Google Scholar] [CrossRef]
- Alonso-Zarza, A.M.; Genise, J.F.; Cabrera, M.C.; Mangas, J.; Martín-Pérez, A.; Valdeolmillos, A.; Dorado-Valiño, M. Megarhizoliths in Pleistocene Aeolian Deposits from Gran Canaria (Spain): Ichnological and Palaeoenvironmental Significance. Palaeogeogr Palaeoclimatol Palaeoecol 2008, 265. [Google Scholar] [CrossRef]
- Jaillard, B.; Guyon, A.; Maurin, A.F. Structure and Composition of Calcified Roots, and Their Identification in Calcareous Soils. Geoderma 1991, 50. [Google Scholar] [CrossRef]
- Becze-Deák, J.; Langohr, R.; Verrecchia, E.P. Small Scale Secondary CaCO3 Accumulations in Selected Sections of the European Loess Belt. Morphological Forms and Potential for Paleoenvironmental Reconstruction. Geoderma 1997, 76. [Google Scholar] [CrossRef]
- Kozłowska, M. Paleosols and Their Sedimentary Setting in the Old Red Succession of Podolia, Ukraine. Palaeogeogr Palaeoclimatol Palaeoecol 2019, 514. [Google Scholar] [CrossRef]
- Moraiti, E.; Alexopoulos, A. Geopark of Aghios Nikolaos – Neapolis, Lakonia, Peloponnese. In Proceedings of the 15th International Congress of the Geological Society of Greece, Bulletin of the Geological Society of Greece, Sp. Pub. 7 Ext. Abs. GSG2019; Athens, 2019; pp. 376–376. [Google Scholar]
- Polymeris, G.S.; Kitis, G.; Kiyak, N.G.; Theodosoglou, E.; Tsirliganis, N.C.; Ertek, A.; Erginal, A.E. Dating Fossil Root Cast (Black Sea Coast, Turkey) Using Thermoluminescence: Implications for Windblown Drift of Shelf Carbonates during MIS 2. Quaternary International 2016, 401. [Google Scholar] [CrossRef]
- Eren, M.; Kaplan, M.Y.; Kadir, S.; Kapur, S. Biogenic (β-Fabric) Features in the Hard Laminated Crusts of the Mersin and Adana Regions, Southern Turkey and the Role of Soil Organisms in the Formation of the Calcrete Profiles. Catena (Amst) 2018, 168. [Google Scholar] [CrossRef]
- Alekseeva, T. V. Rhizoliths in Devonian and Early Carboniferous Paleosols and Their Paleoecological Interpretation. Eurasian Soil Science 2020, 53. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, H.; Zamanian, K. Radiocarbon Age Discrepancies between the Carbonate Cement and the Root Relics of Rhizoliths from the Badain Jaran and the Tengeri Deserts, Northwest China. Catena (Amst) 2019, 180. [Google Scholar] [CrossRef]
- Sun, Q.; Huguet, A.; Zamanian, K. Outcrop Distribution and Formation of Carbonate Rhizoliths in Badain Jaran Desert, NW China. Catena (Amst) 2021, 197. [Google Scholar] [CrossRef]
- Li, X.; Zhong, W.; Wang, Y.; Reisz, R.R. Late Permian Paleoenvironmental Changes in the Xingcheng Area, Liaoning Province, China: Sedimentary Succession and Root Systems. Palaios 2020, 35. [Google Scholar] [CrossRef]
- Hendry, D.A. Silica and Calcium Carbonate Replacement of Plant Roots in Tropical Dune Sands, SE India. Geol Soc Spec Publ 1987, 35. [Google Scholar] [CrossRef]
- Rao, V.P.; Thamban, M. Dune Associated Calcretes, Rhizoliths and Paleosols from the Western Continental Shelf of India. Journal - Geological Society of India 1997, 49. [Google Scholar]
- Cohen, A.S. Paleoenvironments of Root Casts from the Koobi Fora Formation, Kenya. J Sediment Petrol 1982, 52. [Google Scholar] [CrossRef]
- Matteucci, R.; Belluomini, G.; Manfra, L. Late Holocene Environmental Change in the Coastal Southern Somalia Inferred from Achatina and Rhizoliths. Journal of African Earth Sciences 2007, 49. [Google Scholar] [CrossRef]
- Bown, T.M. Ichnofossils and Rhizoliths of the Nearshore Fluvial Jebel Qatrani Formation (Oligocene), Fayum Province, Egypt. Palaeogeogr Palaeoclimatol Palaeoecol 1982, 40. [Google Scholar] [CrossRef]
- Badawy, H.S. Termite Nests, Rhizoliths and Pedotypes of the Oligocene Fluviomarine Rock Sequence in Northern Egypt: Proxies for Tethyan Tropical Palaeoclimates. Palaeogeogr Palaeoclimatol Palaeoecol 2018, 492. [Google Scholar] [CrossRef]
- Abdel-Fattah, Z.A.; Gingras, M.K. Origin of Compound Biogenic Sedimentary Structures in Eocene Strata of Wadi El-Hitan Universal Heritage Area, Fayum, Egypt: Mangrove Roots or Not? Palaeogeogr Palaeoclimatol Palaeoecol 2020, 560. [Google Scholar] [CrossRef]
- Cramer, M.D.; Hawkins, H.J. A Physiological Mechanism for the Formation of Root Casts. Palaeogeogr Palaeoclimatol Palaeoecol 2009, 274. [Google Scholar] [CrossRef]
- Habermann, J.M.; Stanistreet, I.G.; Stollhofen, H.; Albert, R.M.; Bamford, M.K.; Pante, M.C.; Njau, J.K.; Masao, F.T. In Situ ~2.0 Ma Trees Discovered as Fossil Rooted Stumps, Lowermost Bed I, Olduvai Gorge, Tanzania. J Hum Evol 2016, 90. [Google Scholar] [CrossRef]
- El khounaijri, H.; Algouti, A.; Algouti, A.; Essemani, M.; Hadach, F.; Aboulfaraj, A.; Ezzahzi, S.; Baid, S. The Ichnofacies from the Upper Visean of the Eastern Jebilet, Marrakech, Morocco. Iraqi Geological Journal 2024, 57, 105–121. [Google Scholar] [CrossRef]
- Plaziat, J.C.; Mahmoudi, M. The Role of Vegetation in Pleistocene Eolianite Sedimentation: An Example from Eastern Tunisia. Journal of African Earth Sciences 1990, 10. [Google Scholar] [CrossRef]
- Wang, H.; Ambrose, S.H.; Fouke, B.W. Evidence of Long-Term Seasonal Climate Forcing in Rhizolith Isotopes during the Last Glaciation. Geophys Res Lett 2004, 31. [Google Scholar] [CrossRef]
- Liutkus, C.M.; Wright, J.D. The Influence of Hydrology and Climate on the Isotope Geochemistry of Playa Carbonates: A Study from Pilot Valley, NV, USA. Sedimentology 2008, 55. [Google Scholar] [CrossRef]
- Hembree, D.I.; Hasiotis, S.T. Paleosols and Ichnofossils of the White River Formation of Colorado: Insight into Soil Ecosystems of the North American Midcontinent during the Eocene-Oligocene Transition. Palaios 2007, 22. [Google Scholar] [CrossRef]
- Gregory, M.R.; Martin, A.J.; Campbell, K.A. Compound Trace Fossils Formed by Plant and Animal Interactions: Quaternary of Northern New Zealand and Sapelo Island, Georgia (USA). In; 2004.
- Hembree, D.I.; Nadon, G.C. A Paleopedologic and Ichnologic Perspective of the Terrestrial Pennsylvanian Landscape in the Distal Appalachian Basin, U.S.A. Palaeogeogr Palaeoclimatol Palaeoecol 2011, 312. [Google Scholar] [CrossRef]
- Košir Adrijan Calcium Carbonate Biomineralisation in Plant Roots and the Rhizosphere: Processes, Products and the Fossil Record, Cardiff University: Cardiff, 2022.
- Curran, H. Allen Sinuous Rhizoliths Mimic Invertebrate Trace Fossils on Upper Pleistocene Caliche Surfaces, San Salvador Island, Bahamas. In Proceedings of the ICHNIA III conference; 2015; pp. 63–72. [Google Scholar]
- Elick, J.M.; Driese, S.G.; Mora, C.I. Very Large Plant and Root Traces from the Early to Middle Devonian: Implications for Early Terrestrial Ecosystems and Atmospheric p(CO2). Geology 1998, 26. [Google Scholar] [CrossRef]
- Bedatou, E.; Melchor, R.N.; Genise, J.F. Complex Palaeosol Ichnofabrics from Late Jurassic-Early Cretaceous Volcaniclastic Successions of Central Patagonia, Argentina. Sediment Geol 2009, 220. [Google Scholar] [CrossRef]
- Genise, J.F.; Alonso-Zarza, A.M.; Krause, J.M.; Sánchez, M.V.; Sarzetti, L.; Farina, J.L.; González, M.G.; Cosarinsky, M.; Bellosi, E.S. Rhizolith Balls from the Lower Cretaceous of Patagonia: Just Roots or the Oldest Evidence of Insect Agriculture? Palaeogeogr Palaeoclimatol Palaeoecol 2010, 287. [Google Scholar] [CrossRef]
- Lipar, M.; Webb, J.A.; White, S.Q.; Grimes, K.G. The Genesis of Solution Pipes: Evidence from the Middle-Late Pleistocene Bridgewater Formation Calcarenite, Southeastern Australia. Geomorphology 2015, 246. [Google Scholar] [CrossRef]
- Lipar, M.; Webb, J.A. The Formation of the Pinnacle Karst in Pleistocene Aeolian Calcarenites (Tamala Limestone) in Southwestern Australia. Earth Sci Rev 2015, 140. [Google Scholar] [CrossRef]
- Lipar, M. Pinnacle Syngenetic Karst in Nambung National Park, Western Australia. Acta Carsologica 2009, 38. [Google Scholar] [CrossRef]
- Hetherington, A.J.; Dimichele, W.A.; Lucas, S.G.; Voigt, S. Tiny Rhizomorphic Rooting Systems from the Early Permian Abo Formation of New Mexico, Usa. Int J Plant Sci 2019, 180. [Google Scholar] [CrossRef]
- Knaust, D. Trace Fossils from the Continental Upper Triassic Kågeröd Formation of Bornholm, Denmark. Annales Societatis Geologorum Poloniae 2015, 85. [Google Scholar] [CrossRef]
- Rodríguez-Aranda, J.P.; Calvo, J.P. Trace Fossils and Rhizoliths as a Tool for Sedimentological and Palaeoenvironmental Analysis of Ancient Continental Evaporite Successions. In Proceedings of the Palaeogeography, Palaeoclimatology, Palaeoecology; 1998; Vol. 140.
- Abdel-Fattah, Z.A. Morpho-Sedimentary Characteristics and Generated Primary Sedimentary Structures on the Modern Microtidal Sandy Coast of Eastern Nile Delta, Egypt. Journal of African Earth Sciences 2019, 150. [Google Scholar] [CrossRef]
- Golab, J.A.; Smith, J.J.; Clark, A.K.; Morris, R.R. Bioturbation-Influenced Fluid Pathways within a Carbonate Platform System: The Lower Cretaceous (Aptian–Albian) Glen Rose Limestone. Palaeogeogr Palaeoclimatol Palaeoecol 2017, 465. [Google Scholar] [CrossRef]
- Brooke, B. The Distribution of Carbonate Eolianite. Earth Sci Rev 2001, 55. [Google Scholar] [CrossRef]
- Frébourg, G.; Hasler, C.A.; Le Guern, P.; Davaud, E. Facies Characteristics and Diversity in Carbonate Eolianites. Facies 2008, 54. [Google Scholar] [CrossRef]
- Mountrakis, D.; Kilias, A.; Pavlaki, A.; Fassoulas, C.; Thomaidou, E.; Papazachos, C.; Papaioannou, C.; Roumelioti, Z.; Benetatos, C.; Vamvakaris, D. Neotectonic Study of Western Crete and Implications for Seismic Hazard Assessment. Journal of the Virtual Explorer 2012, 42. [Google Scholar] [CrossRef]
- Squatriti, P.; Rackham, O.; Moody, J. The Making of the Cretan Landscape; 1998; Vol. 102.
- Paepe, R.; Mariolakos, I.; Van Overloop, E.; Nassopoulou, S.; Hus, J.; Hatziotou, M.; Markopoulos, T.; Manutsoglu, E.; Livaditis, G.; Sabot, V. QUATERNARY SOIL-GEOLOGICAL STRATIGRAPHY IN GREECE. Bulletin of the Geological Society of Greece 2018, 36, 856. [Google Scholar] [CrossRef]
- Moraetis, D.; Lydakis-Simantiris, N.; Pentari, D.; Manoutsoglou, E.; Apostolaki, C.; Perdikatsis, V. Chemical and Physical Characteristics in Uncultivated Soils with Different Lithology in Semiarid Mediterranean Clima. Appl Environ Soil Sci 2016, 2016. [Google Scholar] [CrossRef]
- Yaalon, D.H. Soils in the Mediterranean Region: What Makes Them Different? Catena (Amst) 1997, 28. [Google Scholar] [CrossRef]
- Kirsten, F.; Heinrich, J. Soil-Sediment-Configurations on Slopes of Central and Western Crete (Greece) and Their Implications for Late Holocene Morphodynamics and Pedogenesis – A Conceptual Approach. Catena (Amst) 2022, 214. [Google Scholar] [CrossRef]
- Retallack, G.J. Field Recognition of Paleosols. Special Paper of the Geological Society of America 1988, 216. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Velegrakis, A.F.; Plomaritis, T.A. Beachrock Occurrence, Characteristics, Formation Mechanisms and Impacts. Earth Sci Rev 2007, 85. [Google Scholar] [CrossRef]
- Mauz, B.; Vacchi, M.; Green, A.; Hoffmann, G.; Cooper, A. Beachrock: A Tool for Reconstructing Relative Sea Level in the Far-Field. Mar Geol 2015, 362. [Google Scholar] [CrossRef]
- Jenny Hans Factors of Soil Formation, a System of Quantitative Pedology; McGraw-Hill Book Company, Inc.: New York, 1941.
- Birkeland P., W. Soil and Geomorphology; Oxford University Press: New York, 1999. [Google Scholar]
- Wright Paul; Tucker Maurice Calcretes: An Introduction. In Calcretes; John Wiley & Sons, 1991; pp. 1–22.
- Candy, I.; Black, S. The Timing of Quaternary Calcrete Development in Semi-Arid Southeast Spain: Investigating the Role of Climate on Calcrete Genesis. Sediment Geol 2009, 220. [Google Scholar] [CrossRef]
- Abegg, F.E.; Loope, D.B.; Harris, P.M. Carbonate Eolianites - Depositional Models and Diagenesis. In Modern and Ancient Carbonate Eolianites; 2001.
- Goudie, A. Calcrete. In Chemical Sediments and Geomorphology; Goudie, A.S., Pye, K., Eds.; Academic Press 932131: London, 1983; pp. 93–131. [Google Scholar]
- Alonso-Zarza, A.M.; Wright, V.P. Chapter 5 Calcretes. In; 2010; pp. 225–267.
- Klappa, C.F. A Process-Response Model for the Formation of Pedogenic Calcretes. Geol Soc Spec Publ 1983, 11. [Google Scholar] [CrossRef]
- Alonso-Zarza, A.M. Palaeoenvironmental Significance of Palustrine Carbonates and Calcretes in the Geological Record. Earth Sci Rev 2003, 60. [Google Scholar] [CrossRef]
- Retallack, G.J. Soils of the Past; 2001.
- Zamanian, K.; Pustovoytov, K.; Kuzyakov, Y. Pedogenic Carbonates: Forms and Formation Processes. Earth Sci Rev 2016, 157. [Google Scholar] [CrossRef]
- Wright, V.P. A Micromorphological Classification of Fossil and Recent Calcic and Petrocalcic Microstructures. Developments in Soil Science 1990, 19. [Google Scholar] [CrossRef]
- Gee, C.T.; Sander, P.M.; Peters, S.E.; El-Hennawy, M.T.; Antar, M.S.M.; Zalmout, I.S.; Gingerich, P.D. Fossil Burrow Assemblage, Not Mangrove Roots: Reinterpretation of the Main Whale-Bearing Layer in the Late Eocene of Wadi Al-Hitan, Egypt. Paleobiodivers Paleoenviron 2019, 99. [Google Scholar] [CrossRef]
- Zhou, J.; Chafetz, H.S. Biogenic Caliches in Texas: The Role of Organisms and Effect of Climate. Sediment Geol 2009, 222. [Google Scholar] [CrossRef]
- Alonso-Zarza, A.M.; Jones, B. Root Calcrete Formation on Quaternary Karstic Surfaces of Grand Cayman. Geologica Acta 2007, 5. [Google Scholar]
- Jones, B.; Ng, K.C. The Structure and Diagenesis of Rhizoliths from Cayman Brac, British West Indies. Journal of Sedimentary Research 1988, 58. [Google Scholar] [CrossRef]
- Liutkus, C.M. Using Petrography and Geochemistry to Determine the Origin and Formation Mechanism of Calcitic Plant Molds; Rhizolith or Tufa? Journal of Sedimentary Research 2009, 79, 906–917. [Google Scholar] [CrossRef]
- Alonso-Zarza, A.M.; Silva, P.G.; Goy, J.L.; Zazo, C. Fan-Surface Dynamics and Biogenic Calcrete Development: Interactions during Ultimate Phases of Fan Evolution in the Semiarid SE Spain (Murcia). Geomorphology 1998, 24. [Google Scholar] [CrossRef]
- De Waele, J.; Mucedda, M.; Montanaro, L. Morphology and Origin of Coastal Karst Landforms in Miocene and Quaternary Carbonate Rocks along the Central-Western Coast of Sardinia (Italy). Geomorphology 2009, 106. [Google Scholar] [CrossRef]
- Grimes, K.G. Syngenetic Karst in Australia: A Review. Helictite 2006, 39. [Google Scholar]
- Alekseeva, T. V.; Mitenko, G. V.; Alekseev, A.O. The Ecology of a Late Visean Forest at Catcraig (East Lothian, Scotland) Based on Multiproxy Study of Paleosol and Root-Casts. Palaeoworld 2021, 30. [Google Scholar] [CrossRef]
- Sarjeant, W.A.S. Plant Trace Fossils. In The Study of Trace Fossils. Springer Berlin Heidelberg: Berlin, Heidelberg, 1975; pp. 163–179. [Google Scholar]














Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
