Submitted:
14 April 2025
Posted:
15 April 2025
Read the latest preprint version here
Abstract
Keywords:
| Contents | |||||||||||||
| 1. Introduction | 1 | ||||||||||||
| 2. SieveAsymptoticFormulas | 3 | ||||||||||||
| 3. TheFinalDecomposition | 4 | ||||||||||||
| 4. ExponentPairs | 7 | ||||||||||||
| 5. References | 8 |
1. Introduction
2. Sieve Asymptotic Formulas
3. The Final Decomposition
4. Exponent Pairs
References
- Piatetski-Shapiro, I.I. On the distribution of prime numbers in sequences of the form [f(n)]. Mat. Sb. 1953, 33, 559–566. [Google Scholar]
- Rivat, J.; Sargos, P. Nombres premiers de la forme ⌊nc⌋. Canad. J. Math. Vol. 2001, 53, 414–433. [Google Scholar] [CrossRef]
- Rivat, J. Autour d’un théorème de Piatetski–Shapiro (Nombres premiers dans la suite [nc]). Thèse de Doctorat 1992. Université de Paris–Sud. [Google Scholar]
- Jia, C. On Piatetski–Shapiro prime number theorem. Chinese Ann. Math. Ser. B. 1994, 15, 9–22. [Google Scholar]
- Baker, R.C.; Harman, G.; Rivat, J. Primes of the form [nc]. J. Number Theory 1995, 50, 261–277. [Google Scholar] [CrossRef]
- Jia, C. On Piatetski–Shapiro prime number theorem II. Science in China 1993, 36, 913–926. [Google Scholar]
- Kumchev, A. On the distribution of prime numbers of the form [nc]. Glasgow Math. J. 1999, 41, 85–102. [Google Scholar] [CrossRef]
- Rivat, J.; Wu, J. Prime numbers of the form [nc]. Glasgow Math. J. 2001, 43, 237–254. [Google Scholar] [CrossRef]
- Li, R. On the Piatetski–Shapiro prime number theorem. preprint 2024. [Google Scholar]
- Balog, A.; Friedlander, J. A hybrid of theorems of Vinogradov and Piatetski–Shapiro. Pacific J. Math. 1992, 156, 45–62. [Google Scholar] [CrossRef]
- Cai, Y. A remark on the Piatetski–Shapiro–Vinogradov theorem. Acta Arith. 2003, 110, 73–75. [Google Scholar] [CrossRef]
- Guo, V.Z. Almost primes in Piatetski–Shapiro sequences. AIMS Mathematics 2021, 6, 9536–9546. [Google Scholar] [CrossRef]
- Sargos, P. An analog of van der Corput’s A4–process for exponential sums. Acta Arith. 2003, 110, 219–231. [Google Scholar] [CrossRef]
- Sargos, P. Points Entiers Au Voisinage D’une Courbe, Sommes Trigonométriques Courtes ET Paires D’exposants. Proc. London Math. Soc. 1995, s3–70, 285–312. [Google Scholar] [CrossRef]
- Jia, C. Almost all short intervals containing prime numbers. Acta Arith. 1996, 76, 21–84. [Google Scholar] [CrossRef]
- Li, R. Primes in almost all short intervals. arXiv e-prints 2024, arXiv:2407.05651v5, [arXiv:math.NT/2407.05651]. [Google Scholar] [CrossRef]
- Li, R. The number of primes in short intervals and numerical calculations for Harman’s sieve. arXiv e-prints 2025, arXiv:2308.04458v6, [arXiv:math.NT/2308.04458]. [Google Scholar] [CrossRef]
- Tao, T.; Trudgian, T.; Yang, A. New exponent pairs, zero density estimates, and zero additive energy estimates: a systematic approach. arXiv e-prints 2025, arXiv:2501.16779v1, [arXiv:math.NT/2501.16779]. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).