Submitted:
10 April 2025
Posted:
10 April 2025
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Plant Material and Experimental Design
2.3. Plant Density at Harvest and Yield Measurements
2.4. Plant PC, Protein Yield, and Amino Acid Composition
2.5. Statistical Analysis
3. Results
3.1. Effect of Row Spacing on YVQ
3.1.1. Plant Density and DM
3.1.2. Fresh and DM Yield
3.1.3. PC and Protein Yield
3.1.4. Correlations Between Traits
3.2. Effect of Genotypes on YVQ
3.2.1. Plant Density and DM
3.2.2. Fresh and DM Yield
3.2.3. PC and Protein Yield
3.3. Amino acid Composition of YVQ
4. Discussion
4.1. Effect of Row Spacing on Yield Parameters
4.2. Effect of Genotype on Yield Parameters
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DAS | days after sowing |
| DM | dry matter |
| FW | fresh weight |
| EAA | essential amino acids |
| PC | protein content |
| YVQ | young vegetative quinoa |
References
- Grandview Research Global Protein Ingredients Market Size Report, 2021-2028. Available online: https://www.grandviewresearch.com/industry-analysis/protein-ingredients-market (accessed on 29 January 2023).
- de Boer, J.; Aiking, H. On the Merits of Plant-Based Proteins for Global Food Security: Marrying Macro and Micro Perspectives. Ecological Economics 2011, 70, 1259–1265. [Google Scholar] [CrossRef]
- Pam Ismail, B.; Senaratne-Lenagala, L.; Stube, A.; Brackenridge, A. Protein Demand: Review of Plant and Animal Proteins Used in Alternative Protein Product Development and Production. Animal Frontiers 2020, 10, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Aschemann-Witzel, J.; Gantriis, R.F.; Fraga, P.; Perez-Cueto, F.J.A. Plant-Based Food and Protein Trend from a Business Perspective: Markets, Consumers, and the Challenges and Opportunities in the Future. Crit Rev Food Sci Nutr 2020, 1–10. [Google Scholar] [CrossRef]
- Andreotti, F.; Bazile, D.; Biaggi, C.; Callo-concha, D.; Jacquet, J.; Jemal, O.M.; King, O.I.; Mbosso, C.; Padulosi, S.; Speelman, E.N.; et al. When Neglected Species Gain Global Interest: Lessons Learned from Quinoa’s Boom and Bust for Teff and Minor Millet. Glob Food Sec 2022, 32, 100613. [Google Scholar] [CrossRef]
- Bazile, D.; Jacobsen, S.-E.; Verniau, A. The Global Expansion of Quinoa: Trends and Limits. Front Plant Sci 2016, 7, 1–6. [Google Scholar] [CrossRef]
- Bazile, D.; Pulvento, C.; Verniau, A.; Al-Nusairi, M.S.; Ba, D.; Breidy, J.; Hassan, L.; Mohammed, M.I.; Mambetov, O.; Otambekova, M.; et al. Worldwide Evaluations of Quinoa: Preliminary Results from Post International Year of Quinoa FAO Projects in Nine Countries. Front Plant Sci 2016, 7. [Google Scholar] [CrossRef]
- Choukr-Allah, R.; Rao, N.K.; Hirich, A.; Shahid, M.; Alshankiti, A.; Toderich, K.; Gill, S.; Butt, K.U.R. Quinoa for Marginal Environments: Toward Future Food and Nutritional Security in MENA and Central Asia Regions. Front Plant Sci 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Pulvento, C.; Bazile, D. Worldwide Evaluations of Quinoa—Biodiversity and Food Security under Climate Change Pressures: Advances and Perspectives. Plants 2023, 12, 868. [Google Scholar] [CrossRef]
- Scanlin, L.; Lewis, K.A. Quinoa as a Sustainable Protein Source: Production, Nutrition, and Processing. In Sustainable Protein Sources; Elsevier Inc., 2017; pp. 223–238. ISBN 9780128027769. [Google Scholar]
- García-Parra, M.; Zurita-Silva, A.; Stechauner-Rohringer, R.; Roa-Acosta, D.; Jacobsen, S.E. Quinoa (Chenopodium Quinoa Willd.) and Its Relationship with Agroclimatic Characteristics: A Colombian Perspective. Chil J Agric Res 2020, 80, 290–302. [Google Scholar] [CrossRef]
- Pereira, E.; Encina-Zelada, C.; Barros, L.; Gonzales-Barron, U.; Cadavez, V.C.F.R.; Ferreira, I. Chemical and Nutritional Characterization of Chenopodium Quinoa Willd (Quinoa) Grains: A Good Alternative to Nutritious Food. Food Chem 2019, 280, 110–114. [Google Scholar] [CrossRef]
- Angeli, V.; Silva, P.M.; Massuela, D.C.; Khan, M.W.; Hamar, A.; Khajehei, F.; Graeff-Hönninger, S.; Piatti, C. Quinoa (Chenopodium Quinoa Willd.): An Overview of the Potentials of the “Golden Grain” and Socio-Economic and Environmental Aspects of Its Cultivation and Marketization. Foods 2020, 9. [Google Scholar] [CrossRef]
- Ceyhun Sezgin, A.; Sanlier, N. A New Generation Plant for the Conventional Cuisine: Quinoa (Chenopodium Quinoa Willd.). Trends Food Sci Technol 2019, 86, 51–58. [Google Scholar] [CrossRef]
- Dakhili, S.; Abdolalizadeh, L.; Hosseini, S.M.; Shojaee-Aliabadi, S.; Mirmoghtadaie, L. Quinoa Protein: Composition, Structure and Functional Properties. Food Chem 2019, 299. [Google Scholar] [CrossRef] [PubMed]
- Noulas, C.; Tziouvalekas, M.; Vlachostergios, D.; Baxevanos, D.; Karyotis, T.; Iliadis, C. Adaptation, Agronomic Potential, and Current Perspectives of Quinoa Under Mediterranean Conditions: Case Studies from the Lowlands of Central Greece. Commun Soil Sci Plant Anal 2017, 48, 2612–2629. [Google Scholar]
- Jacobsen, S.E. The Scope for Adaptation of Quinoa in Northern Latitudes of Europe. J Agron Crop Sci 2017, 203, 603–613. [Google Scholar] [CrossRef]
- Alandia, G.; Rodriguez, J.P.; Jacobsen, S.E.; Bazile, D.; Condori, B. Global Expansion of Quinoa and Challenges for the Andean Region. Glob Food Sec 2020, 26. [Google Scholar] [CrossRef]
- Sellami, M.H.; Pulvento, C.; Lavini, A. Agronomic Practices and Performances of Quinoa under Field Conditions: A Systematic Review. Plants 2021, 10, 1–20. [Google Scholar] [CrossRef]
- Asher, A.; Dagan, R.; Galili, S.; Rubinovich, L. Effect of Row Spacing on Quinoa (Chenopodium Quinoa) Growth, Yield, and Grain Quality under a Mediterranean Climate. Agriculture 2022, 12, 1298. [Google Scholar] [CrossRef]
- Walters, H.; Carpenter-Boggs, L.; Desta, K.; Yan, L.; Matanguihan, J.; Murphy, K. Effect of Irrigation, Intercrop, and Cultivar on Agronomic and Nutritional Characteristics of Quinoa. Agroecology and Sustainable Food Systems 2016, 40, 783–803. [Google Scholar] [CrossRef]
- Wang, N.; Wang, F.; Shock, C.C.; Meng, C.; Qiao, L. Effects of Management Practices on Quinoa Growth, Seed Yield, and Quality. Agronomy 2020, 10. [Google Scholar] [CrossRef]
- Asher, A.; Galili, S.; Whitney, T.; Rubinovich, L. The Potential of Quinoa (Chenopodium Quinoa) Cultivation in Israel as a Dual-Purpose Crop for Grain Production and Livestock Feed. Sci Hortic 2020, 272, 109534. [Google Scholar] [CrossRef]
- Filik, G. Biodegradability of Quinoa Stalks: The Potential of Quinoa Stalks as a Forage Source or as Biomass for Energy Production. Fuel 2020, 266, 117064. [Google Scholar] [CrossRef]
- Matías, J.; Cruz, V.; Reguera, M. Heat Stress Impact on Yield and Composition of Quinoa Straw under Mediterranean Field Conditions. Plants 2021, 10, 955. [Google Scholar] [CrossRef] [PubMed]
- Ebeid, H.M.; Kholif, A.E.; El-Bordeny, N.; Chrenkova, M.; Mlynekova, Z.; Hansen, H.H. Nutritive Value of Quinoa (Chenopodium Quinoa) as a Feed for Ruminants: In Sacco Degradability and in Vitro Gas Production. Environmental Science and Pollution Research 2022, 29, 35241–35252. [Google Scholar] [CrossRef] [PubMed]
- Ramos, N.; Cruz, A.M. Evaluation of Seven Seasonal Crops for Forage Production during the Dry Season in Cuba. Cuban Journal of Agricultural Science 2002, 36, 271–276. [Google Scholar]
- Huang, H.; Wang, Q.; Tan, J.; Zeng, C.; Wang, J.; Huang, J.; Hu, Y.; Wu, Q.; Wu, X.; Liu, C.; et al. Quinoa Greens as a Novel Plant Food: A Review of Its Nutritional Composition, Functional Activities, and Food Applications. Crit Rev Food Sci Nutr 2024. [CrossRef]
- Rubinovich, L.; Dagan, R.; Lugasi, Y.; Galili, S.; Asher, A. The Potential of Young Vegetative Quinoa (Chenopodium Quinoa) as a New Sustainable Protein-Rich Winter Leafy Crop under Mediterranean Climate. PLoS One 2023, 18, e0290000. [Google Scholar] [CrossRef] [PubMed]
- Pathan, S.; Siddiqui, R.A. Nutritional Composition and Bioactive Components in Quinoa (Chenopodium Quinoa Willd.) Greens: A Review. Nutrients 2022, 14, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Adamczewska-Sowińska, K.; Sowiński, J.; Jama-Rodzeńska, A. The Effect of Sowing Date and Harvest Time on Leafy Greens of Quinoa (Chenopodium Quinoa Willd.) Yield and Selected Nutritional Parameters. Agriculture (Switzerland) 2021, 11. [Google Scholar] [CrossRef]
- Pathan, S.; Ndunguru, G.; Islam, M.R.; Jhumur, S.T.; Ayele, A.G. Production of Quinoa Leafy Greens in High Tunnel for Season Extension in Missouri. Horticulturae 2023, 9. [Google Scholar] [CrossRef]
- Vazquez-Luna, A.; Cortés, V.P.; Carmona, F.F.; Díaz-Sobac, R. Quinoa Leaf as a Nutritional Alternative. Cienc Investig Agrar 2019, 46, 137–143. [Google Scholar] [CrossRef]
- Pathan, S.; Eivazi, F.; Valliyodan, B.; Paul, K.; Ndunguru, G.; Clark, K. Nutritional Composition of the Green Leaves of Quinoa (Chenopodium Quinoa Willd.). J Food Res 2019, 8, 55. [Google Scholar] [CrossRef]
- Gómez, M.J.R.; Magro, P.C.; Blázquez, M.R.; Maestro-Gaitán, I.; Iñiguez, F.M.S.; Sobrado, V.C.; Prieto, J.M. Nutritional Composition of Quinoa Leafy Greens: An Underutilized Plant-Based Food with the Potential of Contributing to Current Dietary Trends. Food Research International 2024, 178. [Google Scholar] [CrossRef]
- Gawlik-Dziki, U.; Swieca, M.; Sulkowski, M.; Dziki, D.; Baraniak, B.; Czyz, J. Antioxidant and Anticancer Activities of Chenopodium Quinoa Leaves Extracts - In Vitro Study. Food and Chemical Toxicology 2013, 57, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Stoleru, V.; Jacobsen, S.E.; Vitanescu, M.; Jitareanu, G.; Butnariu, M.; Munteanu, N.; Stan, T.; Teliban, G.C.; Cojocaru, A.; Mihalache, G. Nutritional and Antinutritional Compounds in Leaves of Quinoa. Food Biosci 2022, 45. [Google Scholar] [CrossRef]
- Lim, J.G.; Park, H.M.; Yoon, K.S. Analysis of Saponin Composition and Comparison of the Antioxidant Activity of Various Parts of the Quinoa Plant (Chenopodium Quinoa Willd.). Food Sci Nutr 2020, 8, 694–702. [Google Scholar] [CrossRef]
- Dick Mastebroek, H.; Limburg, H.; Gilles, T.; Marvin, H.J. Occurrence of Sapogenins in Leaves and Seeds of Quinoa (Chenopodium Quinoa Willd). J Sci Food Agric 2000, 80, 152–156. [Google Scholar] [CrossRef]
- Bernardo Solíz-Guerrero, J.; Jasso De Rodriguez, D.; Rodríguez-García, R.; Luis Angulo-Sánchez, J.; Méndez-Padilla, G. Quinoa Saponins: Concentration and Composition Analysis; ASHS Press, 2002. [Google Scholar]
- Abd El-Samad, E.H.; Hussin, S.A.; El-Naggar, A.M.; El-Bordeny, N.E.; Eisa, S.S. The Potential Use of Quinoa as a New Non-Traditional Leafy Vegetable Crop. Bioscience Research 2018, 15, 3387–3403. [Google Scholar]
- Bellalou, A.; Daklo-Keren, M.; Abu Aklin, W.; Sokolskaya, R.; Rubinovich, L.; Asher, A.; Galili, S. Germination of Chenopodium Quinoa Cv. ‘Mint Vanilla’ Seeds under Different Abiotic Stress Conditions. Seed Science and Technology 2022, 50, 41–45. [Google Scholar] [CrossRef]
- AOAC Official Methods of Analysis, 21st Edition (2019) - AOAC International; 2019.
- Hinojosa, L.; Sanad, M.N.M.E.; Jarvis, D.E.; Steel, P.; Murphy, K.; Smertenko, A. Impact of Heat and Drought Stress on Peroxisome Proliferation in Quinoa. Plant Journal 2019, 99, 1144–1158. [Google Scholar] [CrossRef]
- Abbas, G.; Areej, F.; Asad, S.A.; Saqib, M.; Anwar-ul-Haq, M.; Afzal, S.; Murtaza, B.; Amjad, M.; Naeem, M.A.; Akram, M.; et al. Differential Effect of Heat Stress on Drought and Salt Tolerance Potential of Quinoa Genotypes: A Physiological and Biochemical Investigation. Plants 2023, 12. [Google Scholar] [CrossRef] [PubMed]
- Matías, J.; Rodríguez, M.J.; Cruz, V.; Calvo, P.; Reguera, M. Heat Stress Lowers Yields, Alters Nutrient Uptake and Changes Seed Quality in Quinoa Grown under Mediterranean Field Conditions. J Agron Crop Sci 2021, 207, 481–491. [Google Scholar] [CrossRef]
- Alon, E.; Shapira, O.; Azoulay-Shemer, T.; Rubinovich, L. Shading Nets Reduce Canopy Temperature and Improve Photosynthetic Performance in ‘Pinkerton’ Avocado Trees during Extreme Heat Events. Agronomy 2022, 12, 1360. [Google Scholar] [CrossRef]
- Spehar, C.R.; Rocha, J.E. da S. Effect of Sowing Density on Plant Growth and Development of Quinoa, Genotype 4.5, in the Brazilian Savannah Highlands. Bioscience Journal 2009, 25, 53–58. [Google Scholar]
- Bhargava, A.; Sudhir, S.; Deepak, O. Effect of Sowing Dates and Row Spacings on Yield and Quality Components of Quinoa (Chenopodium Quinoa) Leaves. Indian Journal of Agricultural Sciences 2007, 77, 748–751. [Google Scholar]
- Sief, A.S.; El-Deepah, H.R.A.; Kamel, A.S.M.; Ibrahim, J.F. Effect of Various Inter and Intra Spaces on the Yield and Quality of Quinoa (Chenopodium Quinoa Willd.). J. Plant Production, Mansoura Univ 2015, 6, 371–383. [Google Scholar] [CrossRef]
- Prommarak, S. Response of Quinoa to Emergence Test and Row Spacing in Chiang Mai-Lumphun Valley Lowland Area. Khon Kaen Agricultural Journal 2014, 42, 8–14. [Google Scholar]
- Hunter, M.C.; Sheaffer, C.C.; Culman, S.W.; Lazarus, W.F.; Jungers, J.M. Effects of Defoliation and Row Spacing on Intermediate Wheatgrass II: Forage Yield and Economics. Agron J 2020, 112, 1862–1880. [Google Scholar] [CrossRef]
- Albayrak, S.; Türk, M.; Yüksel, O. Effect of Row Spacing and Seeding Rate on Hungarian Vetch Yield and Quality. Turkish Journal of Field Crops 2011, 16, 54–58. [Google Scholar]
- Jacobsen, S.E.; Stølen, O.; Jørgensen, I. Cultivation of Quinoa (Chenopodium Quinoa) under Temperate Climatic Conditions in Denmark. J Agric Sci 1994, 122, 47–52. [Google Scholar] [CrossRef]
- WHO Protein and Amino Acid Requirements in Human Nutrition: Report of a Joint WHO/FAO/UNU Expert Consultation.; 2007; ISBN 9789241209359.


| Year | Row spacing (cm) | Plant density at harvest (plant m–2) | Dry matter (%) | Fresh yield (kg ha–1) | Dry yield (kg DM ha–1) | Protein content (%) | Protein yield (kg ha–1) |
|---|---|---|---|---|---|---|---|
| 16 | 336 ± 6 a | 13.1 ± 0.6 | 28469 ± 639 a | 3737 ± 243 a | 23.9 ± 1.4 | 884 ± 24 a | |
| 2020 | 26 | 193 ± 27 b | 13.4 ± 0.7 | 27262 ± 251 a | 3662 ± 176 a | 23.5 ± 1.1 | 865 ± 76 a |
| 80 | 55 ± 4 c | 11.4 ± 0.2 | 20986 ± 555 b | 2396 ± 54 b | 26.6 ± 2.2 | 633 ± 39 b | |
| 16 | 345 ± 37 a | 14.4 ± 0.1 a | 7423 ± 209 | 1072 ± 41 | 20.5 ± 0.4 | 220 ± 13 | |
| 2021 | 26 | 166 ± 157 b | 13.4 ± 0.1 b | 6747 ± 1609 | 902 ± 212 | 23.8 ± 1.3 | 209 ± 43 |
| 80 | 65 ± 3 c | 13.3 ± 0.4 b | 4957 ± 775 | 661 ± 105 | 22.3 ± 2 | 147 ± 28 |
| Year | Accession | Plant density at harvest (plant m–2) | Dry matter (%) | Fresh yield (kg ha–1) | Dry yield (kg DM ha–1) |
Protein content (%) | Protein yield (kg ha–1) |
|---|---|---|---|---|---|---|---|
| Red Head | 176 ± 6 a | 12.2 ± 0.6 | 17776 ± 794 | 2175 ± 196 | 24.4 ± 0.8 | 533 ± 56 | |
| Mint Vanilla | 183 ± 16 a | 13.1 ± 0.3 | 16852 ± 389 | 2199 ± 54 | 26.3 ± 1.1 | 579 ± 25 | |
| 2020 | Ivory | 207 ± 14 a | 13.6 ± 0.6 | 15969 ± 752 | 2182 ± 173 | 24.6 ± 2.1 | 539 ± 69 |
| Oro de Valle | 111 ± 4 b | 12.3 ± 0.4 | 14923 ± 1056 | 1852 ± 182 | 26.5 ± 1.7 | 486 ± 40 | |
| Peppermint | 186 ± 6 a | 12.7 ± 0.7 | 16531 ± 1609 | 2136 ± 298 | 25.9 ± 1.4 | 556 ± 85 | |
| Red Head | 279 ± 7 a | 14 ± 0.4 | 9342 ± 1620 | 1292 ± 209 | 22.7 ± 1 | 290 ± 44 | |
| Mint Vanilla | 168 ± 13 b | 14.5 ± 0.3 | 8337 ± 686 | 1209 ± 98 | 21.9 ± 0.5 | 265 ± 19 | |
| 2021 | Ivory | 181 ± 14 b | 14.5 ± 0.4 | 9821 ± 1241 | 1417 ± 177 | 21.5 ± 1 | 300 ± 29 |
| Oro de Valle | 163 ± 6 b | 15.1 ± 0.2 | 7477 ± 1387 | 1122 ± 198 | 23.4 ± 0.7 | 260 ± 42 | |
| Peppermint | 213 ± 20 b | 15.1 ± 0.5 | 9847 ± 793 | 1494 ± 153 | 21.2 ± 1.3 | 315 ± 33 |
| Amino acids (g 100 g DM–1) |
Recommended daily intake (g per 70 kg body weight) | |
|---|---|---|
| Essential | ||
| Histidine | 0.23 ± 0.01 | 0.7 |
| Isoleucine | 0.55 ± 0.04 | 1.4 |
| Leucine | 1.01 ± 0.05 | 2.73 |
| Lysine | 0.51 ± 0.04 | 2.1 |
| Methionine | 0.22 ± 0.01 | 0.7 |
| Phenylalanineb | 0.65 ± 0.04 | 1.75a |
| Threonine | 0.63 ± 0.03 | 1.05 |
| Tryptophan | 0.0588 ± 0.0069 | 0.28 |
| Valine | 0.64 ± 0.05 | 1.82 |
| Non-essential | ||
| Alanine | 0.74 ± 0.05 | |
| Arginine | 0.64 ± 0.04 | |
| Aspartic acid | 1.24 ± 0.06 | |
| Cystine + Cysteine | 0.20 ± 0.01 | |
| Glutamic acid | 1.54 ± 0.5 | |
| Glycine | 0.75 ± 0.03 | |
| Proline | 0.63 ± 0.03 | |
| Serine | 0.65 ± 0.03 | |
| Tyrosine | 0.36 ± 0.04 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
