Submitted:
09 April 2025
Posted:
10 April 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Physiological Roles of mRNA Isoforms
2.1. mRNA Isoforms in Development and Organogenesis
2.2. mRNA Isoforms Regulating Physiological Functions
2.3. mRNA Isoforms in Aging
3. mRNA Isoforms in Disease Conditions
3.1. mRNA Isoforms in Infectious Diseases
3.2. mRNA Isoforms in Non-Infectious Diseases
3.2.1. mRNA Isoforms in Autoimmune Diseases
3.2.2. mRNA Isoforms in Chronic Systemic Diseases
3.2.3. mRNA Isoforms in Tumors
4. Translational Relevance of mRNA Isoforms
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lisowiec, J.; Magner, D.; Kierzek, E.; Lenartowicz, E.; Kierzek, R. Structural determinants for alternative splicing regulation of the MAPT pre-mRNA. RNA biology 2015, 12, 330–42. [Google Scholar] [CrossRef]
- Dhamija, S.; Menon, M.B. Non-coding transcript variants of protein-coding genes – what are they good for? RNA Biol. 2018, 15, 1–7. [Google Scholar] [CrossRef]
- Vo, K.; Sharma, Y.; Paul, A.; Mohamadi, R.; Mohamadi, A.; Fields, P.E.; Rumi, M.A.K. Importance of Transcript Variants in Transcriptome Analyses. Cells 2024, 13, 1502. [Google Scholar] [CrossRef]
- Ray, T.A.; Cochran, K.; Kozlowski, C.; Wang, J.; Alexander, G.; Cady, M.A.; Spencer, W.J.; Ruzycki, P.A.; Clark, B.S.; Laeremans, A.; et al. Comprehensive identification of mRNA isoforms reveals the diversity of neural cell-surface molecules with roles in retinal development and disease. Nat. Commun. 2020, 11, 1–20. [Google Scholar] [CrossRef]
- Pai, A.A.; Luca, F. Environmental influences on RNA processing: Biochemical, molecular and genetic regulators of cellular response. Wiley Interdiscip. Rev. RNA 2019, 10. [Google Scholar] [CrossRef]
- You, N.; Liu, C.; Gu, Y.; Wang, R.; Jia, H.; Zhang, T.; Jiang, S.; Shi, J.; Chen, M.; Guan, M.-X.; et al. SpliceTransformer predicts tissue-specific splicing linked to human diseases. Nat. Commun. 2024, 15, 1–18. [Google Scholar] [CrossRef]
- Wang, E.T.; Sandberg, R.; Luo, S.; Khrebtukova, I.; Zhang, L.; Mayr, C.; Kingsmore, S.F.; Schroth, G.P.; Burge, C.B. Alternative isoform regulation in human tissue transcriptomes. Nature 2008, 456, 470–476. [Google Scholar] [CrossRef]
- Park, C.-W.; Lee, S.-M.; Yoon, K.-J. Epitranscriptomic regulation of transcriptome plasticity in development and diseases of the brain. BMB Rep. 2020, 53, 551–564. [Google Scholar] [CrossRef]
- Sharma, Y.; Vo, K.; Shila, S.; Paul, A.; Dahiya, V.; Fields, P.E.; Rumi, M.A.K. mRNA Transcript Variants Expressed in Mammalian Cells. Int. J. Mol. Sci. 2025, 26, 1052. [Google Scholar] [CrossRef]
- Revil, T.; Gaffney, D.; Dias, C.; Majewski, J.; A Jerome-Majewska, L. Alternative splicing is frequent during early embryonic development in mouse. BMC Genom. 2010, 11, 1–17. [Google Scholar] [CrossRef]
- Badr, E.; ElHefnawi, M.; Heath, L.S. Computational Identification of Tissue-Specific Splicing Regulatory Elements in Human Genes from RNA-Seq Data. PLOS ONE 2016, 11, e0166978. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Wang, Y. mRNA Metabolism in Cardiac Development and Disease: Life After Transcription. Physiol. Rev. 2020, 100, 673–694. [Google Scholar] [CrossRef]
- Kasprzak, A.; Szaflarski, W. Role of Alternatively Spliced Messenger RNA (mRNA) Isoforms of the Insulin-Like Growth Factor 1 (IGF1) in Selected Human Tumors. Int. J. Mol. Sci. 2020, 21, 6995. [Google Scholar] [CrossRef]
- Cooper, T.A.; Wan, L.; Dreyfuss, G. RNA and Disease. Cell 2009, 136, 777–793. [Google Scholar] [CrossRef]
- Giacomelli, AO. Systematic Interrogation of Cancer Driver Gene Function: Harvard University; 2019.
- Mariotti M, Kerepesi C, Oliveros W, Mele M, Gladyshev VN. Deterioration of the human transcriptome with age due to increasing intron retention and spurious splicing. bioRxiv. 2022:2022.03.14.484341. [CrossRef]
- García-Ruiz, S.; Zhang, D.; Gustavsson, E.K.; Rocamora-Perez, G.; Grant-Peters, M.; Fairbrother-Browne, A.; Reynolds, R.H.; Brenton, J.W.; Gil-Martínez, A.L.; Chen, Z.; et al. Splicing accuracy varies across human introns, tissues, age and disease. Nat. Commun. 2025, 16, 1–22. [Google Scholar] [CrossRef]
- Baralle, M.; Romano, M. Age-Related Alternative Splicing: Driver or Passenger in the Aging Process? Cells 2023, 12, 2819. [Google Scholar] [CrossRef]
- Gorbunova, V.; Seluanov, A.; Mita, P.; McKerrow, W.; Fenyö, D.; Boeke, J.D.; Linker, S.B.; Gage, F.H.; Kreiling, J.A.; Petrashen, A.P.; et al. The role of retrotransposable elements in ageing and age-associated diseases. Nature 2021, 596, 43–53. [Google Scholar] [CrossRef]
- Patterson, M.N.; Scannapieco, A.E.; Au, P.H.; Dorsey, S.; Royer, C.A.; Maxwell, P.H. Preferential retrotransposition in aging yeast mother cells is correlated with increased genome instability. DNA Repair 2015, 34, 18–27. [Google Scholar] [CrossRef]
- Irizar, P.A.; Schäuble, S.; Esser, D.; Groth, M.; Frahm, C.; Priebe, S.; Baumgart, M.; Hartmann, N.; Marthandan, S.; Menzel, U.; et al. Transcriptomic alterations during ageing reflect the shift from cancer to degenerative diseases in the elderly. Nat. Commun. 2018, 9, 327. [Google Scholar] [CrossRef]
- Yosudjai, J.; Wongkham, S.; Jirawatnotai, S.; Kaewkong, W. Aberrant mRNA splicing generates oncogenic RNA isoforms and contributes to the development and progression of cholangiocarcinoma (Review). Biomed. Rep. 2019, 10, 147–155. [Google Scholar] [CrossRef]
- Ben Mrid, R.; El Guendouzi, S.; Mineo, M.; El Fatimy, R. The emerging roles of aberrant alternative splicing in glioma. Cell Death Discov. 2025, 11, 1–11. [Google Scholar] [CrossRef]
- Karlstaedt, A.; Moslehi, J.; de Boer, R.A. Cardio-onco-metabolism: metabolic remodelling in cardiovascular disease and cancer. Nat. Rev. Cardiol. 2022, 19, 414–425. [Google Scholar] [CrossRef]
- Liu S, Yu Y-P, Ren B-G, Ben-Yehezkel T, Obert C, Smith M, et al. Long-read single-cell sequencing reveals expressions of hypermutation clusters of isoforms in human liver cancer cells. eLife Sciences Publications, Ltd; 2023.
- Emilsson, V.; Thorleifsson, G.; Zhang, B.; Leonardson, A.S.; Zink, F.; Zhu, J.; Carlson, S.; Helgason, A.; Walters, G.B.; Gunnarsdottir, S.; et al. Genetics of gene expression and its effect on disease. Nature 2008, 452, 423–428. [Google Scholar] [CrossRef]
- Schoch, K.; Tan, Q.K.-G.; Stong, N.; Deak, K.L.; McConkie-Rosell, A.; McDonald, M.T.; Goldstein, D.B.; Jiang, Y.-H.; Shashi, V. Alternative transcripts in variant interpretation: the potential for missed diagnoses and misdiagnoses. Anesthesia Analg. 2020, 22, 1269–1275. [Google Scholar] [CrossRef]
- Le Quesne, J.P.; A Spriggs, K.; Bushell, M.; E Willis, A. Dysregulation of protein synthesis and disease. J. Pathol. 2009, 220, 140–151. [Google Scholar] [CrossRef]
- Vo, K.; Shila, S.; Sharma, Y.; Pei, G.J.; Rosales, C.Y.; Dahiya, V.; Fields, P.E.; Rumi, M.A.K. Detection of mRNA Transcript Variants. Genes 2025, 16, 343. [Google Scholar] [CrossRef]
- Vo, K.; Sharma, Y.; Paul, A.; Mohamadi, R.; Mohamadi, A.; Fields, P.E.; Rumi, M.A.K. Importance of Transcript Variants in Transcriptome Analyses. Cells 2024, 13, 1502. [Google Scholar] [CrossRef]
- Farley BM, Ryder SP. Regulation of maternal mRNAs in early development. Critical reviews in biochemistry and molecular biology. 2008;43(2):135-62.
- Schulz, K.N.; Harrison, M.M. Mechanisms regulating zygotic genome activation. Nat. Rev. Genet. 2018, 20, 221–234. [Google Scholar] [CrossRef]
- Singh, P.; Ahi, E.P. The importance of alternative splicing in adaptive evolution. Mol. Ecol. 2022, 31, 1928–1938. [Google Scholar] [CrossRef]
- Onichtchouk, D. Pou5f1/oct4 in pluripotency control: insights from zebrafish. genesis. 2012;50(2):75-85.
- Aanes, H.; Østrup, O.; Andersen, I.S.; Moen, L.F.; Mathavan, S.; Collas, P.; Alestrom, P. Differential transcript isoform usage pre- and post-zygotic genome activation in zebrafish. BMC Genom. 2013, 14, 1–15. [Google Scholar] [CrossRef]
- Li, F.; Karimi, N.; Wang, S.; Pan, T.; Dong, J.; Wang, X.; Ma, S.; Shan, Q.; Liu, C.; Zhang, Y.; et al. mRNA isoform switches during mouse zygotic genome activation. Cell Prolif. 2024, 57, e13655. [Google Scholar] [CrossRef]
- Lee, H.J.; Bartsch, D.; Xiao, C.; Guerrero, S.; Ahuja, G.; Schindler, C.; Moresco, J.J.; Yates, J.R.; Gebauer, F.; Bazzi, H.; et al. A post-transcriptional program coordinated by CSDE1 prevents intrinsic neural differentiation of human embryonic stem cells. Nat. Commun. 2017, 8, 1456–1456. [Google Scholar] [CrossRef]
- Maurin, M.; Ranjouri, M.; Megino-Luque, C.; Newberg, J.Y.; Du, D.; Martin, K.; Miner, R.E.; Prater, M.S.; Wee, D.K.B.; Centeno, B.; et al. RBFOX2 deregulation promotes pancreatic cancer progression and metastasis through alternative splicing. Nat. Commun. 2023, 14, 1–18. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, Q.; Wang, H.; Yang, X.; Mu, H. Alternative splicing and related RNA binding proteins in human health and disease. Signal Transduct. Target. Ther. 2024, 9, 1–33. [Google Scholar] [CrossRef]
- Colino-Sanguino Y, Clark SJ, Valdes-Mora F. The H2A. Z-nucleosome code in mammals: emerging functions. Trends in Genetics. 2022;38(3):273-89.
- Liu, Z.; Wang, W.; Li, X.; Zhao, X.; Zhao, H.; Yang, W.; Zuo, Y.; Cai, L.; Xing, Y. Temporal Dynamic Analysis of Alternative Splicing During Embryonic Development in Zebrafish. Front. Cell Dev. Biol. 2022, 10, 879795. [Google Scholar] [CrossRef]
- Tan, C.M.J.; Lewandowski, A.J. The Transitional Heart: From Early Embryonic and Fetal Development to Neonatal Life. Fetal Diagn. Ther. 2019, 47, 373–386. [Google Scholar] [CrossRef]
- Fochi, S.; Lorenzi, P.; Galasso, M.; Stefani, C.; Trabetti, E.; Zipeto, D.; Romanelli, M.G. The Emerging Role of the RBM20 and PTBP1 Ribonucleoproteins in Heart Development and Cardiovascular Diseases. Genes 2020, 11, 402. [Google Scholar] [CrossRef]
- Deshpande, A.; Shetty, P.M.V.; Frey, N.; Rangrez, A.Y. SRF: a seriously responsible factor in cardiac development and disease. J. Biomed. Sci. 2022, 29, 1–21. [Google Scholar] [CrossRef]
- Mengmeng, X.; Yuejuan, X.; Sun, C.; Yanan, L.; Fen, L.; Kun, S. Novel mutations of the SRF gene in Chinese sporadic conotruncal heart defect patients. BMC Med Genet. 2020, 21, 1–10. [Google Scholar] [CrossRef]
- Mokalled, M.H.; Carroll, K.J.; Cenik, B.K.; Chen, B.; Liu, N.; Olson, E.N.; Bassel-Duby, R. Myocardin-related transcription factors are required for cardiac development and function. Dev. Biol. 2015, 406, 109–116. [Google Scholar] [CrossRef]
- Yan, Y.-L.; Titus, T.; Desvignes, T.; BreMiller, R.; Batzel, P.; Sydes, J.; Farnsworth, D.; Dillon, D.; Wegner, J.; Phillips, J.B.; et al. A fish with no sex: gonadal and adrenal functions partition between zebrafishNR5A1co-orthologs. Genetics 2021, 217. [Google Scholar] [CrossRef]
- Ruggiero, C.; Doghman, M.; Lalli, E. How genomic studies have improved our understanding of the mechanisms of transcriptional regulation by NR5A nuclear receptors. Mol. Cell. Endocrinol. 2015, 408, 138–144. [Google Scholar] [CrossRef]
- Tagami, A.; Ikeda, Y.; Ishizuka, K.; Maekawa, M. Conditional disruption of Nr5a1 directed by Sox9-Cre impairs adrenal development. Sci. Rep. 2024, 14, 1–12. [Google Scholar] [CrossRef]
- Narita, T.; Higashijima, Y.; Kilic, S.; Liebner, T.; Walter, J.; Choudhary, C. Acetylation of histone H2B marks active enhancers and predicts CBP/p300 target genes. Nat. Genet. 2023, 55, 679–692. [Google Scholar] [CrossRef]
- Haberland, M.; Montgomery, R.L.; Olson, E.N. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 2009, 10, 32–42. [Google Scholar] [CrossRef]
- Ning, L.; Rui, X.; Bo, W.; Qing, G. The critical roles of histone deacetylase 3 in the pathogenesis of solid organ injury. Cell Death Dis. 2021, 12, 1–13. [Google Scholar] [CrossRef]
- Carim, S. Regulating enhancer activation. Nat. Cell Biol. 2023, 25, 372–372. [Google Scholar] [CrossRef]
- Jansz, N. DNA methylation dynamics at transposable elements in mammals. Essays Biochem. 2019, 63, 677–689. [Google Scholar] [CrossRef]
- E Mittleman, B.; Pott, S.; Warland, S.; Zeng, T.; Mu, Z.; Kaur, M.; Gilad, Y.; Li, Y.; Genetics; Genomics; et al. Alternative polyadenylation mediates genetic regulation of gene expression. eLife 2020, 9. [Google Scholar] [CrossRef]
- Cesana, M.; Guo, M.H.; Cacchiarelli, D.; Wahlster, L.; Barragan, J.; Doulatov, S.; Vo, L.T.; Salvatori, B.; Trapnell, C.; Clement, K.; et al. A CLK3-HMGA2 Alternative Splicing Axis Impacts Human Hematopoietic Stem Cell Molecular Identity throughout Development. Cell Stem Cell 2018, 22, 575–588.e7. [Google Scholar] [CrossRef]
- Cleynen I, Van de Ven WJ. The HMGA proteins: a myriad of functions. International journal of oncology. 2008;32(2):289-305.
- Blok, L.S.; Vino, A.; Hoed, J.D.; Underhill, H.R.; Monteil, D.; Li, H.; Santos, F.J.R.; Chung, W.K.; Amaral, M.D.; Schnur, R.E.; et al. Heterozygous variants that disturb the transcriptional repressor activity of FOXP4 cause a developmental disorder with speech/language delays and multiple congenital abnormalities. Anesthesia Analg. 2021, 23, 534–542. [Google Scholar] [CrossRef]
- Yamamoto, T. Genomic Aberrations Associated with the Pathophysiological Mechanisms of Neurodevelopmental Disorders. Cells 2021, 10, 2317. [Google Scholar] [CrossRef]
- Wang, R.; Helbig, I.; Edmondson, A.C.; Lin, L.; Xing, Y. Splicing defects in rare diseases: transcriptomics and machine learning strategies towards genetic diagnosis. Briefings Bioinform. 2023, 24. [Google Scholar] [CrossRef]
- Mensah, M.A.; Niskanen, H.; Magalhaes, A.P.; Basu, S.; Kircher, M.; Sczakiel, H.L.; Reiter, A.M.V.; Elsner, J.; Meinecke, P.; Biskup, S.; et al. Aberrant phase separation and nucleolar dysfunction in rare genetic diseases. Nature 2023, 614, 564–571. [Google Scholar] [CrossRef]
- Roychowdhury, S.; Chattopadhyay, K. A tale of (disordered) tail. Commun. Biol. 2023, 6, 1–2. [Google Scholar] [CrossRef]
- Imbriano, C.; Molinari, S. Alternative Splicing of Transcription Factors Genes in Muscle Physiology and Pathology. Genes 2018, 9, 107. [Google Scholar] [CrossRef]
- Barrie, E.S.; Smith, R.M.; Sanford, J.C.; Sadee, W. mRNA Transcript Diversity Creates New Opportunities for Pharmacological Intervention. Mol. Pharmacol. 2012, 81, 620–630. [Google Scholar] [CrossRef]
- Kwan, T.; Benovoy, D.; Dias, C.; Gurd, S.; Provencher, C.; Beaulieu, P.; Hudson, T.J.; Sladek, R.; Majewski, J. Genome-wide analysis of transcript isoform variation in humans. Nat. Genet. 2008, 40, 225–231. [Google Scholar] [CrossRef]
- Breitbart RE, Andreadis A, Nadal-Ginard B. Alternative splicing: a ubiquitous mechanism for the generation of multiple protein isoforms from single genes. Annual review of biochemistry. 1987;56(1):467-95.
- Rodriguez, J.M.; Pozo, F.; di Domenico, T.; Vazquez, J.; Tress, M.L. An analysis of tissue-specific alternative splicing at the protein level. PLOS Comput. Biol. 2020, 16, e1008287. [Google Scholar] [CrossRef]
- Beitelshees AL, Navare H, Wang D, Gong Y, Wessel J, Moss JI, et al. CACNA1C gene polymorphisms, cardiovascular disease outcomes, and treatment response. Circulation: Cardiovascular Genetics. 2009;2(4):362-70.
- Su, C.-H.; D, D.; Tarn, W.-Y. Alternative Splicing in Neurogenesis and Brain Development. Front. Mol. Biosci. 2018, 5, 12. [Google Scholar] [CrossRef]
- Celotto, A.M.; Graveley, B.R. Alternative Splicing of the DrosophilaDscamPre-mRNA Is Both Temporally and Spatially Regulated. Genetics 2001, 159, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Smith, PH. Dscam gene expression in invertebrate immunity: alternative splicing in response to diverse pathogens. 2012.
- Chen, Y.; Xiao, D.; Zhang, L.; Cai, C.-L.; Li, B.-Y.; Liu, Y. The Role of Tbx20 in Cardiovascular Development and Function. Front. Cell Dev. Biol. 2021, 9. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Zhao, H.; Xu, L.; Xie, Z. N6-Methyladenosine Modification and Its Regulation of Respiratory Viruses. Front. Cell Dev. Biol. 2021, 9, 699997. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Liu, B.; Nie, Z.; Duan, L.; Xiong, Q.; Jin, Z.; Yang, C.; Chen, Y. The role of m6A modification in the biological functions and diseases. Signal Transduct. Target. Ther. 2021, 6, 1–16. [Google Scholar] [CrossRef]
- Cai, T.; Atteh, L.L.; Zhang, X.; Huang, C.; Bai, M.; Ma, H.; Zhang, C.; Fu, W.; Gao, L.; Lin, Y.; et al. The N6-Methyladenosine Modification and Its Role in mRNA Metabolism and Gastrointestinal Tract Disease. Front. Surg. 2022, 9, 819335. [Google Scholar] [CrossRef]
- Zhou, J.; Wan, J.; Gao, X.; Zhang, X.; Jaffrey, S.R.; Qian, S.-B. Dynamic m6A mRNA methylation directs translational control of heat shock response. Nature 2015, 526, 591–594. [Google Scholar] [CrossRef]
- Di Giammartino, D.C.; Nishida, K.; Manley, J.L. Mechanisms and Consequences of Alternative Polyadenylation. Mol. Cell 2011, 43, 853–866. [Google Scholar] [CrossRef]
- Mitschka, S.; Mayr, C. Context-specific regulation and function of mRNA alternative polyadenylation. Nat. Rev. Mol. Cell Biol. 2022, 23, 779–796. [Google Scholar] [CrossRef]
- Cao, J.; Kuyumcu-Martinez, M.N. Alternative polyadenylation regulation in cardiac development and cardiovascular disease. Cardiovasc. Res. 2023, 119, 1324–1335. [Google Scholar] [CrossRef]
- Marasco LE, Kornblihtt AR. The physiology of alternative splicing. Nature Reviews Molecular Cell Biology. 2023;24(4):242-54.
- Wang, K.; Wu, D.; Zhang, H.; Das, A.; Basu, M.; Malin, J.; Cao, K.; Hannenhalli, S. Comprehensive map of age-associated splicing changes across human tissues and their contributions to age-associated diseases. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef]
- Bhadra, M.; Howell, P.; Dutta, S.; Heintz, C.; Mair, W.B. Alternative splicing in aging and longevity. Hum. Genet. 2019, 139, 357–369. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Tyler, J.K. Epigenetics and aging. Sci. Adv. 2016, 2, e1600584. [Google Scholar] [CrossRef] [PubMed]
- Sen, P.; Dang, W.; Donahue, G.; Dai, J.; Dorsey, J.; Cao, X.; Liu, W.; Cao, K.; Perry, R.; Lee, J.Y.; et al. H3K36 methylation promotes longevity by enhancing transcriptional fidelity. Genes Dev. 2015, 29, 1362–1376. [Google Scholar] [CrossRef] [PubMed]
- Masuda, K.; Marasa, B.; Martindale, J.L.; Halushka, M.K.; Gorospe, M. Tissue- and age-dependent expression of RNA-binding proteins that influence mRNA turnover and translation. Aging 2009, 1, 681–698. [Google Scholar] [CrossRef]
- Fernández-Gómez, A.; Izquierdo, J.M. The Multifunctional Faces of T-Cell Intracellular Antigen 1 in Health and Disease. Int. J. Mol. Sci. 2022, 23, 1400. [Google Scholar] [CrossRef]
- López-Domínguez, J.A.; Rodríguez-López, S.; Ahumada-Castro, U.; Desprez, P.-Y.; Konovalenko, M.; Laberge, R.-M.; Cárdenas, C.; Villalba, J.M.; Campisi, J. Cdkn1a transcript variant 2 is a marker of aging and cellular senescence. Aging 2021, 13, 13380–13392. [Google Scholar] [CrossRef]
- Hudgins, A.D.; Tazearslan, C.; Tare, A.; Zhu, Y.; Huffman, D.; Suh, Y. Age- and Tissue-Specific Expression of Senescence Biomarkers in Mice. Front. Genet. 2018, 9. [Google Scholar] [CrossRef]
- Papadakis, A. Aging associated changes of transcriptional elongation speed and transcriptional error rate: Universität zu Köln; 2024.
- Debès, C.; Papadakis, A.; Grönke, S.; Karalay, Ö.; Tain, L.S.; Mizi, A.; Nakamura, S.; Hahn, O.; Weigelt, C.; Josipovic, N.; et al. Ageing-associated changes in transcriptional elongation influence longevity. Nature 2023, 616, 814–821. [Google Scholar] [CrossRef]
- Gruner, H.; Cortés-López, M.; Cooper, D.A.; Bauer, M.; Miura, P. CircRNA accumulation in the aging mouse brain. Sci. Rep. 2016, 6, 38907. [Google Scholar] [CrossRef]
- Tumasian, R.A.; Harish, A.; Kundu, G.; Yang, J.-H.; Ubaida-Mohien, C.; Gonzalez-Freire, M.; Kaileh, M.; Zukley, L.M.; Chia, C.W.; Lyashkov, A.; et al. Skeletal muscle transcriptome in healthy aging. Nat. Commun. 2021, 12, 1–16. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, N.; Matai, L.; Jain, V.; Garg, A.; Mukhopadhyay, A. A chromatin modifier integrates insulin/IGF-1 signalling and dietary restriction to regulate longevity. Aging Cell 2016, 15, 694–705. [Google Scholar] [CrossRef] [PubMed]
- Testa, G.; Biasi, F.; Poli, G.; Chiarpotto, E. Calorie Restriction and Dietary Restriction Mimetics: A Strategy for Improving Healthy Aging and Longevity. Curr. Pharm. Des. 2014, 20, 2950–2977. [Google Scholar] [CrossRef] [PubMed]
- Green, C.L.; Lamming, D.W.; Fontana, L. Molecular mechanisms of dietary restriction promoting health and longevity. Nat. Rev. Mol. Cell Biol. 2021, 23, 56–73. [Google Scholar] [CrossRef]
- Schneider, B.K.; Sun, S.; Lee, M.; Li, W.; Skvir, N.; Neretti, N.; Vijg, J.; Secombe, J. Expression of retrotransposons contributes to aging in Drosophila. Genetics 2023, 224. [Google Scholar] [CrossRef]
- Kwon, H.C.; Bae, Y.; Lee, S.-J.V. The Role of mRNA Quality Control in the Aging of Caenorhabditis elegans. Mol. Cells 2023, 46, 664–671. [Google Scholar] [CrossRef]
- Wright, C.J.; Smith, C.W.J.; Jiggins, C.D. Alternative splicing as a source of phenotypic diversity. Nat. Rev. Genet. 2022, 23, 697–710. [Google Scholar] [CrossRef]
- Kim, H.K.; Pham, M.H.C.; Ko, K.S.; Rhee, B.D.; Han, J. Alternative splicing isoforms in health and disease. Pfl?gers Arch. Eur. J. Physiol. 2018, 470, 995–1016. [Google Scholar] [CrossRef]
- Li, J.; He, L.; Zhang, Y.; Xue, C.; Cao, Y. A novel method for genome-wide profiling of dynamic host-pathogen interactions using 3′ end enriched RNA-seq. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Lyu, M.; Lai, H.; Wang, Y.; Zhou, Y.; Chen, Y.; Wu, D.; Chen, J.; Ying, B. Roles of alternative splicing in infectious diseases: from hosts, pathogens to their interactions. Chin. Med J. 2023, 136, 767–779. [Google Scholar] [CrossRef]
- Sehrawat, S.; Garcia-Blanco, M.A. RNA virus infections and their effect on host alternative splicing. Antivir. Res. 2022, 210, 105503–105503. [Google Scholar] [CrossRef]
- Evans III, EL. Investigating species-specific blocks to HIV-1 replication and Vif-induced metaphase arrest: The University of Wisconsin-Madison; 2019.
- Liu, Y.-H.; Xu, H.-Q.; Zhu, S.-S.; Hong, Y.-F.; Li, X.-W.; Li, H.-X.; Xiong, J.-P.; Xiao, H.; Bu, J.-H.; Zhu, F.; et al. ASVirus: A Comprehensive Knowledgebase for the Viral Alternative Splicing. J. Chem. Inf. Model. 2025, 65, 2722–9. [Google Scholar] [CrossRef] [PubMed]
- Amir, N.; Taube, R. Role of long noncoding RNA in regulating HIV infection—a comprehensive review. mBio 2024, 15, e0192523. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.-J.; Hu, Y.-F.; Han, Q.-J.; Zhang, J. Innate and adaptive immune escape mechanisms of hepatitis B virus. World J. Gastroenterol. 2022, 28, 881–896. [Google Scholar] [CrossRef]
- Kuipery, A.; Gehring, A.J.; Isogawa, M. Mechanisms of HBV immune evasion. Antivir. Res. 2020, 179, 104816. [Google Scholar] [CrossRef]
- Carpenter, S.; Ricci, E.P.; Mercier, B.C.; Moore, M.J.; Fitzgerald, K.A. Post-transcriptional regulation of gene expression in innate immunity. Nat. Rev. Immunol. 2014, 14, 361–376. [Google Scholar] [CrossRef]
- Kalam, H.; Fontana, M.F.; Kumar, D. Alternate splicing of transcripts shape macrophage response to Mycobacterium tuberculosis infection. PLOS Pathog. 2017, 13, e1006236. [Google Scholar] [CrossRef] [PubMed]
- Hong, W.; Yang, H.; Wang, X.; Shi, J.; Zhang, J.; Xie, J. The Role of mRNA Alternative Splicing in Macrophages Infected with Mycobacterium tuberculosis: A Field Needing to Be Discovered. Molecules 2024, 29, 1798. [Google Scholar] [CrossRef]
- Baena, A.; Porcelli, S.A. Evasion and subversion of antigen presentation by Mycobacterium tuberculosis. Tissue Antigens 2009, 74, 189–204. [Google Scholar] [CrossRef]
- Corre, M.; Boehm, V.; Besic, V.; Kurowska, A.; Viry, A.; Mohammad, A.; Sénamaud-Beaufort, C.; Thomas-Chollier, M.; Lebreton, A. Alternative splicing induced by bacterial pore-forming toxins sharpens CIRBP-mediated cell response to Listeria infection. Nucleic Acids Res. 2023, 51, 12459–12475. [Google Scholar] [CrossRef]
- Corre, M.; Lebreton, A. Regulation of cold-inducible RNA-binding protein (CIRBP) in response to cellular stresses. Biochimie 2023, 217, 3–9. [Google Scholar] [CrossRef]
- Nishimura, H.; Yajima, T.; Naiki, Y.; Tsunobuchi, H.; Umemura, M.; Itano, K.; Matsuguchi, T.; Suzuki, M.; Ohashi, P.S.; Yoshikai, Y. Differential Roles of Interleukin 15 mRNA Isoforms Generated by Alternative Splicing in Immune Responses in Vivo. J. Exp. Med. 2000, 191, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Yoshikai, Y.; Nishimura, H. The role of interleukin 15 in mounting an immune response against microbial infections. Microbes Infect. 2000, 2, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Agosto, L.M.; Mallory, M.J.; Ferretti, M.B.; Blake, D.; Krick, K.S.; Gazzara, M.R.; Garcia, B.A.; Lynch, K.W. Alternative splicing of HDAC7 regulates its interaction with 14-3-3 proteins to alter histone marks and target gene expression. Cell Rep. 2023, 42, 112273–112273. [Google Scholar] [CrossRef] [PubMed]
- Kamran, M.; Bhattacharjee, R.; Das, S.; Mukherjee, S.; Ali, N. The paradigm of intracellular parasite survival and drug resistance in leishmanial parasite through genome plasticity and epigenetics: Perception and future perspective. Front. Cell. Infect. Microbiol. 2023, 13, 1001973. [Google Scholar] [CrossRef]
- Pisetsky, DS. Pathogenesis of autoimmune disease. Nature Reviews Nephrology. 2023;19(8):509-24.
- Goodnow, C.C. Pathways for self-tolerance and the treatment of autoimmune diseases. Lancet 2001, 357, 2115–2121. [Google Scholar] [CrossRef]
- Xu, B.; Liu, Y.; Chen, G.; Jiang, P.; Qu, Y.; Wang, M.; Kao, X. Genome-wide analysis of abnormal splicing regulators and alternative splicing involved in immune regulation in systemic lupus erythematosus. Autoimmunity 2025, 58, 2448463. [Google Scholar] [CrossRef]
- Lazzari, E.; Jefferies, C.A. IRF5-mediated signaling and implications for SLE. Clin. Immunol. 2014, 153, 343–352. [Google Scholar] [CrossRef]
- Stone, R.C.; Du, P.; Feng, D.; Dhawan, K.; Rönnblom, L.; Eloranta, M.-L.; Donnelly, R.; Barnes, B.J. RNA-Seq for Enrichment and Analysis of IRF5 Transcript Expression in SLE. PLOS ONE 2013, 8, e54487. [Google Scholar] [CrossRef]
- Chikuma, S. CTLA-4, an essential immune-checkpoint for T-cell activation. Emerging Concepts Targeting Immune Checkpoints in Cancer and Autoimmunity. 2017:99-126.
- Ahmad, R.; Ahsan, H. Dual autoimmune diseases: Rheumatoid arthritis with systemic lupus erythematosus and Type 1 diabetes mellitus with multiple sclerosis. Rheumatol. Autoimmun. 2022, 2, 120–128. [Google Scholar] [CrossRef]
- Grisar, J.; Munk, M.; Steiner, C.W.; Amoyo-Minar, L.; Tohidast-Akrad, M.; Zenz, P.; Steiner, G.; Smolen, J.S. Expression patterns of CD44 and CD44 splice variants in patients with rheumatoid arthritis. . 2012, 30, 64–72. [Google Scholar]
- Naor, D.; Nedvetzki, S. CD44 in rheumatoid arthritis. Arthritis Res. Ther. 2003, 5, 105–115. [Google Scholar] [CrossRef]
- Ibáñez-Costa, A.; Perez-Sanchez, C.; Patiño-Trives, A.M.; Luque-Tevar, M.; Font, P.; de la Rosa, I.A.; Roman-Rodriguez, C.; Abalos-Aguilera, M.C.; Conde, C.; Gonzalez, A.; et al. Splicing machinery is impaired in rheumatoid arthritis, associated with disease activity and modulated by anti-TNF therapy. Ann. Rheum. Dis. 2022, 81, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Galarza-Muñoz, G.; Garcia-Blanco, M.A. Role of RNA Alternative Splicing in T Cell Function and Disease. Genes 2023, 14, 1896. [Google Scholar] [CrossRef] [PubMed]
- Tzaban, S.; Stern, O.; Zisman, E.; Eisenberg, G.; Klein, S.; Frankenburg, S.; Lotem, M. Alternative splicing of modulatory immune receptors in T lymphocytes: a newly identified and targetable mechanism for anticancer immunotherapy. Front. Immunol. 2025, 15, 1490035. [Google Scholar] [CrossRef]
- Lim J, Sari-Ak D, Bagga T. Siglecs as therapeutic targets in cancer. Biology. 2021;10(11):1178.
- Li, H.; Reksten, T.R.; Ice, J.A.; Kelly, J.A.; Adrianto, I.; Rasmussen, A.; Wang, S.; He, B.; Grundahl, K.M.; Glenn, S.B.; et al. Identification of a Sjögren's syndrome susceptibility locus at OAS1 that influences isoform switching, protein expression, and responsiveness to type I interferons. PLOS Genet. 2017, 13, e1006820–e1006820. [Google Scholar] [CrossRef]
- Del Papa, N.; Minniti, A.; Lorini, M.; Carbonelli, V.; Maglione, W.; Pignataro, F.; Montano, N.; Caporali, R.; Vitali, C. The Role of Interferons in the Pathogenesis of Sjögren’s Syndrome and Future Therapeutic Perspectives. Biomolecules 2021, 11, 251. [Google Scholar] [CrossRef] [PubMed]
- Voulgarelis, M.; Tzioufas, A.G. Pathogenetic mechanisms in the initiation and perpetuation of Sjögren's syndrome. Nat. Rev. Rheumatol. 2010, 6, 529–537. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, J.; Tian, J.; Wang, S. CD8+ T Lymphocytes: Crucial Players in Sjögren’s Syndrome. Front. Immunol. 2021, 11. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, W.; Tian, Y.; Liu, J.; Yang, R. Polymorphisms in STAT4 and IRF5 increase the risk of systemic sclerosis: a meta-analysis. Int. J. Dermatol. 2015, 55, 408–416. [Google Scholar] [CrossRef]
- Mennella, A.; Ocone, G.; Stefanantoni, K.; Frasca, L. The Role of IRF8 Polymorphisms in Systemic Sclerosis Development and Pathogenesis. J. Mol. Pathol. 2024, 5, 120–132. [Google Scholar] [CrossRef]
- Frangogiannis, N.G. Transforming growth factor–β in tissue fibrosis. J. Exp. Med. 2020, 217, e20190103. [Google Scholar] [CrossRef] [PubMed]
- Evsyukova, I.; Somarelli, J.A.; Gregory, S.G.; Garcia-Blanco, M.A. Alternative splicing in multiple sclerosis and other autoimmune diseases. RNA Biol. 2010, 7, 462–473. [Google Scholar] [CrossRef] [PubMed]
- Greer, J.M.; Trifilieff, E.; Pender, M.P. Correlation Between Anti-Myelin Proteolipid Protein (PLP) Antibodies and Disease Severity in Multiple Sclerosis Patients With PLP Response-Permissive HLA Types. Front. Immunol. 2020, 11, 1891. [Google Scholar] [CrossRef] [PubMed]
- Schanda, K.; Peschl, P.; Lerch, M.; Seebacher, B.; Mindorf, S.; Ritter, N.; Probst, M.; Hegen, H.; Di Pauli, F.; Wendel, E.-M.; et al. Differential Binding of Autoantibodies to MOG Isoforms in Inflammatory Demyelinating Diseases. Neurol. - Neuroimmunol. Neuroinflammation 2021, 8. [Google Scholar] [CrossRef]
- Ohno, K.; Ohkawara, B.; Shen, X.-M.; Selcen, D.; Engel, A.G. Clinical and Pathologic Features of Congenital Myasthenic Syndromes Caused by 35 Genes—A Comprehensive Review. Int. J. Mol. Sci. 2023, 24, 3730. [Google Scholar] [CrossRef]
- Marín-Sánchez, A.; Álvarez-Sierra, D.; González, O.; Lucas-Martin, A.; Sellés-Sánchez, A.; Rudilla, F.; Enrich, E.; Colobran, R.; Pujol-Borrell, R. Regulation of TSHR Expression in the Thyroid and Thymus May Contribute to TSHR Tolerance Failure in Graves' Disease Patients via Two Distinct Mechanisms. Front. Immunol. 2019, 10, 1695. [Google Scholar] [CrossRef]
- Brand, O.J.; Barrett, J.C.; Simmonds, M.J.; Newby, P.R.; McCabe, C.J.; Bruce, C.K.; Kysela, B.; Carr-Smith, J.D.; Brix, T.; Hunt, P.J.; et al. Association of the thyroid stimulating hormone receptor gene (TSHR) with Graves' disease. Hum. Mol. Genet. 2009, 18, 1704–1713. [Google Scholar] [CrossRef]
- Latif, R.; Mezei, M.; A Morshed, S.; Ma, R.; Ehrlich, R.; Davies, T.F. A Modifying Autoantigen in Graves’ Disease. Endocrinology 2019, 160, 1008–1020. [Google Scholar] [CrossRef]
- Yarani, R.; Shojaeian, A.; Palasca, O.; Doncheva, N.T.; Jensen, L.J.; Gorodkin, J.; Pociot, F. Differentially Expressed miRNAs in Ulcerative Colitis and Crohn’s Disease. Front. Immunol. 2022, 13, 865777. [Google Scholar] [CrossRef]
- Robinson, P.; Magness, E.; Montoya, K.; Engineer, N.; Eckols, T.K.; Rodriguez, E.; Tweardy, D.J. Genetic and Small-Molecule Modulation of Stat3 in a Mouse Model of Crohn’s Disease. J. Clin. Med. 2022, 11, 7020. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, Q.; Zhao, Y.; Song, Y.; Leng, Y.; Chen, M.; Zhou, S.; Wang, Z. The regulatory role of alternative splicing in inflammatory bowel disease. Front. Immunol. 2023, 14, 1095267. [Google Scholar] [CrossRef] [PubMed]
- Pai, Y.-C.; Weng, L.-T.; Wei, S.-C.; Wu, L.-L.; Shih, D.Q.; Targan, S.R.; Turner, J.R.; Yu, L.C.-H. Gut Microbial Transcytosis Induced by Tumour Necrosis Factor-like 1A-dependent Activation of a Myosin Light Chain Kinase Splice Variant Contributes to Inflammatory Bowel Disease. J. Crohn’s Colitis 2020, 15, 258–272. [Google Scholar] [CrossRef] [PubMed]
- Derer, S.; Brethack, A.-K.; Pietsch, C.; Jendrek, S.T.; Nitzsche, T.; Bokemeyer, A.; Hov, J.R.; Schäffler, H.; Bettenworth, D.; A Grassl, G.; et al. Inflammatory Bowel Disease–associated GP2 Autoantibodies Inhibit Mucosal Immune Response to Adherent-invasive Bacteria. Inflamm. Bowel Dis. 2020, 26, 1856–1868. [Google Scholar] [CrossRef]
- Kan, S.-H.; Mancini, G.; Gallagher, G. Identification and characterization of multiple splice forms of the human interleukin-23 receptor α chain in mitogen-activated leukocytes. Genes Immun. 2008, 9, 631–639. [Google Scholar] [CrossRef]
- Lahiri, A.; Hedl, M.; Yan, J.; Abraham, C. Human LACC1 increases innate receptor-induced responses and a LACC1 disease-risk variant modulates these outcomes. Nat. Commun. 2017, 8, 15614. [Google Scholar] [CrossRef]
- Huang, C.; Hedl, M.; Ranjan, K.; Abraham, C. LACC1 Required for NOD2-Induced, ER Stress-Mediated Innate Immune Outcomes in Human Macrophages and LACC1 Risk Variants Modulate These Outcomes. Cell Rep. 2019, 29, 4525–4539.e4. [Google Scholar] [CrossRef]
- Li, C. Unfolded Protein Response and Crohn’s Diseases: A Molecular Mechanism of Wound Healing in the Gut. Gastrointest. Disord. 2021, 3, 31–43. [Google Scholar] [CrossRef]
- Muise A, Rotin D. Apical junction complex proteins and ulcerative colitis: a focus on the PTPRS gene. Expert review of molecular diagnostics. 2008;8(4):465-77.
- Klak, M.; Gomółka, M.; Kowalska, P.; Cichoń, J.; Ambrożkiewicz, F.; Serwańska-Świętek, M.; Berman, A.; Wszoła, M. Type 1 diabetes: genes associated with disease development. Central Eur. J. Immunol. 2020, 45, 439–453. [Google Scholar] [CrossRef]
- Eizirik DL, Szymczak F, Mallone R. Why does the immune system destroy pancreatic β-cells but not α-cells in type 1 diabetes? Nature Reviews Endocrinology. 2023;19(7):425-34.
- Roep, B.O.; Peakman, M. Antigen Targets of Type 1 Diabetes Autoimmunity. Cold Spring Harb. Perspect. Med. 2012, 2, a007781–a007781. [Google Scholar] [CrossRef]
- Gerold, K.D.; Zheng, P.; Rainbow, D.B.; Zernecke, A.; Wicker, L.S.; Kissler, S. The Soluble CTLA-4 Splice Variant Protects From Type 1 Diabetes and Potentiates Regulatory T-Cell Function. Diabetes 2011, 60, 1955–1963. [Google Scholar] [CrossRef]
- Bloor, C.A.; Knight, R.A.; Kedia, R.K.; Spiteri, M.A.; Allen, J.T. Differential mRNA Expression of Insulin-like Growth Factor-1 Splice Variants in Patients With Idiopathic Pulmonary Fibrosis and Pulmonary Sarcoidosis. Am. J. Respir. Crit. Care Med. 2001, 164, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Funaguma, S.; Iida, A.; Saito, Y.; Tanboon, J.; Reyes, F.V.D.L.; Sonehara, K.; Goto, Y.-I.; Okada, Y.; Hayashi, S.; Nishino, I. Retrotrans-genomics identifies aberrant THE1B endogenous retrovirus fusion transcripts in the pathogenesis of sarcoidosis. Nat. Commun. 2025, 16, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Fang, L.; Wu, C. Alternative Splicing and Isoforms: From Mechanisms to Diseases. Genes 2022, 13, 401. [Google Scholar] [CrossRef]
- Liu, C.S.; Park, C.; Ngo, T.; Saikumar, J.; Palmer, C.R.; Shahnaee, A.; Romanow, W.J.; Chun, J. RNA Isoform Diversity in Human Neurodegenerative Diseases. eneuro 2024, 11. [Google Scholar] [CrossRef]
- Sandbrink, R.; Masters, C.L.; Beyreuther, K. APP Gene Family Alternative Splicing Generates Functionally Related Isoformsa. Ann. New York Acad. Sci. 1996, 777, 281–287. [Google Scholar] [CrossRef]
- De Paoli-Iseppi R, Joshi S, Gleeson J, Prawer YDJ, Yu Y, Agarwal R, et al. Long-read sequencing reveals the RNA isoform repertoire of neuropsychiatric risk genes in human brain. medRxiv. 2024:2024.02. 22.24303189.
- Lücking C, Brice* A. Alpha-synuclein and Parkinson's disease. Cellular and Molecular Life Sciences CMLS. 2000;57:1894-908.
- Li, Y.; Sun, S. RNA dysregulation in neurodegenerative diseases. EMBO J. 2025, 44, 613–638. [Google Scholar] [CrossRef]
- Highley JR, Kirby J, Jansweijer JA, Webb PS, Hewamadduma CA, Heath PR, et al. Loss of nuclear TDP-43 in amyotrophic lateral sclerosis (ALS) causes altered expression of splicing machinery and widespread dysregulation of RNA splicing in motor neurones. Neuropathology and applied neurobiology. 2014;40(6):670-85.
- Maziuk, B.; Ballance, H.I.; Wolozin, B. Dysregulation of RNA Binding Protein Aggregation in Neurodegenerative Disorders. Front. Mol. Neurosci. 2017, 10, 89. [Google Scholar] [CrossRef]
- Nik, S.; Bowman, T.V. Splicing and neurodegeneration: Insights and mechanisms. Wiley Interdiscip. Rev. RNA 2019, 10, e1532. [Google Scholar] [CrossRef]
- Seixas AI, Holmes SE, Takeshima H, Pavlovich A, Sachs N, Pruitt JL, et al. Loss of junctophilin-3 contributes to Huntington disease-like 2 pathogenesis. Annals of neurology. 2012;71(2):245-57.
- Bourinaris, T.; Athanasiou, A.; Efthymiou, S.; Wiethoff, S.; Salpietro, V.; Houlden, H. Allelic and phenotypic heterogeneity in Junctophillin-3 related neurodevelopmental and movement disorders. Eur. J. Hum. Genet. 2021, 29, 1027–1031. [Google Scholar] [CrossRef]
- Varela, M.D.; Georgiou, M.; Alswaiti, Y.; Kabbani, J.; Fujinami, K.; Fujinami-Yokokawa, Y.; Khoda, S.; Mahroo, O.A.; Robson, A.G.; Webster, A.R.; et al. CRB1-Associated Retinal Dystrophies: Genetics, Clinical Characteristics, and Natural History. Arch. Ophthalmol. 2022, 246, 107–121. [Google Scholar] [CrossRef]
- Douglas, V.P.; Douglas, K.A.; Iannaccone, A. Microbiome and Inherited Retinal Degenerations. Am. J. Pathol. 2023, 193, 1669–1674. [Google Scholar] [CrossRef] [PubMed]
- Marti´nez-Gimeno, M.; Gamundi, M.J.; Hernan, I.; Maseras, M.; Milla´, E.; Ayuso, C.; Garci´a-Sandoval, B.; Beneyto, M.; Vilela, C.; Baiget, M.; et al. Mutations in the Pre-mRNA Splicing-Factor GenesPRPF3,PRPF8, andPRPF31in Spanish Families with Autosomal Dominant Retinitis Pigmentosa. Investig. Opthalmology Vis. Sci. 2003, 44, 2171–2177. [Google Scholar] [CrossRef] [PubMed]
- Krausová, M.; Kreplová, M.; Banik, P.; Cvačková, Z.; Kubovčiak, J.; Modrák, M.; Zudová, D.; Lindovský, J.; Kubik-Zahorodna, A.; Pálková, M.; et al. Retinitis pigmentosa–associated mutations in mouse Prpf8 cause misexpression of circRNAs and degeneration of cerebellar granule cells. Life Sci. Alliance 2023, 6, e202201855. [Google Scholar] [CrossRef]
- De Stefano, M.E.; Ferretti, V.; Mozzetta, C. Synaptic alterations as a neurodevelopmental trait of Duchenne muscular dystrophy. Neurobiol. Dis. 2022, 168, 105718. [Google Scholar] [CrossRef]
- Wallace DJ, Wallace JB. All about fibromyalgia: a guide for patients and their families: Oxford University Press; 2002.
- Park, D.-J.; Kang, J.-H.; Yim, Y.-R.; Kim, J.-E.; Lee, J.-W.; Lee, K.-E.; Wen, L.; Kim, T.-J.; Park, Y.-W.; Lee, S.-S. Exploring Genetic Susceptibility to Fibromyalgia. Chonnam Med J. 2015, 51, 58–65. [Google Scholar] [CrossRef]
- Kong, S.W.; Hu, Y.W.; Ho, J.W.; Ikeda, S.; Polster, S.; John, R.; Hall, J.L.; Bisping, E.; Pieske, B.; dos Remedios, C.G.; et al. Heart Failure–Associated Changes in RNA Splicing of Sarcomere Genes. Circ. Cardiovasc. Genet. 2010, 3, 138–146. [Google Scholar] [CrossRef]
- Cao, J.; Wei, Z.; Nie, Y.; Chen, H.-Z. Therapeutic potential of alternative splicing in cardiovascular diseases. EBioMedicine 2024, 101, 104995. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Zhou, D.; Poulsen, O.; Hartley, I.; Imamura, T.; Xie, E.X.; Haddad, G.G. Exploring miRNA-mRNA regulatory network in cardiac pathology in Na+/H+exchanger isoform 1 transgenic mice. Physiol. Genom. 2018, 50, 846–861. [Google Scholar] [CrossRef]
- Park, J.Y.; Li, W.; Zheng, D.; Zhai, P.; Zhao, Y.; Matsuda, T.; Vatner, S.F.; Sadoshima, J.; Tian, B. Comparative Analysis of mRNA Isoform Expression in Cardiac Hypertrophy and Development Reveals Multiple Post-Transcriptional Regulatory Modules. PLOS ONE 2011, 6, e22391. [Google Scholar] [CrossRef]
- Han, X.; Li, W.; Chen, C.; Liu, J.; Sun, J.; Wang, F.; Wang, C.; Mu, J.; Gu, X.; Liu, F.; et al. Genetic variants and mRNA expression levels of KLF4 and KLF5 with hypertension: A combination of case-control study and cohort study. J. Biomed. Res. 2025, 39, 103–10. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.; Han, Z.; Dong, J.; Pang, D.; Fu, Y.; Li, L. KLF4 alleviates cerebral vascular injury by ameliorating vascular endothelial inflammation and regulating tight junction protein expression following ischemic stroke. J. Neuroinflammation 2020, 17, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Ni, H.; Haemmig, S.; Deng, Y.; Chen, J.; Simion, V.; Yang, D.; Sukhova, G.; Shvartz, E.; Wara, A.K.; Cheng, H.S.; et al. A Smooth Muscle Cell–Enriched Long Noncoding RNA Regulates Cell Plasticity and Atherosclerosis by Interacting With Serum Response Factor. Arter. Thromb. Vasc. Biol. 2021, 41, 2399–2416. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Qian, H.-Y. Transcription factors: key regulatory targets of vascular smooth muscle cell in atherosclerosis. Mol. Med. 2023, 29, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Sun, Q.; Roth, M. Immunologic and Non-Immunologic Mechanisms Leading to Airway Remodeling in Asthma. Int. J. Mol. Sci. 2020, 21, 757. [Google Scholar] [CrossRef]
- Grzela, K.; Litwiniuk, M.; Zagorska, W.; Grzela, T. Airway Remodeling in Chronic Obstructive Pulmonary Disease and Asthma: the Role of Matrix Metalloproteinase-9. Arch. Immunol. et Ther. Exp. 2015, 64, 47–55. [Google Scholar] [CrossRef]
- Panek, M.G.; Karbownik, M.S.; Górski, K.M.; Koćwin, M.; Kardas, G.; Marynowski, M.; Kuna, P. New insights into the regulation of TGF-β/Smad and MPK signaling pathway gene expressions by nasal allergen and methacholine challenge test in asthma. Clin. Transl. Allergy 2022, 12, e12172. [Google Scholar] [CrossRef]
- Khalenkow, D.; Brandsma, C.-A.; Timens, W.; Choy, D.F.; Grimbaldeston, M.A.; Rosenberger, C.M.; Slebos, D.-J.; Kerstjens, H.A.M.; Faiz, A.; Koppelman, G.H.; et al. Alternative Splicing Is a Major Factor Shaping Transcriptome Diversity in Mild and Severe Chronic Obstructive Pulmonary Disease. Am. J. Respir. Cell Mol. Biol. 2024, 70, 414–423. [Google Scholar] [CrossRef]
- Lackey, L.; Coria, A.; Ghosh, A.J.; Grayeski, P.; Hatfield, A.; Shankar, V.; Platig, J.; Xu, Z.; Ramos, S.B.V.; Silverman, E.K.; et al. Alternative poly-adenylation modulates α1-antitrypsin expression in chronic obstructive pulmonary disease. PLOS Genet. 2021, 17, e1009912. [Google Scholar] [CrossRef]
- Corley, M.; Solem, A.; Phillips, G.; Lackey, L.; Ziehr, B.; Vincent, H.A.; Mustoe, A.M.; Ramos, S.B.V.; Weeks, K.M.; Moorman, N.J.; et al. An RNA structure-mediated, posttranscriptional model of human α-1-antitrypsin expression. Proc. Natl. Acad. Sci. 2017, 114, E10244–E10253. [Google Scholar] [CrossRef]
- Chen, D.; Zhu, S. Whole-exome sequencing identification of a recurrent CRYBB2 variant in a four-generation Chinese family with congenital nuclear cataracts. Exp. Ther. Med. 2021, 22, 1–13. [Google Scholar] [CrossRef]
- E Barnum, C.; Al Saai, S.; Patel, S.D.; Cheng, C.; Anand, D.; Xu, X.; Dash, S.; Siddam, A.D.; Glazewski, L.; Paglione, E.; et al. The Tudor-domain protein TDRD7, mutated in congenital cataract, controls the heat shock protein HSPB1 (HSP27) and lens fiber cell morphology. Hum. Mol. Genet. 2020, 29, 2076–2097. [Google Scholar] [CrossRef] [PubMed]
- Lachke, S.A.; Alkuraya, F.S.; Kneeland, S.C.; Ohn, T.; Aboukhalil, A.; Howell, G.R.; Saadi, I.; Cavallesco, R.; Yue, Y.; Tsai, A.C.-H.; et al. Mutations in the RNA Granule Component TDRD7 Cause Cataract and Glaucoma. Science 2011, 331, 1571–1576. [Google Scholar] [CrossRef] [PubMed]
- Korvala, J.; Jüppner, H.; Mäkitie, O.; Sochett, E.; Schnabel, D.; Mora, S.; Bartels, C.F.; Warman, M.L.; Deraska, D.; Cole, W.G.; et al. Mutations in LRP5 cause primary osteoporosis without features of OI by reducing Wnt signaling activity. BMC Med Genet. 2012, 13, 26–26. [Google Scholar] [CrossRef]
- Liu, W.; Zhu, J.; Wu, Z.; Yin, Y.; Wu, Q.; Wu, Y.; Zheng, J.; Wang, C.; Chen, H.; Qazi, T.J.; et al. Insight of novel biomarkers for papillary thyroid carcinoma through multiomics. Front. Oncol. 2023, 13, 1269751. [Google Scholar] [CrossRef]
- Piazzi, M.; Bavelloni, A.; Salucci, S.; Faenza, I.; Blalock, W.L. Alternative Splicing, RNA Editing, and the Current Limits of Next Generation Sequencing. Genes 2023, 14, 1386. [Google Scholar] [CrossRef]
- Stamm S, Ben-Ari S, Rafalska I, Tang Y, Zhang Z, Toiber D, et al. Function of alternative splicing. Gene. 2005;344:1-20.
- Dou, Z.; Zhao, D.; Chen, X.; Xu, C.; Jin, X.; Zhang, X.; Wang, Y.; Xie, X.; Li, Q.; Di, C.; et al. Aberrant Bcl-x splicing in cancer: from molecular mechanism to therapeutic modulation. J. Exp. Clin. Cancer Res. 2021, 40, 1–18. [Google Scholar] [CrossRef]
- Wojtyś, W.; Oroń, M. How Driver Oncogenes Shape and Are Shaped by Alternative Splicing Mechanisms in Tumors. Cancers 2023, 15, 2918. [Google Scholar] [CrossRef]
- Sugiura, R.; Satoh, R.; Takasaki, T. ERK: A Double-Edged Sword in Cancer. ERK-Dependent Apoptosis as a Potential Therapeutic Strategy for Cancer. Cells 2021, 10, 2509. [Google Scholar] [CrossRef]
- Montano, N.; Cenci, T.; Martini, M.; D’alessandris, Q.G.; Pelacchi, F.; Ricci-Vitiani, L.; Maira, G.; De Maria, R.; Larocca, L.M.; Pallini, R. Expression of EGFRvIII in Glioblastoma: Prognostic Significance Revisited. Neoplasia 2011, 13, 1113–IN6. [Google Scholar] [CrossRef]
- Batool SM, Muralidharan K, Hsia T, Falotico S, Gamblin AS, Rosenfeld YB, et al. Highly sensitive EGFRvIII detection in circulating extracellular vesicle RNA of glioma patients. Clinical Cancer Research. 2022;28(18):4070-82.
- Yang, J.; Yan, J.; Liu, B. Targeting EGFRvIII for glioblastoma multiforme. Cancer Lett. 2017, 403, 224–230. [Google Scholar] [CrossRef]
- Dome, A.; Dymova, M.; Richter, V.; Stepanov, G. Post-Transcriptional Modifications of RNA as Regulators of Apoptosis in Glioblastoma. Int. J. Mol. Sci. 2022, 23, 9272. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.D.; Nam, S.W. Pathogenic diversity of RNA variants and RNA variation-associated factors in cancer development. Exp. Mol. Med. 2020, 52, 582–593. [Google Scholar] [CrossRef]
- Srivastava, S.; Sreenath, T.L.; Dobi, A.; Petrovics, G. Oncogenic activation ofERG:A predominant mechanism in prostate cancer. J. Carcinog. 2011, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Adamo, P.; Ladomery, M.R. The oncogene ERG: a key factor in prostate cancer. Oncogene 2015, 35, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Prasad NB, Somervell H, Tufano RP, Dackiw AP, Marohn MR, Califano JA, et al. Identification of genes differentially expressed in benign versus malignant thyroid tumors. Clinical Cancer Research. 2008;14(11):3327-37.
- Liu, D.; Rudland, P.S.; Sibson, D.R.; Barraclough, R. Identification of mRNAs differentially-expressed between benign and malignant breast tumour cells. Br. J. Cancer 2002, 87, 423–431. [Google Scholar] [CrossRef]
- Zhang, Y.; Qian, J.; Gu, C.; Yang, Y. Alternative splicing and cancer: a systematic review. Signal Transduct. Target. Ther. 2021, 6, 78. [Google Scholar] [CrossRef]
- Fu, T.; Amoah, K.; Chan, T.W.; Bahn, J.H.; Lee, J.-H.; Terrazas, S.; Chong, R.; Kosuri, S.; Xiao, X. Massively parallel screen uncovers many rare 3′ UTR variants regulating mRNA abundance of cancer driver genes. Nat. Commun. 2024, 15, 1–20. [Google Scholar] [CrossRef]
- Tovar-Parra D, Gil-Quiñones SR, Nova J, Gutierrez-Castaneda LD. 3’UTR-CDKN2A and CDK4 germline variants are associated with susceptibility to cutaneous melanoma. in vivo. 2021;35(3):1529-36.
- Marco-Puche, G.; Lois, S.; Benítez, J.; Trivino, J.C. RNA-Seq Perspectives to Improve Clinical Diagnosis. Front. Genet. 2019, 10, 1152. [Google Scholar] [CrossRef]
- Lappalainen T, Sammeth M, Friedländer MR, ‘t Hoen PA, Monlong J, Rivas MA, et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature. 2013;501(7468):506-11.
- Fuzio, P.; Napoli, A.; Ciampolillo, A.; Lattarulo, S.; Pezzolla, A.; Nuzziello, N.; Liuni, S.; Giorgino, F.; Maiorano, E.; Perlino, E. Clusterin transcript variants expression in thyroid tumor: a potential marker of malignancy? BMC Cancer 2015, 15, 1–10. [Google Scholar] [CrossRef]
- Andreotti, V.; Bisio, A.; Paillerets, B.B.; Harland, M.; Cabaret, O.; Newton-Bishop, J.; Pastorino, L.; Bruno, W.; Bertorelli, R.; De Sanctis, V.; et al. The CDKN2A/p16INK4a 5′UTR sequence and translational regulation: impact of novel variants predisposing to melanoma. Pigment. Cell Melanoma Res. 2015, 29, 210–221. [Google Scholar] [CrossRef]
- Supplitt, S.; Karpinski, P.; Sasiadek, M.; Laczmanska, I. Current Achievements and Applications of Transcriptomics in Personalized Cancer Medicine. Int. J. Mol. Sci. 2021, 22, 1422. [Google Scholar] [CrossRef] [PubMed]
- Chen, EY. Gaining insights into vertebrate vascular development: Characterization of zebrafish morphants identified from a morpholino-based vascular screen [Ph.D.]. United States -- Minnesota: University of Minnesota; 2004.
- Alsafadi, S.; Houy, A.; Battistella, A.; Popova, T.; Wassef, M.; Henry, E.; Tirode, F.; Constantinou, A.; Piperno-Neumann, S.; Roman-Roman, S.; et al. Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage. Nat. Commun. 2016, 7, 10615. [Google Scholar] [CrossRef]
- Liu Z, Yoshimi A, Wang J, Cho H, Chun-Wei Lee S, Ki M, et al. Mutations in the RNA splicing factor SF3B1 promote tumorigenesis through MYC stabilization. Cancer Discovery. 2020;10(6):806-21.
- Wang, L.; Brooks, A.N.; Fan, J.; Wan, Y.; Gambe, R.; Li, S.; Hergert, S.; Yin, S.; Freeman, S.S.; Levin, J.Z.; et al. Transcriptomic Characterization of SF3B1 Mutation Reveals Its Pleiotropic Effects in Chronic Lymphocytic Leukemia. Cancer Cell 2016, 30, 750–763. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Wang, F.; Wu, Y.; Hu, H.; Xing, Z.; Zhu, J.; Xu, S.; Han, T.; Liu, G.; Wu, Z.; et al. Large-scale transcript variants dictate neoepitopes for cancer immunotherapy. Sci. Adv. 2025, 11, eado5600. [Google Scholar] [CrossRef]
- Türeci, Ö.; Vormehr, M.; Diken, M.; Kreiter, S.; Huber, C.; Sahin, U. Targeting the Heterogeneity of Cancer with Individualized Neoepitope Vaccines. Clin. Cancer Res. 2016, 22, 1885–1896. [Google Scholar] [CrossRef]
- Blass, E.; Ott, P.A. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat. Rev. Clin. Oncol. 2021, 18, 215–229. [Google Scholar] [CrossRef]
- Rukov, J.L.; Shomron, N. MicroRNA pharmacogenomics: Post-transcriptional regulation of drug response. Trends Mol. Med. 2011, 17, 412–423. [Google Scholar] [CrossRef]
- Ingelman-Sundberg, M.; Pirmohamed, M. Precision medicine in cardiovascular therapeutics: Evaluating the role of pharmacogenetic analysis prior to drug treatment. J. Intern. Med. 2024, 295, 583–598. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
