Preprint
Article

This version is not peer-reviewed.

p-adic Heisenberg-Robertson-Schrodinger and p-adic Maccone-Pati Uncertainty Principles

Submitted:

07 April 2025

Posted:

08 April 2025

You are already at the latest version

Abstract
Let $\mathcal{X}$ be a p-adic Hilbert space. Let $A: \mathcal{D}(A)\subseteq \mathcal{X}\to \mathcal{X}$ and $B: \mathcal{D}(B)\subseteq \mathcal{X}\to \mathcal{X}$ be possibly unbounded linear operators. For $x \in \mathcal{D}(A)$ with $\langle x, x \rangle =1$, define $ \Delta _x(A):= \|Ax- \langle Ax, x \rangle x \|.$ Then for all $x \in \mathcal{D}(AB)\cap \mathcal{D}(BA)$ with $\langle x, x \rangle =1$, we show that \begin{align*} (1) \quad \quad \quad \max\{\Delta_x(A), \Delta_x(B)\}\geq \frac{\sqrt{\bigg|\big\langle [A,B]x, x \big\rangle ^2+\big(\langle \{A,B\}x, x \rangle -2\langle Ax, x \rangle\langle Bx, x \rangle\big)^2\bigg|}}{\sqrt{|2|}} \end{align*} and \begin{align*} (2) \quad \quad \quad \max\{\Delta_x(A), \Delta_x(B)\} \geq |\langle (A+B)x, y \rangle |, \quad \forall y \in \mathcal{X} \text{ satisfying } \|y\|\leq 1, \langle x, y \rangle =0. \end{align*} We call Inequality (1) as p-adic Heisenberg-Robertson-Schrodinger uncertainty principle and Inequality (2) as p-adic Maccone-Pati uncertainty principle.
Keywords: 
;  

1. Introduction

Let H be a complex Hilbert space and A be a possibly unbounded self-adjoint linear operator defined on the domain D ( A ) H . For h D ( A ) with h = 1 , define the uncertainty of A at the point h as
Δ h ( A ) : = A h A h , h h = A h 2 A h , h 2 .
In 1929, Robertson [1] derived the following mathematical form of the uncertainty principle of Heisenberg derived in 1927 [2]. Recall that for two operators A : D ( A ) H H and B : D ( B ) H H , we define the commutator [ A , B ] : = A B B A and anti-commutator { A , B } : = A B + B A .
Theorem 1. 
[1,2,3,4] (Heisenberg-Robertson Uncertainty Principle) Let A : D ( A ) H H and B : D ( B ) H H be self-adjoint linear operators. Then for all h D ( A B ) D ( B A ) with h = 1 , we have
1 2 Δ h ( A ) 2 + Δ h ( B ) 2 Δ h ( A ) + Δ h ( B ) 2 2 Δ h ( A ) Δ h ( B ) 1 2 | [ A , B ] h , h | .
In 1930, Schrodinger made the following improvement of Inequality (1).
Theorem 2. 
[5,6] (Heisenberg-Robertson-Schrodinger Uncertainty Principle) Let A : D ( A ) H H and B : D ( B ) H H be self-adjoint linear operators. Then for all h D ( A B ) D ( B A ) with h = 1 , we have
Δ h ( A ) Δ h ( B ) | A h , B h A h , h B h , h | = | [ A , B ] h , h | 2 + | { A , B } h , h 2 A h , h B h , h | 2 2 = ( { A , B } h , h 2 A h , h B h , h ) 2 [ A , B ] h , h 2 2 .
Surprisingly, in 2014, Maccone and Pati derived the following uncertainty principle which works for any unit vector which is orthogonal to given unit vector [7].
Theorem 3. 
[7] (Maccone-Pati Uncertainty Principle) Let A : D ( A ) H H and B : D ( B ) H H be self-adjoint linear operators. Then for all h D ( A ) D ( B ) with h = 1 , we have
Δ h ( A ) 2 + Δ h ( B ) 2 1 2 | ( A + B ) h , k | 2 + | ( A B ) h , k | 2 , k H satisfying k = 1 , h , k = 0 .
As the study of p-adic Hilbert spaces is equally important as the study of Hilbert spaces, we naturally ask the following question.
Question 1.4. What are p-adic versions of Theorems 2 and 3?
In this paper, we answer Question 1.4.

2. p-Adic Heisenberg-Robertson-Schrodinger Uncertainty Principle and p-Adic Maccone-Pati Uncertainty Principle

We are going to consider the following notion of p-adic Hilbert space which is introduced by Kalisch [8] in 1947.
Definition 1. 
[8] Let K be a non-Archimedean valued field (with valuation | · | ) and X be a non-Archimedean Banach space (with norm · ) over K . We say that X is a p-adic Hilbert space if there is a map (called as p-adic inner product) · , · : X × X K satisfying following.
(i) 
If x X is such that x , y = 0 for all y X , then x = 0 .
(ii) 
x , y = y , x for all x , y X .
(iii) 
x , α y + z = α x , y + x , z for all α K , for all x , y , z X .
(iv) 
| x , y | x y for all x , y X .
Following are standard examples.
Example 1. 
Let d N and K be a non-Archimedean valued field. Then K d is a p-adic Hilbert space w.r.t. norm
( x j ) j = 1 d : = max 1 j d | x j | , ( x j ) j = 1 d K d
and p-adic inner product
( x j ) j = 1 d , ( y j ) j = 1 d : = j = 1 d x j y j , ( x j ) j = 1 d , ( y j ) j = 1 d K d .
Example 2. 
Let K be a non-Archimedean valued field. Define
c 0 ( N , K ) : = { ( x n ) n = 1 : x n K , n N , lim n x n = 0 } .
Then c 0 ( N , K ) is a p-adic Hilbert space w.r.t. norm
( x n ) n = 1 : = sup n N | x n | , ( x n ) n = 1 c 0 ( N , K )
and p-adic inner product
( x n ) n = 1 , ( y n ) n = 1 n = 1 x n y n , ( x n ) n = 1 , ( y n ) n = 1 c 0 ( N , K ) .
Let X , Y be p-adic Hilbert spaces and T : X Y be a linear operator. We say that T is adjointable if there is a linear operator, denoted by T * : Y X such that T x , y = x , T * y , x X , y X . Note that (i) in Definition 1 says that adjoint, if exists, is unique. An adjointable linear operator T : X X is said to be self-adjoint if T * = T .
  • Let A be a possibly unbounded linear operator (need not be self-adjoint) defined on domain D ( A ) X . For x D ( A ) with x , x = 1 , define the uncertainty of A at the point x as
    Δ x ( A ) : = A x A x , x x .
We now have the p-adic version of Theorem 2.
Theorem 4. (p-adic Heisenberg-Robertson-Schrodinger Uncertainty Principles) Let X be a p-adic Hilbert space. Let A : D ( A ) X X and B : D ( B ) X X be linear operators. Then for all x D ( A B ) D ( B A ) with x , x = 1 , we have
(i) 
Δ x ( A ) Δ x ( B ) | A x , B x A x , x B x , x | = | B x , A x A x , x B x , x | .
In particular, if A and B are self-adjoint, then
Δ x ( A ) Δ x ( B ) | B A x , x A x , x B x , x | = | A B x , x A x , x B x , x | .
(ii) 
max { Δ x ( A ) , Δ x ( B ) } | [ A , B ] x , x 2 + { A , B } x , x 2 A x , x B x , x 2 | | 2 | .
(iii) 
If A and B are adjointable, then
max { Δ x ( A ) , Δ x ( B ) } ( A * A + B * B ) x , x ( A + B ) x , x 2 + ( A B ) x , x 2 2 .
In particular, if A and B are self-adjoint, then
max { Δ x ( A ) , Δ x ( B ) } ( A 2 + B 2 ) x , x ( A + B ) x , x 2 + ( A B ) x , x 2 2 = ( A + B ) 2 x , x + ( A B ) 2 x , x ( A + B ) x , x 2 ( A B ) x , x 2 2 .
(iv) 
If A and B are adjointable, then
max { Δ x ( A ) , Δ x ( B ) } | ( A * A B * B ) x , x ( A + B ) x , x ( A B ) x , x | .
In particular, if A and B are self-adjoint, then
max { Δ x ( A ) , Δ x ( B ) } | ( A 2 B 2 ) x , x ( A + B ) x , x ( A B ) x , x | .
(v) 
max { Δ x ( A ) , Δ x ( B ) } | ( A + B ) x , ( A + B ) x ( A + B ) x , x 2 | .
(vi) 
max { Δ x ( A ) , Δ x ( B ) } | ( A B ) x , ( A B ) x ( A B ) x , x 2 | .
Proof. 
Let x D ( A B ) D ( B A ) be such that x , x = 1 .
(i)
By using the definition of p-adic inner product,
Δ x ( A ) Δ x ( B ) = A x A x , x x B x B x , x x | A x A x , x x , B x B x , x x | = | A x , B x A x , x B x , x | .
(ii)
By making a direct expansion and simplification, we see that
[ A , B ] x , x 2 + { A , B } x , x 2 A x , x B x , x 2 = A B x , x B A x , x 2 + { A , B } x , x 2 + 4 A x , x 2 B x , x 2 4 { A , B } x , x A x , x B x , x = A B x , x B A x , x 2 + A B x , x + B A x , x 2 + 4 A x , x 2 B x , x 2 4 A B x , x A x , x B x , x 4 B A x , x A x , x B x , x = 2 A B x , x 2 + 2 B A x , x 2 + 4 A x , x 2 B x , x 2 4 A B x , x A x , x B x , x 4 B A x , x A x , x B x , x = 2 ( A B x , x A x , x B x , x ) 2 + 2 ( B A x , x A x , x B x , x ) 2 .
Therefore
[ A , B ] x , x 2 + { A , B } x , x 2 A x , x B x , x 2 = | 2 | ( A B x , x A x , x B x , x ) 2 + ( B A x , x A x , x B x , x ) 2 | 2 | max ( A B x , x A x , x B x , x ) 2 , ( B A x , x A x , x B x , x ) 2 = | 2 | max A B x , x A x , x B x , x 2 , B A x , x A x , x B x , x 2 | 2 | max max { Δ x ( A ) 2 , Δ x ( B ) 2 } , max { Δ x ( B ) 2 , Δ x ( A ) 2 } = | 2 | max { Δ x ( A ) 2 , Δ x ( B ) 2 } .
(iii)
By using the non-Archimedean triangle inequality and the definition of p-adic inner product,
max { Δ x ( A ) , Δ x ( B ) } = max { A x A x , x x , B x B x , x x } max { | A x A x , x x , A x A x , x x | , | B x B x , x x , B x B x , x x | } = max { | A x , A x A x , x 2 | , | B x , B x B x , x 2 | } = max { | A x , A x A x , x 2 | , | B x , B x B x , x 2 | } | A x , A x A x , x 2 + B x , B x B x , x 2 | = | A * A x , x + B * B x , x ( A x , x 2 + B x , x 2 ) | = ( A * A + B * B ) x , x ( A + B ) x , x 2 + ( A B ) x , x 2 2 .
(iv)
Using initial calculations in (iii),
max { Δ x ( A ) , Δ x ( B ) } max { | A x , A x A x , x 2 | , | B x , B x B x , x 2 | } | A x , A x A x , x 2 B x , B x + B x , x 2 | = | A * A x , x B * B x , x ( A x , x 2 B x , x 2 ) | = | ( A * A B * B ) x , x ( A + B ) x , x ( A B ) x , x | .
(v)
Using ultrametric inequality first and then using p-adic inner product we get
max { Δ x ( A ) , Δ x ( B ) } = max { A x A x , x x , B x B x , x x } A x A x , x x + B x B x , x x | A x A x , x x + B x B x , x x , A x A x , x x + B x B x , x x | = | A x , A x + B x , B x + 2 A x , B x 2 A x , x B x , x A x , x 2 B x , x 2 | = | ( A + B ) x , ( A + B ) x ( A + B ) x , x 2 | .
(vi)
Using initial calculations in (v),
max { Δ x ( A ) , Δ x ( B ) } = max { A x A x , x x , B x B x , x x } A x A x , x x B x + B x , x x | A x A x , x x B x + B x , x x , A x A x , x x B x + B x , x x | = | ( A B ) x , ( A B ) x ( A B ) x , x 2 | .
Note that for self-adjoint operators A and B, we have
[ A , B ] x , x = A B x , x B A x , x = B x , A x A x , B x = B x , A x B x , A x = 0
and
{ A , B } x , x = A B x , x + B A x , x = B x , A x + A x , B x = B x , A x + B x , A x = 2 B x , A x = 2 A B x , x .
We next derive p-adic version of Theorem 3.
Theorem 5. (p-adic Maccone-Pati Uncertainty Principle) Let X be a p-adic Hilbert space. Let A : D ( A ) X X and B : D ( B ) X X be linear operators. Then for all x D ( A ) D ( B ) with x , x = 1 , we have
max { Δ x ( A ) , Δ x ( B ) } | ( A + B ) x , y | , y X satisfying y 1 , x , y = 0
and
max { Δ x ( A ) , Δ x ( B ) } | ( A B ) x , y | , y X satisfying y 1 , x , y = 0 .
Proof. 
Let x D ( A ) D ( B ) be such that x , x = 1 . Let y X satisfies y 1 and x , y = 0 . Then
| ( A + B ) x , y | = | A x A x , x x + B x B x , x x , y | A x A x , x x + B x B x , x x y A x A x , x x + B x B x , x x max { A x A x , x x , B x B x , x x } = max { Δ x ( A ) , Δ x ( B ) } .

Acknowledgments

This paper has been partially developed when the author attended the workshop “Quantum groups, tensor categories and quantum field theory”, held in University of Oslo, Norway from January 13 to 17, 2025. This event was organized by University of Oslo, Norway and funded by the Norwegian Research Council through the “Quantum Symmetry” project.

References

  1. Robertson, H.P. The Uncertainty Principle. Phys. Rev. 1929, 34, 163–164. [Google Scholar] [CrossRef]
  2. Heisenberg, W. The physical content of quantum kinematics and mechanics. In Quantum Theory and Measurement; Wheeler, J.A., Zurek, W.H., Eds.; Princeton University Press: Princeton, NJ, 1983; pp. 62–84. [Google Scholar]
  3. von Neumann, J. Mathematical foundations of quantum mechanics; Princeton University Press: Princeton, NJ, 2018; pp. xviii+304. [Google Scholar] [CrossRef]
  4. Debnath, L.; Mikusiński, P. Introduction to Hilbert spaces with applications; Academic Press, Inc.: San Diego, CA, 1999; pp. xx+551. [Google Scholar]
  5. Schrödinger, E. About Heisenberg uncertainty relation. Bulgar. J. Phys. 1999, 26, 193–203 (2000).
  6. Bertlmann, R.A.; Friis, N. Modern Quantum Theory: From Quantum Mechanics to Entanglement and Quantum Information; Oxford University Press, 2023; pp. xv+1012.
  7. Maccone, L.; Pati, A.K. Stronger Uncertainty Relations for All Incompatible Observables. Phys. Rev. Lett. 2014, 113, 260401. [Google Scholar] [CrossRef] [PubMed]
  8. Kalisch, G.K. On p-adic Hilbert spaces. Ann. of Math. (2) 1947, 48, 180–192. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated