Submitted:
04 April 2025
Posted:
07 April 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. In Vitro Binding Assays
2.1.1. Radioligand Binding to α-syn Fibrils
2.1.2. Radioligand Binding to Native tau and Aβ Fibrils
2.2. Radiosynthesis of [3H]GMC-058, [3H]GMC-073, and [3H]GMC-098
2.3. Autopsy Material
| Case n. | Diagnosis | Age | Sex | PMI (h) | Brain region |
|---|---|---|---|---|---|
| PD1 | Parkinson’s disease | 69 | M | 7 | Cingulate gyrus |
| PD2 | Parkinson’s disease | 77 | M | 5 | Cingulate gyrus |
| PD3 | Parkinson’s disease | 75 | M | 6 | Cingulate gyrus |
| LBV1 | Lewy bodies variant | 83 | M | 5 | Cingulate gyrus |
| LBV2 | Lewy bodies variant | 54 | M | 5 | Cingulate gyrus |
| MSA1 | Multi-system atrophy | 66 | M | 5 | Cerebellum |
| MSA2 | Multi-system atrophy | 69 | F | 5 | Cerebellum |
| CBD1 | Corticobasal degeneration | 58 | F | 7 | Superior frontal gyrus |
| C01 | Non-demented control | 81 | F | 4 | Cingulate gyrus |
| C02 | Non-demented control | 51 | M | 8 | Cingulate gyrus |
| C03 | Non-demented control | 79 | F | 11 | Cingulate gyrus |
| Case n. | Diagnosis | Age | Sex | PMI (h) | Brain region |
|---|---|---|---|---|---|
| MSA3 | Multiple system atrophy | 58 | F | 10 | Cerebellum |
| MSA4 | Multiple system atrophy-Cerebellar form | 52 | M | 33 | Cerebellum |
| PSP1 | Progressive supranuclear palsy | 66 | M | 8 | Globus pallidus |
| PSP2 | Progressive supranuclear palsy | 77 | F | 11 | Globus pallidus |
| C04 | Control | 68 | M | 7,5 | Caudate, putamen and globus pallidus |
2.4. Preparation of Human Brain Tissue for In Vitro Binding Studies
2.5. Saturation Binding Assays
2.6. Autoradiography Experiments on Fresh Frozen Tissue Sections
2.7. Autoradiography and Emulsion Autoradiography on Tissue Microarrays
2.8. Immunohistochemistry
3. Results
3.1. Discovery and In Vitro Characterization of GMC-058
3.1.1. Discovery of GMC-058, GMC-073 and GMC-098
- A library of 78 small molecules was generated based on available information from the public domain. Four optimization cycles were performed with radioligand binding assays to measure the affinity of compounds for in vitro-assembled α-syn fibrils and native tau and Aβ fibrils in AD homogenates;
- Sixteen of these compounds showed affinity for α-syn fibrils < 30 nM and for Aβ and tau >50 nM (Table A5). Criteria for selection were Ki for α-syn < 30 nM and Ki for tau and Aβ > 200 nM;
- Three compounds, GMC-058, GMC-073, and GMC-098 were selected based on those criteria and on feasibility of radiolabelling. The Ki of GMC-058, GMC-073, and GMC-098 using recombinant α-synuclein fibrils was 22.5 nM, 8 nM and 9.7 nM, respectively.
- All three compounds showed lower affinity for Aβ (Ki=1490 nM for GMC-058, 2630 nM for GMC-073, 226 nM for GMC-098) and tau (Ki= 1320 nM for GMC-058, 248 nM for GMC-073, 805 nM for GMC-098) in AD brain homogenates. GMC-058 (Figure 1), GMC-073 and GMC-098 were therefore selected for radiolabelling with 3H.
3.1.2. Autoradiography Experiments with [3H]GMC-058, [3H]GMC-073 and [3H]GMC-098
- [3H]GMC-073 and [3H]GMC-098 displayed clear binding in control cingulate cortex tissue, approximately 50% of which was displaced by 5 µM GMC-044, whereas [3H]GMC-058 displayed negligible binding (Figure B.1 and Table A6). The nature of this off-target displaceable binding is not known.
- [3H]GMC-058 was selected for further evaluation in pathological tissue sections.
3.1.3. In Vitro Saturation Binding Assays with [3H]GMC-058 in Brain Homogenates
- The KD estimated in AD tissue was 5.4 nM, in PSP tissue was 46 nM and CBD tissue was 71 nM (Figure 2);
- In brain homogenates from MSA-P and control cases, KD was > 100 nM. No evidence of saturation binding was observed in PD tissue.
3.1.4. Autoradiography Experiments with [3H]GMC-058
- In synucleinopathies (PD and MSA), cerebral amyloid angiopathy (CAA), AD and 4R tauopathies (PSP and CBD), the specific binding of 25 nM [3H]GMC-058 was significantly higher than the displaceable binding in controls (p<0.01, ANOVA with Dunnett’s multiple comparisons test, Table 3 and Figure B.3);
- High-resolution autoradiography showed that the binding of 25 nM [3H]GMC-058 co-localised with α-syn inclusions in PD and MSA, with dense Aβ plaques in CAA and AD, and with p-tau inclusions in PSP and CBD (Figure 4 and Figures B.4-B.6).
| TMAs | NDE | Liver Control | MSA | CAA | AD | CBD | PSP | PD |
|---|---|---|---|---|---|---|---|---|
| N= | 8 | 4 | 1 | 3 | 4 | 2 | 2 | 6 |
| Mean (± SEM) |
70 | 57 | 166** | 131** | 127** | 204**** | 173**** | 129**** |
| (4) | (7) | (19)† | (12) | (15) | (38) | (2) | (7) |
- In the two MSA cases, specific binding measured in cerebellar grey matter was two-fold higher than the average displaceable binding measured in grey matter of cingulate cortex, caudate, globus pallidus and putamen of controls (Figure 5A and 5D-E);
- In CBD and PSP cases, the specific binding in the grey matter of the superior frontal gyrus and globus pallidus was on average three-fold and ten-fold higher, respectively, than the displaceable binding measured in controls (Figure 5B-E);
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Appendix A
Appendix A.1
Synthesis of [3H]GMC-058
Synthesis of [3H]GMC-073
Synthesis of [3H]GMC-098
| Case n. | Diagnosis | Age | Sex | PMI (h) | Brain region | Aβ/pTau/α-syn* |
|---|---|---|---|---|---|---|
| S11/010 | Parkinson´s disease | 82 | M | 6.1 | Cingulate gyrus | - /+/+++ |
| S10/47 | Lewy-body disease | 76 | M | 6.3 | Hippocampus | +++/+++/+++ |
| S14/013 | Lewy-body disease | 68 | F | 4.6 | Hippocampus | +/+++/+++ |
| S13/054 | Dementia with Lewy-bodies | 91 | F | 4.7 | Inferior parietal gyrus | +++/+/+++ |
| Multiple system atrophy | 66 | M | 4.9 | Cerebellum | -/-/+++ | |
| S10/134 | Multiple system atrophy | 65 | M | 4.75 | Cerebellum | -/-/+++ |
| S95/120 | Multiple system atrophy | 69 | F | 4.5 | Cerebellum | -/-/+++ |
| S11/074 | Cortico-basal degeneration | 63 | M | 6.5 | Superior frontal gyrus | -/+++/- |
| S98/105 | Cortico-basal degeneration | 72 | M | 5.3 | Thalamus and subthalamic nucleus | -/+++/- |
| S11/085 | Cortico-basal degeneration | 65 | F | 6 | Thalamus | -/+++/- |
| S13/064 | Progressive supranuclear palsy | 70 | M | 6.8 | Cerebellum | -/+++/- |
| S12/004 | Progressive supranuclear palsy | 65 | F | 5.8 | Cerebellum | -/+++/- |
| S12/083 | Cerebral amyloid angiopathy | 79 | M | 9.75 | Hippocampus | +++/+++/- |
| S98/071 | Cerebral amyloid angiopathy | 79 | M | 9.75 | Cerebellum | +++/-/- |
| S98/071 | Cerebral amyloid angiopathy | 79 | M | 9.75 | Parietal cortex | +++/+/+ |
| S98/071 | Non-demented control | 78 | F | 7.17 | Cingulate gyrus | -/-/- |
| S14/029 | Non-demented control | 51 | F | 7.7 | Cingulate gyrus | -/-/- |
| S94/325 | Non-demented control | 63 | F | 6.4 | Cingulate gyrus | -/-/- |
| S95/258 | Non-demented control | 56 | M | 5.4 | Cingulate gyrus | -/-/- |
| S98/235 | Non-demented control | 56 | M | 5.4 | Medial temporal gyrus | -/-/- |
| S98/235 | Non-demented control | 56 | M | 5.4 | Superior frontal gyrus | -/-/- |
| S98/235 | Alzheimer’s disease | 85 | M | 4.6 | Inferior frontal gyrus | +++/+++ |
| M05/340 | Alzheimer’s disease | 67 | F | 5.8 | Hippocampus | +++/+++ |
| M05/332 | Alzheimer’s disease | 88 | F | 5.2 | Hippocampus | +++/+++ |
| M05/331 | Alzheimer’s disease | 84 | F | 5.9 | Hippocampus | +++/+++ |
| M05/327 | Parkinson´s disease | 98 | M | 5.7 | Substantia nigra | -/+/+++ |
| S09/252 | Parkinson´s disease | 78 | M | 5.8 | Substantia nigra | -/+/+++ |
| S13/059 | Parkinson´s disease | 86 | M | 4.2 | Substantia nigra | +/-/+++ |
| S13/077 | Parkinson´s disease | 57 | M | 6.6 | Substantia nigra | -/-/+++ |
| S17/055 | Parkinson´s disease | 87 | F | 7.9 | Substantia nigra | -/-/+++ |
| S17/056 | Parkinson´s disease | 90 | F | 5.3 | Substantia nigra | -/+/+++ |
| S17/101 | Parkinson´s disease | 85 | F | 5.2 | Substantia nigra | +/+/+++ |
| S17/162 | Parkinson´s disease | 82 | M | 6.1 | Cingulate gyrus | Aβ/pTau/α-syn* |
| Diagnosis | Sex(M/F) | Age (years) | PMT (hrs) |
ApoE | A | B | C | Region sampled |
|---|---|---|---|---|---|---|---|---|
| AD | F | 88 | 4 | 34 | 3 | 3 | 3 | MFG |
| AD | F | 67 | 3 | 34 | 3 | 3 | 3 | MFG |
| AD | F | 81 | 8 | 34 | 3 | 3 | 3 | MFG |
| AD | M | 61 | 6 | 33 | 3 | 3 | 3 | MFG |
| AD | M | 62 | 3 | 33 | 3 | 3 | 3 | MFG |
| AD | M | 84 | 7 | 44 | 3 | 3 | 3 | MFG |
| Control | M | 44 | 14.2 | n/a | 0 | 0 | 0 | prefrontal,occipital, temporal, parietal. |
| Diagnosis | Sex(M/F) | Age (years) | PMT (hrs) |
Abeta pathology: | Tau pathology: Specific tau lesions |
Region sampled |
|---|---|---|---|---|---|---|
| PSP | M | 63 | 4.4 | n/a | Neuronal and glial inclusions, tufted astrocytes | L-SFG |
| PSP | F | 70 | 7.2 | n/a | Neuronal and glial inclusions, tufted astrocytes | L-SFG |
| PSP | M | 68 | 10.1 | n/a | Neuronal and glial inclusions, tufted astrocytes | R-SFG |
| CBD | M | 68 | 7.4 | 0 | Neuronal and glial inclusions, astrocytic plaques | R-M/IFG(A) |
| CBD | F | 70 | 7.4 | 0 | Neuronal and glial inclusions, astrocytic plaques | R-M/IFG(A) |
| CBD | F | 63 | 5.0 | 0 | Neuronal and glial inclusions, astrocytic plaques | R-M/IFG(A) |
| Diagnosis | Sex(M/F) | Age (years) | PMT | LB stage |
|---|---|---|---|---|
| PD | M | 81 | 2.5 | lll. Brainstem/Limbic |
| PDD | M | 70 | 1.83 | lll. Brainstem/Limbic |
| PDD | M | 75 | 2.25 | lV. Neocortical |
| PD | M | 75 | 2.33 | lV. Neocortical |
| MSA-P | F | 57 | 32 | n/a. |
| MSA-P | M | 58 | 12 | n/a |
| Structure | Name | Molecular weight | XLogP | α-syn (Ki, nM) | Aβ (Ki, nM) | Tau-NFT (Ki, nM) |
|---|---|---|---|---|---|---|
![]() |
GMC013_FR-1 | 397,5 | 3,37 | 25,5 | 63 | 151 |
![]() |
GMC015 | 413,5 | 3,26 | 28,3 | 294 | 761 |
![]() |
GMC021 | 442,3 | 2,63 | 22,2 | 889 | 2510 |
![]() |
GMC023 | 427,5 | 2,86 | 21,2 | 151 | 44 |
![]() |
GMC024 | 427,5 | 2,86 | 25,3 | 81 | 68 |
![]() |
GMC025 | 427,5 | 2,86 | 29,7 | 141 | 50 |
![]() |
GMC044 | 411,5 | 3,32 | 25,2 | 3440 | 692 |
![]() |
GMC045 | 402,5 | 3,15 | 24,7 | 412 | 239 |
![]() |
GMC058 | 367,5 | 3,49 | 22,5 | 1490 | 1320 |
![]() |
GMC070 | 403,5 | 2,64 | 6,8 | 64 | 90 |
![]() |
GMC071 | 428,5 | 2,36 | 14,2 | 8180 | 86 |
![]() |
GMC073 | 445,5 | 3,37 | 8,0 | 2630 | 248 |
![]() |
GMC079 | 420,5 | 3,24 | 23,9 | 404 | 2510 |
![]() |
GMC086 | 444,5 | 3,87 | 15,2 | 809 | 26 |
![]() |
GMC095 | 438,5 | 2,98 | 14,5 | 2630 | 2510 |
![]() |
GMC096 | 442,5 | 4,13 | 6,5 | 51 | 2510 |
![]() |
GMC098 | 442,5 | 4,13 | 9,7 | 226 | 805 |
| [3H]GMC-058 | [3H]GMC-073 | [3H]GMC-098 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 25 nM | 50 nM | 10 nM | 20 nM | 10 nM | 20 nM | |||||||
| Total | NSB | Total | NSB | Total | NSB | Total | NSB | Total | NSB | Total | NSB | |
| Average (fmol/mg) ± SEM | 57,6 ±1,8 | 37,6 ± 3,8 | 114,1 ± 9,3 | 74,6 ± 4,1 | 664,6 ± 24,3 | 346,9 ± 14,5 | 1870 ± 100,2 | 1022 ± 45 | 2705 ± 62,2 |
1878 ± 74,1 | 5146 ± 386,2 | 2336 ± 48,5 |
| Total minus NSB (fmol/mg) | 20 | 40 | 318 | 848 | 827 | 2810 | ||||||
| binding in fmol/mg | |||||
|---|---|---|---|---|---|
| Condition | Cases | ROI | Total | NSB (5 µM GMC044) |
Total minus NSB |
|
Non demented control (cingulate gyrus) |
C01 | GM | 56,8 | 60,3 | -3,5 |
| WM | 56,9 | 59,8 | -2,9 | ||
| C02 | GM | 44,3 | 24,6 | 19,8 | |
| WM | 45,3 | 31,8 | 13,6 | ||
| C03 | GM | 45,3 | 28,6 | 16,7 | |
| WM | 48,7 | 39,0 | 9,7 | ||
|
MSA (cerebellum) |
MSA1 | GM | 46,9 | 27,4 | 19,5 |
| WM | 50,1 | 33,3 | 16,8 | ||
| MSA2 | GM | 30,3 | 19,9 | 10,3 | |
| WM | 52,5 | 27,7 | 24,8 | ||
|
PD (cingulate gyrus) |
PD1 | GM | 55,6 | 42,3 | 13,3 |
| WM | 52,5 | 50,6 | 1,9 | ||
| PD2 | GM | 16,2 | 17,1 | -0,9 | |
| WM | 55,4 | 53,7 | 1,6 | ||
| PD3 | GM | 59,3 | 42,0 | 17,2 | |
| WM | 55,4 | 47,1 | 8,3 |
| specific binding (fmol/mg tissue equivalent) |
||||
|---|---|---|---|---|
| Region | ||||
| Pathology | Case | Regions | WM | GM |
| MSA | MSA3 | Cerebellum | 21 | 26 |
| MSA4 | 49 | 23 | ||
| CBD | CBD1 block 1 | SFG | 29 | 50 |
| CBD1 block 2 | 130 | 32 | ||
| PSP | PSP1 | GP | 32 | 102 |
| PSP2 | -1 | 118 | ||
| NDE | C03 | Cingulate cortex | -2 | 15 |
| C04 | Caudate | -1 | 8 | |
| C04 | Globus Pallidus | 0 | 10 | |
| Co4 | Putamen | 4 | 12 | |
Appendix B






References
- McCann H, Stevens CH, Cartwright H, Halliday GM. α-Synucleinopathy phenotypes. Parkinsonism Relat Disord. 2014 Jan;20 Suppl 1:S62-7. [CrossRef] [PubMed]
- Günter U Höglinger, Charles H Adler, Daniela Berg, Christine Klein, Tiago F Outeiro, Werner Poewe, Ronald Postuma, A Jon Stoessl, Anthony E Lang, A biological classification of Parkinson’s disease: the SynNeurGe research diagnostic criteria, The Lancet Neurology, Volume 23, Issue 2, 2024, Pages 191-204. ISSN 1474-4422. [CrossRef]
- Papp MI, Kahn JE, Lantos PL. Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome). J Neurol Sci. 1989 Dec;94(1-3):79-100. [CrossRef] [PubMed]
- Smith, R., Capotosti, F., Schain, M. et al. The α-synuclein PET tracer [18F] ACI-12589 distinguishes multiple system atrophy from other neurodegenerative diseases. Nat Commun 14, 6750 2023. [CrossRef]
- Matsuoka, K., Ono, M., Takado, Y., Hirata, K., Endo, H., Ohfusa, T., Kojima, T., Yamamoto, T., Onishi, T., Orihara, A., Tagai, K., Takahata, K., Seki, C., Shinotoh, H., Kawamura, K., Shimizu, H., Shimada, H., Kakita, A., Zhang, M.-R., Suhara, T. and Higuchi, M. High-Contrast Imaging of α-Synuclein Pathologies in Living Patients with Multiple System Atrophy. Mov Disord, 2022 37: 2159-2161. [CrossRef]
- Endo H, Ono M, Takado Y, Matsuoka K, Takahashi M, Tagai K, Kataoka Y, Hirata K, Takahata K, Seki C, Kokubo N, Fujinaga M, Mori W, Nagai Y, Mimura K, Kumata K, Kikuchi T, Shimozawa A, Mishra SK, Yamaguchi Y, Shimizu H, Kakita A, Takuwa H, Shinotoh H, Shimada H, Kimura Y, Ichise M, Suhara T, Minamimoto T, Sahara N, Kawamura K, Zhang MR, Hasegawa M, Higuchi M. Imaging α-synuclein pathologies in animal models and patients with Parkinson’s and related diseases. Neuron. 2024 May 27:S0896-6273(24)00332-5. Epub ahead of print. [CrossRef] [PubMed]
- Gruber C. C., Oberdorfer G., Voss C. V., Kremsner J. M., Kappe C. O., and Kroutil W. “An Algorithm for the Deconvolution of Mass Spectroscopic Patterns in Isotope Labeling Studies. Evaluation for the Hydrogen-Deuterium Exchange Reaction in Ketones,” The Journal of Organic Chemistry 2007 72: 5778–5783. [CrossRef]
- Hostetler ED, Walji AM, Zeng Z, Miller P, Bennacef I, Salinas C, Connolly B, Gantert L, Haley H, Holahan M, Purcell M, Riffel K, Lohith T, Coleman P, Soriano A, Ogawa A, Xu S, Zhang X, Joshi E, Della Rocca J, Hesk D, Schenk DJ, Evelhoch JL. Preclinical characterization of 18F-MK-6240, a promising positron emission tomography (PET) tracer for in vivo quantification of human neurofibrillary tangles (NFTs). J Nucl Med. 2016; 57(10):1599-1606. [CrossRef]
- Klunk WE, Wang Y, Huang GF, Debnath ML, Holt DP, Shao L, Hamilton RL, Ikonomovic MD, DeKosky ST, Mathis CA. The binding of 2-(4’-methylaminophenyl)benzothiazole to postmortem brain homogenates is dominated by the amyloid component. J Neurosci. 2003 23(6):2086-92. [CrossRef]
- Zhang W, Arteaga J, Cashion DK, Chen G, Gangadharmath U, Gomez LF, Kasi D, Lam C, Liang Q, Liu C, Mocharla VP, Mu F, Sinha A, Szardenings AK, Wang E, Walsh JC, Xia C, Yu C, Zhao T, Kolb HC. A highly selective and specific PET tracer for imaging of tau pathologies J Alzheimers Dis 2012 31(3):601-12. [CrossRef]
- Bagchi DP, Yu L, Perlmutter JS, Xu J, Mach RH, Tu Z, Kotzbauer PT. Binding of the radioligand SIL23 to α-synuclein fibrils in Parkinson disease brain tissue establishes feasibility and screening approaches for developing a Parkinson disease imaging agent. PLoS One. 2013;8(2):e55031. Epub 2013 Feb 6. [CrossRef] [PubMed] [PubMed Central]
- Stehouwer JS, Huang G, Saturnino Guarino D, Debnath ML, Polu A, Geib SJ, Lopresti B, Ikonomovic MD, Mason N, Mach RH, Mathis CA. Structure-Activity Relationships and Evaluation of 2-(Heteroaryl-cycloalkyl)-1H-indoles as Tauopathy Positron Emission Tomography Radiotracers. J Med Chem. 2025 Mar 27;68(6):6462-6492. Epub 2025 Mar 11. [CrossRef] [PubMed] [PubMed Central]
- Miranda-Azpiazu P, Svedberg M, Higuchi M, Ono M, Jia Z, Sunnemark D, Elmore CS, Schou M, Varrone A. Identification and in vitro characterization of C05-01, a PBB3 derivative with improved affinity for alpha-synuclein. Brain Res. 2020 Dec 15;1749:147131. Epub 2020 Sep 18. [CrossRef] [PubMed]
- Lund, H., Cowburn, R.F., Gustafsson, E., Strömberg, K., Svensson, A., Dahllund, L., Malinowsky, D. and Sunnemark, D. TTBK1 in Alzheimer’s Disease Brain. Brain Pathology, 2013 23: 378-389. [CrossRef]
- Aguero C, Dhaynaut M, Amaral AC, Moon SH, Neelamegam R, Scapellato M, Carazo-Casas C, Kumar S, El Fakhri G, Johnson K, Frosch MP, Normandin MD, Gómez-Isla T. Head-to-head comparison of [18F]-Flortaucipir, [18F]-MK-6240 and [18F]-PI-2620 postmortem binding across the spectrum of neurodegenerative diseases. Acta Neuropathol. 2024 Jan 27;147(1):25. [CrossRef] [PubMed] [PubMed Central]
- Mueller A, Bullich S, Barret O, Madonia J, Berndt M, Papin C, Perrotin A, Koglin N, Kroth H, Pfeifer A, Tamagnan G, Seibyl JP, Marek K, De Santi S, Dinkelborg LM, Stephens AW. Tau PET imaging with 18F-PI-2620 in Patients with Alzheimer Disease and Healthy Controls: A First-in-Humans Study. J Nucl Med. 2020 Jun;61(6):911-919. Epub 2019 Nov 11. [CrossRef] [PubMed] [PubMed Central]
- Tagai K, Ono M, Kubota M, Kitamura S, Takahata K, Seki C, Takado Y, Shinotoh H, Sano Y, Yamamoto Y, Matsuoka K, Takuwa H, Shimojo M, Takahashi M, Kawamura K, Kikuchi T, Okada M, Akiyama H, Suzuki H, Onaya M, Takeda T, Arai K, Arai N, Araki N, Saito Y, Trojanowski JQ, Lee VMY, Mishra SK, Yamaguchi Y, Kimura Y, Ichise M, Tomita Y, Zhang MR, Suhara T, Shigeta M, Sahara N, Higuchi M, Shimada H. High-Contrast In Vivo Imaging of Tau Pathologies in Alzheimer’s and Non-Alzheimer’s Disease Tauopathies. Neuron. 2021 Jan 6;109(1):42-58.e8. Epub 2020 Oct 29. [CrossRef] [PubMed]
- Brendel M, Barthel H, van Eimeren T, Marek K, Beyer L, Song M, Palleis C, Gehmeyr M, Fietzek U, Respondek G, Sauerbeck J, Nitschmann A, Zach C, Hammes J, Barbe MT, Onur O, Jessen F, Saur D, Schroeter ML, Rumpf JJ, Rullmann M, Schildan A, Patt M, Neumaier B, Barret O, Madonia J, Russell DS, Stephens A, Roeber S, Herms J, Bötzel K, Classen J, Bartenstein P, Villemagne V, Levin J, Höglinger GU, Drzezga A, Seibyl J, Sabri O. Assessment of 18F-PI-2620 as a Biomarker in Progressive Supranuclear Palsy. JAMA Neurol. 2020 Nov 1;77(11):1408-1419. https://doi.org/10.1001/jamaneurol.2020.2526. Erratum in: JAMA Neurol. 2020 Nov 1;77(11):1453. Erratum in: JAMA Neurol. 2020 Nov 1;77(11):1453. [CrossRef] [PubMed] [PubMed Central]
- Li L, Liu FT, Li M, et al. Clinical utility of 18F-APN-1607 tau PET imaging in patients with progressive supranuclear palsy. Mov Disord 2021;36(10):2314-2323. [CrossRef]
- Lindberg A, Murrell E, Tong J, Mason NS, Sohn D, Sandell J, Ström P, Stehouwer JS, Lopresti BJ, Viklund J, Svensson S, Mathis CA, Vasdev N. Ligand-based design of [18F]OXD-2314 for PET imaging in non-Alzheimer’s disease tauopathies. Nat Commun. 2024 Jun 14;15(1):5109. [CrossRef] [PubMed] [PubMed Central]
- Kim H., Y. Kim H. Y., Chia W. K., Hsieh C-J, Saturnino Guarino D., Graham T. J. A., Lengyel-Zhand Z., Schneider M., Tomita C., Lougee M. G., Kim H. J., Pagar V. V., Lee H., Hou C., Garcia B. A., E. Petersson J., O’Shea J., Kotzbauer P. T., Mathis C. A., Lee V. M.-Y., Luk K. C., and Mach R. H. A Novel Brain PET Radiotracer for Imaging Alpha Synuclein Fibrils in Multiple System Atrophy. Journal of Medicinal Chemistry 2023 66 (17), 12185-12202. [CrossRef]
- Shriver D.F. and Drezdzon M.A. The Manipulation of Air-Sensitive Compounds 1986. 104. Eds: New York: John Wiley and Sons, Inc. ISBN 978-0-471-86773-9.





| Radioligand | IC50 or KD | Synucleinopathies Evaluated** |
||
|---|---|---|---|---|
| α-syn | Aβ | pTau | ||
| [18F]ACI-12589 | 33.5 ± 17.4 nM (sporadic PD); 28 nM (MSA) | 317 nM (AD) | PD***, MSA (+), DLB | |
| [18F]SPAL-T-06 | 2.5 nM (MSA) | Not reported | MSA (+) | |
| [18F]C05-05 | IC50*: 1.5 nM (DLB); | IC50* in AD tissue: 12.9 nM | PD/DLB (+) and MSA (+) | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

















