Submitted:
03 April 2025
Posted:
04 April 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Device Structure
3. Experimental Demonstration
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| RC | Resistance-capacitance |
| SPP | Series push-pull |
| RF | Radio-frequency |
| CMOS | Complementary metal-oxide semiconductor |
| TWE | Traveling wave electrode |
| CC-Si | Capacitively coupled silicon |
| MZI | Mach-Zehnder interferometer |
| MPW | Multi-project wafer |
| AMF | Advanced Micro Foundry |
| EO | Electro-optic |
| CW | Continuous wave |
| PN | P-type/N-Type |
| DC | Direct current |
| TLS | Tunable laser source |
| PC | Polarization controller |
| MMI | Multimode interference |
| OSA | Optical spectrum analyzer |
| LNOI | Lithium niobate on insulator |
| BEOL | Back-end-of-line |
References
- Dong, P.; Lee, J.; Chen, Y.K.; Buhl, L.L.; Chandrasekhar, S.; Sinsky, J.H.; Kim, K. Four-channel 100-Gb/s per channel discrete multi-tone modulation using silicon photonic integrated circuits. In Proceedings of the 2015 Optical Fiber Communications Conference and Exhibition (OFC); 2015; pp. 1–3. [Google Scholar] [CrossRef]
- Xie, C.; Magill, P.; Li, D.; Zhang, Y.; Zheng, L.; Wang, A.; Bao, Y.; Sui, C.; Streshinsky, M.; Mu, J.; et al. Real-Time Demonstration of Silicon-Photonics-Based QSFP-DD 400GBASE-DR4 Transceivers for Datacenter Applications. In Proceedings of the 2020 Optical Fiber Communications Conference and Exhibition (OFC); 2020; pp. 1–3. [Google Scholar] [CrossRef]
- Yu, H.; Patel, D.; Liu, W.; Malinge, Y.; Doussiere, P.; Lin, W.; Gupta, S.; Narayanan, K.; Hoshino, I.; Bresnehan, M.; et al. 800 Gbps Fully Integrated Silicon Photonics Transmitter for Data Center Applications. In Proceedings of the 2022 Optical Fiber Communications Conference and Exhibition (OFC); 2022; pp. 1–3. [Google Scholar] [CrossRef]
- Liao, L.; Liu, A.; Rubin, D.; Basak, J.; Chetrit, Y.; Nguyen, H.; Cohen, R.; Izhaky, N.; Paniccia, M. 40 Gbit/s silicon optical modulator for high-speed applications. Electronics Letters 2007, 43, 1196–1197. [Google Scholar] [CrossRef]
- Watts, M.R.; Zortman, W.A.; Trotter, D.C.; Young, R.W.; Lentine, A.L. Low-Voltage, Compact, Depletion-Mode, Silicon Mach–Zehnder Modulator. IEEE Journal of Selected Topics in Quantum Electronics 2010, 16, 159–164. [Google Scholar] [CrossRef]
- Zhang, H.; Li, M.; Zhang, Y.; Zhang, D.; Liao, Q.; He, J.; Hu, S.; Zhang, B.; Wang, L.; Xiao, X.; et al. 800 Gbit/s transmission over 1 km single-mode fiber using a four-channel silicon photonic transmitter. Photon. Res. 2020, 8, 1776–1782. [Google Scholar] [CrossRef]
- Mohammadi, A.; Zheng, Z.; Lin, J.; Rad, M.M.; Zhang, X.; Rusch, L.A.; Shi, W. Segmented Silicon Photonic Modulator with a 67-GHz Bandwidth for High-Speed Signaling. In Proceedings of the Optical Fiber Communication Conference (OFC) 2022. Optica Publishing Group; 2022; p. Th3C.1. [Google Scholar] [CrossRef]
- Han, C.; Zheng, Z.; Shu, H.; Jin, M.; Qin, J.; Chen, R.; Tao, Y.; Shen, B.; Bai, B.; Yang, F.; et al. Slow-light silicon modulator with 110-GHz bandwidth. Science Advances 2023, 9, eadi5339. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.S.; Sun, H.; Masnad, M.; Alamgir, I.; na, J.A.; Aitchison, J.S. Carrier Dispersion Modulation in a Silicon Strip Waveguide. In Proceedings of the CLEO 2024. Optica Publishing Group; 2024; p. JTh2A.195. [Google Scholar] [CrossRef]
- Alam, A.S.; Sun, H.; Masnad, M.M.; Alamgir, I.; Azaña, J.; Aitchison, J.S. Bandwidth Estimation of a Silicon Strip Waveguide Based Optical Modulator. In Proceedings of the Frontiers in Optics + Laser Science 2024 (FiO, LS). Optica Publishing Group; 2024; p. JW4A.50. [Google Scholar] [CrossRef]
- Alam, A.S.; Aitchison, J.S. Capacitively Coupled Silicon Modulator Fabricated on the Standard Silicon-on-Insulator Platform. IEEE Photonics Journal 2025. [Google Scholar] [CrossRef]
- Shi, Y.; Yan, L.; Willner, A. High-speed electrooptic modulator characterization using optical spectrum analysis. Journal of Lightwave Technology 2003, 21, 2358–2367. [Google Scholar] [CrossRef]
- Reynard, J.; Verove, C.; Sabouret, E.; Motte, P.; Descouts, B.; Chaton, C.; Michailos, J.; Barla, K. Integration of fluorine-doped silicon oxide in copper pilot line for 0.12-μm technology. Microelectronic Engineering 2002, 60, 113–118. [Google Scholar] [CrossRef]
- Alfaraj, N.; Lin, C.C.C.; Nasif, S.; Rajput, S.; Helmy, A.S. Facile integration of electro-optic SiO2/ITO heterointerfaces in MIS structures for CMOS-compatible plasmonic waveguide modulation. Light: Advanced Manufacturing 2023, 4, 420. [Google Scholar] [CrossRef]
- Alam, A.S. Design, Fabrication and Characterization of Capacitively Coupled Silicon-Organic Hybrid Modulators. Master’s Thesis, Karlsruhe Institute of Technology (KIT), 2017. [Google Scholar] [CrossRef]
- Ummethala, S.; Kemal, J.N.; Lauermann, M.; Alam, A.S.; Zwickel, H.; Harter, T.; Kutuvantavida, Y.; Hahn, L.; Nandam, S.H.; Elder, D.L.; et al. Capacitively Coupled Silicon-Organic Hybrid Modulator for 200 Gbit/s PAM-4 Signaling. In Proceedings of the Conference on Lasers and Electro-Optics. Optica Publishing Group; 2019; p. JTh5B.2. [Google Scholar] [CrossRef]
- Ummethala, S.; Kemal, J.N.; Alam, A.S.; Lauermann, M.; Kuzmin, A.; Kutuvantavida, Y.; Nandam, S.H.; Hahn, L.; Elder, D.L.; Dalton, L.R.; et al. Hybrid electro-optic modulator combining silicon photonic slot waveguides with high-k radio-frequency slotlines. Optica 2021, 8, 511–519. [Google Scholar] [CrossRef]
- Ummethala, S. Plasmonic-Organic and Silicon-Organic Hybrid Modulators for High-Speed Signal Processing. Ph.D. Thesis, 43.32.03; LK 01. Karlsruhe Institute of Technology (KIT), 2021. [Google Scholar] [CrossRef]
- Alam, A.S.; Aitchison, J.S. Low Half-Wave-Voltage Lithium Niobate Modulator Using High-K Dielectric Material Cladding. In Proceedings of the Optica Advanced Photonics Congress 2022. Optica Publishing Group; 2022; p. JTu2A.9. [Google Scholar] [CrossRef]
- Alam, A.S.; Aitchison, J.S. Optimization of a Broadband Lithium Niobate-Barium Titanate Hybrid Modulator With Low Half-Wave-Voltage-Length Product. IEEE Photonics Journal 2023, 15, 1–7. [Google Scholar] [CrossRef]
- Chen, N.; Lou, K.; Yu, Y.; He, X.; Chu, T. High-Efficiency Electro-Optic Modulator on Thin-Film Lithium Niobate with High-Permittivity Cladding. Laser & Photonics Reviews 2023, 17, 2200927. [Google Scholar] [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
