Submitted:
26 March 2025
Posted:
28 March 2025
You are already at the latest version
Abstract
Keywords:
Introduction
Overview on Gingerols

Physicochemical Properties of Gingerol

| Property | Property value | Reference |
| XLogP3-AA | 4.2 | Computed by XLogP3 3.0 (PubChem release 2021.10.14) |
| Hydrogen Bond Donor Count | 2 | Computed by Cactvs 3.4.8.18 (PubChem release 2021.10.14) |
| Hydrogen Bond Acceptor Count | 4 | Computed by Cactvs 3.4.8.18 (PubChem release 2021.10.14) |
| Rotatable Bond Count | 12 | Computed by Cactvs 3.4.8.18 (PubChem release 2021.10.14) |
| Exact Mass | 322.21440943 g/mol | Computed by PubChem 2.2 (PubChem release 2021.10.14) |
| Monoisotopic Mass | 322.21440943 g/mol | Computed by PubChem 2.2 (PubChem release 2021.10.14) |
| Topological Polar Surface Area | 66.8Ų | Computed by Cactvs 3.4.8.18 (PubChem release 2021.10.14) |
| Heavy Atom Count | 23 | Computed by PubChem |
| Formal Charge | 0 | Computed by PubChem |
| Complexity | 319 | Computed by Cactvs 3.4.8.18 (PubChem release 2021.10.14) |
| Isotope Atom Count | 0 | Computed by PubChem |
| Defined Atom Stereocenter Count | 1 | Computed by PubChem |
| Undefined Atom Stereocenter Count | 0 | Computed by PubChem |
| Defined Bond Stereocenter Count | 0 | Computed by PubChem |
| Undefined Bond Stereocenter Count | 0 | Computed by PubChem |
| Covalently-Bonded Unit Count | 1 | Computed by PubChem |
| Compound Is Canonicalized |
Yes | Computed by PubChem (release 2021.10.14) |
| Pubchem CID | 168114 |
https://pubchem.ncbi.nlm.nih.gov/ |
| Molecular Formula | C19H30O4 | |
| IUPAC Name | (5S)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl) dodecan-3-one |

| Property | Property value | Reference |
|---|---|---|
| XLogP3-AA | 4.2 | Computed by XLogP3 3.0 (PubChem release 2021.10.14) |
| Hydrogen Bond Donor Count | 2 | Computed by Cactvs 3.4.8.18 (PubChem release 2021.10.14) |
| Hydrogen Bond Acceptor Count | 4 | Computed by Cactvs 3.4.8.18 (PubChem release 2021.10.14) |
| Rotatable Bond Count | 12 | Computed by Cactvs 3.4.8.18 (PubChem release 2021.10.14) |
| Exact Mass | 322.21440943 g/mol | Computed by PubChem 2.2 (PubChem release 2021.10.14) |
| Monoisotopic Mass | 322.21440943 g/mol | Computed by PubChem 2.2 (PubChem release 2021.10.14) |
| Topological Polar Surface Area | 66.8Ų | Computed by Cactvs 3.4.8.18 (PubChem release 2021.10.14) |
| Heavy Atom Count | 23 | Computed by PubChem |
| Formal Charge | 0 | Computed by PubChem |
| Complexity | 319 | Computed by Cactvs 3.4.8.18 (PubChem release 2021.10.14) |
| Isotope Atom Count | 0 | Computed by PubChem |
| Defined Atom Stereocenter Count | 1 | Computed by PubChem |
| Undefined Atom Stereocenter Count | 0 | Computed by PubChem |
| Defined Bond Stereocenter Count | 0 | Computed by PubChem |
| Undefined Bond Stereocenter Count | 0 | Computed by PubChem |
| Covalently-Bonded Unit Count | 1 | Computed by PubChem |
|
Compound Is Canonicalized |
Yes | Computed by PubChem (release 2021.10.14) |
| Pubchem CID | 168114 |
https://pubchem.ncbi.nlm.nih.gov/ |
| Molecular Formula | C19H30O4 | |
| IUPAC Name | (5S)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl) dodecan-3-one |

| Property | Property value | Reference |
|---|---|---|
| XLogP3-AA | 5.3 | Computed by XLogP3 3.0 (PubChem release 2021.10.14) |
| Hydrogen Bond Donor Count | 2 | Computed by Cactvs 3.4.8.18 (PubChem release 2021.10.14) |
| Hydrogen Bond Acceptor Count | 4 | Computed by Cactvs 3.4.8.18 (PubChem release 2021.10.14) |
| Rotatable Bond Count | 14 | Computed by Cactvs 3.4.8.18 (PubChem release 2021.10.14) |
| Exact Mass | 350.24570956 g/mol | Computed by PubChem 2.2 (PubChem release 2021.10.14) |
| Monoisotopic Mass | 350.24570956 g/mol | Computed by PubChem 2.2 (PubChem release 2021.10.14) |
| Topological Polar Surface Area | 66.8Ų | Computed by Cactvs 3.4.8.18 (PubChem release 2021.10.14) |
| Heavy Atom Count | 25 | Computed by PubChem |
| Formal Charge | 0 | Computed by PubChem |
| Complexity | 345 | Computed by Cactvs 3.4.8.18 (PubChem release 2021.10.14) |
| Isotope Atom Count | 0 | Computed by PubChem |
| Defined Atom Stereocenter Count | 1 | Computed by PubChem |
| Defined Atom Stereocenter Count | 0 | Computed by PubChem |
| Defined Bond Stereocenter Count | 0 | Computed by PubChem |
| Undefined Bond Stereocenter Count | 0 | Computed by PubChem |
| Covalently-Bonded Unit Count | 1 | Computed by PubChem |
| Compound Is Canonicalized | Yes | Computed by PubChem (release 2021.10.14) |
| Pubchem CID | 168115 |
https://pubchem.ncbi.nlm.nih.gov/ |
| Molecular Formula | C21H34O4 | |
| IUPAC Name | (5S)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl) tetradecan-3-one |
Pharmacokinetics of Gingerol and its Metabolism
The Impact of Gingerols on the Immune System
Molecular Targets of Gingerol in Modulating Signaling Pathways

Anti-inflammatory Effects of Gingerol

In silico studies Collection and preparation of identified ligands

Protein Collection and Preparation

Toxicity Assessment of the Identified Ligands
| Factors | [6]-Gingerol | [8]-Gingerol | [10]-Gingerol |
|---|---|---|---|
| algae_at | 0.0128678 | 0.00685787 | 0.00363078 |
| daphnia_at | 0.0607967 | 0.0259264 | 0.0117833 |
| medaka_at | 0.00572286 | 0.00112928 | 0.00025129 |
| minnow_at | 0.00900351 | 0.00174438 | 0.000331235 |
| Carcino_Mouse | negative | negative | negative |
| Carcino_Rat | negative | negative | negative |
Molecular Docking Operation






Non-Covalent Interactions within the receptor-ligand systems by Discovery Studio
| Compound | Receptor | Hydrogen Bond | Hydrophobic bond | |||
|---|---|---|---|---|---|---|
| Interacting Amino Acid | Distance (Å) | Interacting amino acid | Distance(Å) | |||
|
[6]-Gingerol |
COX1 (PDB ID:6Y3C) |
-6.6 | HIS386 | 2.60 | ALA202 | 4.338 |
| HIS388 | 2.86 | MET391 | 5.91 | |||
| GLN203 | 4.25 | |||||
|
COX2 (PDB ID: 5IKT) |
-7 |
CYS47 | 2.089 | HIS39 | 2.57 | |
| CYS36 | 2.03 | LYS468 | 4.99 | |||
| GLU465 | 2.47 | PRO156 | 3.82 | |||
| LEU152 | 3.47 | |||||
|
[8]-Gingerol |
COX1 (PDB ID:6Y3C) |
-5.8 |
ASP135 | 2.37 | PRO153 | 4.03 |
| ASN34 | 2.52 | TYR130 | 5.24 | |||
|
CYS47 |
1.90 | ILE46 | 4.07 | |||
| TYR136 | 5.31 | |||||
| COX2 (PDB ID: 5IKT |
-6.9 |
CYS47 | 2.44 | TYR136 | 5.15 | |
|
GLU465 |
2.62 |
PRO156 | 4.55 | |||
| PRO153 | 4.54 | |||||
| HIS39 | 2.66 | |||||
| LYS468 | 4.72 | |||||
|
[10]-Gingerol |
COX1 (PDB ID:6Y3C) |
-6.2 |
CYS47 | 2.34 | CYS36 | 3.94 |
|
GLN461 |
2.93 |
ARG49 | 3.94 | |||
| ASN34 | 3.51 | |||||
| LEU152 | 5.17 | |||||
| PRO153 | 4.94 | |||||
| ILE46 | 4.27 | |||||
| PRO156 | 5.11 | |||||
| COX2 (PDB ID: 5IKT |
-5.4 |
PHE580 | 2.35 | HIS351 | 4.30 | |
| SER581 | 2.65 | GLN350 | 4.30 | |||
| GLY354 | 2.23 | LYS358 | 3.86 | |||
| TYR355 | 2.91 | |||||
In silico investigation
Molecular docking
Visualization of Ligand-Receptor Interactions
Conclusion
References
- Michels da Silva, D.; Langer, H.; Graf, T. Inflammatory and Molecular Pathways in Heart Failure-Ischemia, HFpEF and Transthyretin Cardiac Amyloidosis. Int J Mol Sci. 2019 May 10;20(9).
- Zhang X, Wu X, Hu Q, Wu J, Wang G, Hong Z, Ren J., Lab for Trauma and Surgical Infections. Mitochondrial DNA in liver inflammation and oxidative stress. Life Sci. 2019 Nov 01;236:116464.
- Fritsch, J.; Abreu, M.T. The Microbiota and the Immune Response: What Is the Chicken and What Is the Egg? Gastrointest Endosc Clin N Am. 2019 Jul;29(3):381-393.
- Barcelos, I.P.; Troxell, R.M.; Graves, J.S. Mitochondrial Dysfunction and Multiple Sclerosis. Biology (Basel). 2019 May 11;8(2).
- Tsai, D.H.; Riediker, M.; Berchet, A.; Paccaud, F.; Waeber, G.; Vollenweider, P.; Bochud, M. Effects of short- and long-term exposures to particulate matter on inflammatory marker levels in the general population. Environ Sci Pollut Res Int. 2019 Jul;26(19):19697-19704.
- Deepak, P.; Axelrad, J.E.; Ananthakrishnan, A.N. The Role of the Radiologist in Determining Disease Severity in Inflammatory Bowel Diseases. Gastrointest Endosc Clin N Am. 2019 Jul;29(3):447-470.
- Raskin I, Ribnicky DM, Komarnytsky S, et al. Plants and human health in the twenty-first century. Trends Biotechnol 2002; 20:522.
- Grzanna, R.; Lindmark, L.; Frondoza, C.G. Ginger: An herbal medicinal product with broad anti-inflammatory actions. J Med Food 2005;8:125.
- Vemuri, S. K. , Banala, R. R., Subbaiah, G. P. V., Srivastava, S. K., Gurava Reddy, A. V., and Malarvili, T. (2017). Anti-cancer potential of a mix of natural extracts of turmeric, ginger and garlic: A cell-based study. Egypt. J. Basic Appl. Sci. 4, 332–344. [CrossRef]
- Dugasani, S. , Pichika, M. R., Nadarajah, V. D., Balijepalli, M. K., Tandra, S., and Korlakunta, J. N. (2010). Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J. Ethnopharmacol. 127 (2), 515–520. [CrossRef]
- Embuscado, M. E. (2015). Spices and herbs: Natural sources of antioxidants-A mini review. J. Funct. Foods 18, 811–819. [CrossRef]
- Konmun, J. , Danwilai, K., Ngamphaiboon, N., Sripanidkulchai, B., Sookprasert, A., and Subongkot, S. (2017). A phase II randomized double-blind placebocontrolled study of 6-gingerol as an anti-emetic in solid tumor patients receiving moderately to highly emetogenic chemotherapy. Med. Oncol. 34 (4), 69. [CrossRef]
- de Menezes de Lima, R. M. T. , Dos Reis, A. C., de Menezes, A. P. M., Santos, J. V. O., Filho, J. W. G. O., Ferreira, J. R. O., et al. (2018). A. Protective and therapeutic potential of ginger (Zingiber officinale) extract and [6]-gingerol in cancer: A comprehensive review. Phytother. Res. 32 (10), 1885–1907. [CrossRef]
- Liang, N. , Sang, Y., Liu, W., Yu, W., and Wang, X. (2018). Anti-inflammatory effects of gingerol on lipopolysaccharide-stimulated RAW 264.7 cells by inhibiting NF-κB signaling pathway. Inflammation 41 (3), 835–845. [CrossRef]
- Lashgari, N. A. , Momeni Roudsari, N., Khayatan, D., Shayan, M., Momtaz, S., Roufogalis, B. D., et al. (2022). Ginger and its constituents: Role in treatment of inflammatory bowel disease. Biofactors 48 (1), 7–21. [CrossRef]
- Semwal, R. B. , Semwal, D. K., Combrinck, S., and Viljoen, A. M. (2015). Gingerols and shogaols: Important nutraceutical principles from ginger. Phytochemistry 117, 554–568. [CrossRef]
- Koch, W. , Kukula-Koch, W., Marzec, Z., Kasperek, E., Wyszogrodzka-Koma, L., Szwerc, W., et al. (2017). Application of chromatographic and spectroscopic methods towards the quality assessment of ginger (Zingiber officinale) rhizomes from ecological plantations. Int. J. Mol. Sci. 18 (2), 452. [CrossRef]
- Mao, Q. Q. Xu, X. Y., Cao, S. Y., Gan, R. Y., Corke, H., Beta, T., et al. (2019). Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods 8 (6), 185. [CrossRef]
- Ozkur, M. , Benlier, N., Takan, I., Vasileiou, C., Georgakilas, A. G., Pavlopoulou, A., et al. (2022). Ginger for healthy ageing: A systematic review on current evidence of its antioxidant, anti-inflammatory, and anticancer properties. Oxid. Med. Cell. Longev. 2022, 4748447. [CrossRef]
- Hitomi, S. , Ono, K., Terawaki, K., Matsumoto, C., Mizuno, K., Yamaguchi, K., et al. (2017). [6]-gingerol and [6]-shogaol, active ingredients of the traditional Japanese medicine hangeshashinto, relief oral ulcerative mucositis-induced pain via action on Na+ channels. Pharmacol. Res. 117, 288–302. [CrossRef]
- Samad, M. B. , Mohsin, M. N. A. B., Razu, B. A., Hossain, M. T., Mahzabeen, S., Unnoor, N., et al. (2017). [6]-Gingerol, from Zingiber officinale, potentiates GLP-1 mediated glucose-stimulated insulin secretion pathway in pancreatic-cells and increases RAB8/RAB10-regulated membrane presentation of GLUT4 transporters in skeletal muscle to improve hyperglycemia in Leprdb/db type 2 diabetic mice. BMC Complement. Altern. Med. 17 (1), 395. [CrossRef]
- Wang, S. , Tian, M., Yang, R., Jing, Y., Chen, W., Wang, J., et al. (2018). 6-gingerol ameliorates behavioral changes and atherosclerotic lesions in apoe-/- mice exposed to chronic mild stress. Cardiovasc. Toxicol. 18 (5), 420–430. [CrossRef]
- Ghasemzadeh, A. , Jaafar, H. Z. E., Baghdadi, A., and Tayebi-Meigooni, A. (2018). formation of 6-8- and 10-shogaol in ginger through application of different drying methods: Altered antioxidant and antimicrobial activity. Molecules 23 (7), 1646. [CrossRef]
- Han, H. S. , Kim, K. B., Jung, J. H., An, I. S., Kim, Y. J., and An, S. (2018). Antiapoptotic, antioxidant and anti-aging effects of 6-shogaol on human dermal fibroblasts. Biomed. Dermatol. 2, 27. [CrossRef]
- Ho, S. C. , and Chang, Y. H. (2018). Comparison of inhibitory capacities of 6-8- and 10-gingerols/shogaols on the canonical NLRP3 inflammasome-mediated IL-1β secretion. Molecules 23 (2), 466. [CrossRef]
- Lee, E. B. , Kim, J. H., Kim, Y. J., Noh, Y. J., Kim, S. J., Hwang, I. H., et al. (2018). Lifespan-extending property of 6-shogaol from Zingiber officinale Roscoe in Caenorhabditis elegans. Arch. Pharm. Res. 41, 743–752. [CrossRef]
- Smith, N. C. , Christian, S. L., Taylor, R. G., Santander, J., and Rise, M. L. (2018). Immune modulatory properties of 6-gingerol and resveratrol in Atlantic salmon macrophages. Mol. Immunol. 95, 10–19. [CrossRef]
- Han, X. , Liu, P., Zheng, B., Zhang, M., Zhang, Y., Xue, Y., et al. (2022a). 6- Gingerol exerts a protective effect against hypoxic injury through the p38/Nrf2/HO1 and p38/NF-κB pathway in H9c2 cells. J. Nutr. Biochem. 104, 108975. [CrossRef]
- Lashgari, N. A. , Momeni Roudsari, N., Khayatan, D., Shayan, M., Momtaz, S., Roufogalis, B. D., et al. (2022). Ginger and its constituents: Role in treatment of inflammatory bowel disease. Biofactors 48 (1), 7–21. [CrossRef]
- Kravchenko, I.A.; Eberle, L.V.; Nesterkina, M.V.; Kobernik, A.O. Pharmacotherapy of inflammatory process by ginger extract (Zingiber officinale) ointment. J. Herb. Med. 2019, 8, 101–107. [Google Scholar] [CrossRef]
- Drozdov, V.N.; Kim, V.A.; Tkachenko, E.V.; Varvanina, G.G. Influence of a specific ginger combination on gastropathy conditions in patients with osteoarthritis of the knee or hip. J. Altern. Complement. Med. 2012, 18, 583–588. [Google Scholar] [CrossRef]
- Black, C.D.; Herring, M.P.; Hurley, D.J.; O’Connor, P.J. Ginger (Zingiber officinale) reduces muscle pain caused by eccentric exercise. J. Pain 2010, 11, 894–903. [Google Scholar] [PubMed]
- Fujiwara N, Kobayashi K. Macrophages in inflammation. Curr Drug Targets Inflamm Allergy 2005;4:281.
- Lien E, Ingalls RR. Toll-like receptors. Crit Care Med 2002; 30(Suppl):S1.
- Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol 2003;21:335.
- Aderem, A. Role of toll-like receptors in inflammatory response in macrophages. Crit Care Med 2001;29(Suppl):S16.
- Heine H, Lien E. Toll-like receptors and their function in innate and adaptive immunity. Int Arch Allergy Immunol 2003;130: 180.
- Guleria, A. , Kamboj, A., Kaushal, J., Anupam, K., and Bhatnagar, A. (2022). A molecular insight into significance of functional foods in better management of rheumatoid arthritis. Rev. Bras. Farmacogn. 2022. [CrossRef]
- Ley-Martínez, J. S. , Ortega-Valencia, J. E., García-Barradas, O., JiménezFernández, M., Uribe-Lam, E., Vencedor-Meraz, C. I., et al. (2022). Active compounds in Zingiber officinale as possible redox inhibitors of 5-Lipoxygenase using an in-silico approach. Int. J. Mol. Sci. 23, 6093. [CrossRef]
- Cerrutti, P.A. , 1991. Oxidant stress and carcinogenesis. European Journal of Clinical Investigation 21, 1–11.
- Halliwell, B. 1997. Antioxidants and human diseases: a general introduction. Nutrition Reviews 55, S52.
- Nathan, C. Xie, Q.W., 1994. Nitric oxide synthase: roles, tolls, and controls. Cell 78, 915–918.
- Atkan, F. 2004. iNOS-mediated nitric oxide production and its regulation. Life Sciences 75, 639–653.
- Grzanna, R. , Lindmark, L., and Frondoza, C. G. (2005). Ginger – An herbal medicinal product with broad anti-inflammatory actions. J. Med. Food 8 (2), 125–132. [CrossRef]
- Denniff, P. , Macleod, I., and Whiting, D. A. (1980). Studies in the biosynthesis of [6]-gingerol, pungent principle of ginger (Zingiber officinale). J. Chem. Soc. Perkin 1 1, 2637–2644. [CrossRef]
- Li, L. L. , Cui, Y., Guo, X. H., Ma, K., Tian, P., Feng, J., et al. (2019). Pharmacokinetics and tissue distribution of gingerols and shogaols from ginger (Zingiber officinale Roscoe) in rats by UPLC-Q-exactive-HRMS. Molecules 24 (3), 512. [CrossRef]
- Alolga, R. N. Wang, F., Zhang, X., Li, J., Tran, L.-S. P., and Yin, X. (2022). Bioactive compounds from the Zingiberaceae Family with known antioxidant activities for possible therapeutic uses. Antioxidants 11, 1281. [CrossRef]
- Habtemariam, S. (2019). “The chemical and pharmacological basis of ginger (Zingiber officinale Roscoe) as potential therapy for diabetes and metabolic syndrome,” in Medicinal foods as potential therapies for type-2 diabetes and associated diseases, the chemical and pharmacological basis of their action (London, United Kingdom: Academic Press), 639–687. [CrossRef]
- Liu, Y. Liu, J., and Zhang, Y. (2019). Research progress on chemical constituents of Zingiber officinale Roscoe. Biomed. Res. Int. 2019, 5370823. [CrossRef]
- Loung, C. Y. , Rasmussen, A. N., and Hoskin, D. W. (2019). “The phenolic gingerols and gingerol-derived shogaols: Features and properties related to the prevention and treatment of cancer and chronic inflammation,” in Polyphenols in plants isolation, purification and extract preparation. Editor R. Ross Watson (India: Academic Press), 395–405.
- Kukula-Koch, W. , and Czernicka, L. (2020). “Gingerols and shogaols from food,” in Handbook of dietary phytochemicals. Editors J. Xiao, S. D. Sarker, and Y. Asakawa (Singapur: Springer), 1–31.
- Unuofin, J. O. , Masuku, N. P., Paimo, O. K., and Lebelo, S. L. (2021). Ginger from farmyard to town: Nutritional and pharmacological applications. Front. Pharmacol. 12, 779352. [CrossRef]
- Jolad SD, Lantz RC, Chen GJ et al. (2005) Commercially processed dry ginger (Zingiber officinale): composition and effects on LPS-stimulated PGE2 production. Phytochem 66 (13):1614–1635.
- Jolad SD, Lantz RC, Chen GJ et al. (2005) Commercially processed dry ginger (Zingiber officinale): composition and effects on LPS-stimulated PGE2 production. Phytochem 66 (13):1614–1635.
- Jiang H, Solyom AM, Timmermann BN et al. (2005) Characterization of gingerol-related compounds in ginger rhizome (Zingiber officinale Rosc.) by high-performance liquid chromatography/ electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 19(20):2957–2964.
- Wohlmuth H, Leach DN, Smith MK et al. (2005) Gingerol content of diploid and tetraploid clones of ginger (Zingiber officinale Roscoe). J Agric Food Chem 53:5772–5778.
- Zhang YX, Li JS, Chen LH et al. (2012) Simultaneous determination of five gingerols in raw and processed ginger by HPLC. Chinese Pharm J 47:471–474.
- Ding GH, Naora K, Hayashibara M et al. (1991) Pharmacokinetics of [6]-gingerol after intravenous administration in rats. Chem Phar Bull (Tokyo) 39:1612–1614.
- Surh YJ, Lee E, Lee JM (1998) Chemoprotective properties of some pungent ingredients present in red pepper and ginger. Mutat Res 402(1–2):259–267.
- Zick SM, Djuric Z, Ruffin MT et al. (2008) Pharmacokinetics of 6-, 8-, 10-gingerols and 6-shogaol and conjugate metabolites in healthy human subjects. Cancer Epidemiol Biomarkers Prev 17(8):1930–1936. [CrossRef]
- Nakazawa T, Ohsawa K (2002) Metabolism of [6]-gingerol in rats. Life Sci 70:2165–2175.
- Gundala SR, Mukkavilli R, Yang C et al. (2014) Enterohepatic recirculation of bioactive ginger phytochemicals is associated with enhanced tumor growth-inhibitory activity of ginger extract. Carcinogenesis 35(6):1320–1329. [CrossRef]
- Bhattarai S, Tran VH, Duke CC (2007) Stability of [6]-gingerol and [6]-shogaol in simulated gastric and intestinal fluids. J Pharmaceut Biomed Anal 45:648–653.
- Jantan, I. , Ahmad, W., and Bukhari, S. N. (2015). Plant-derived immunomodulators: An insight on their preclinical evaluation and clinical trials. Front. Plant Sci. 6, 655. [CrossRef]
- Ortuño-Sahagún, D. Zänker, K., Rawat, A. K. S., Kaveri, S. V., and Hegde, P. (2017). Natural immunomodulators. J. Immunol. Res. 2017, 7529408. [CrossRef]
- Nagoba, B., and Davane, M. (2018). Natural immunomodulators. J. Immunol. Microbiol. 2.
- Kumar, S. , Saxena, K., Singh, U. N., and Saxena, R. (2013). Anti-inflammatory action of ginger: A critical review in anemia of inflammation and its future aspects. Int. J. Herb. Med. 1 (4), 16–20.
- Aziz, D. M. Wsoo, M. A., and Ibrahim, B. M. (2015). Antimicrobial and antioxidant activities of extracts from medicinal plant ginger (Zingiber officinale) and identification of components by gas chromatography. Afr. J. Plant Sci. 9, 412–420. [CrossRef]
- Deng, M. , Yun, X., Ren, S., Qing, Z., and Luo, F. (2022). Plants of the genus zingiber: A review of their ethnomedicine, phytochemistry and pharmacology. Molecules 27, 2826. [CrossRef]
- Zahoor, A. , Yang, C., Yang, Y., Guo, Y., Zhang, T., Jiang, K., et al. (2020). 6- Gingerol exerts anti-inflammatory effects and protective properties on LTAinduced mastitis. Phytomedicine 76, 153248. [CrossRef]
- Zhang, M. Zhao, R., Wang, D., Wang, L., Zhang, Q., Wei, S., et al. (2021). Ginger (Zingiber officinale Rosc.) and its bioactive components are potential resources for health beneficial agents. Phytother. Res. 35, 711–742. [CrossRef]
- Zhou, X. , Münch, G., Wohlmuth, H., Afzal, S., Kao, M. T., Al-Khazaleh, A., et al. (2022). Synergistic inhibition of pro-inflammatory pathways by ginger and turmeric extracts in RAW 264.7 cells. Front. Pharmacol. 202213, 818166. [CrossRef]
- Park KK, Chun KS, Lee SS, Surh YJ. Inhibitory effect of [6] - gingerol, a major pungent principle of ginger, on phorbol esterinduced inflammation, epidermal ornithine decarboxylase activity and skin tumor promotion in ICR mice. Cancer Lett 1998; 129:139- 44.
- Surh, YJ. Cancer chemoprevention with dietary phytochemical.Nat Rev Cancer 2003; 3:768-80.
- Aggarwal BB, Shishodia S (2006) Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 71:1397–1421.
- Maeda S, Omata M (2008) Inflammation and cancer: role of nuclear factor-kappa B activation. Cancer Sci 99:836–842.
- Kim SO, Chun KS, Kundu JK et al. (2004) Inhibitory effects of [6]-gingerol on PMA-induced COX-2 expression and activation of NF-kB and p38 MAPK in mouse skin. BioFactors 21:27–31.
- Maghbooli M, Golipour F, Moghimi Esfandabadi A, Yousefi M. Comparison between the efficacy of ginger and sumatriptan in the ablative treatment of the common migraine. Phytotherapy Research. 2014;28(3):412-5.
- Young H-Y, Luo Y-L, Cheng H-Y, Hsieh W-C, Liao J-C, Peng W-H. Analgesic and anti-inflammatory activities of [6]-gingerol. Journal of Ethnopharmacology. 2005;96(1- 2):207-10.
- Minghetti P, Sosa S, Cilurzo F, Casiraghi A, Alberti E, Tubaro A, et al. Evaluation of the topical anti-inflammatory activity of ginger dry extracts from solutions and plasters. Planta Medica. 2007;73 (15):1525-30.
- Black CD, Herring MP, Hurley DJ, O'Connor PJ. Ginger (Zingiber officinale) reduces muscle pain caused by eccentric exercise. The Journal of Pain. 2010;11(9):894-903.
- Yoon JH, Baek SJ (2005) Molecular targets of dietary polyphenols with anti-inflammatory properties. Yonsei Med J 46(5):585–596. [CrossRef]
- Issa AY, Volate SR, Wargovich MJ (2006) The role of phytochemicals in inhibition of cancer and inflammation: new directions and perspectives. J Food Compost Anal 19: 405–419.
- Wei QY, Ma JP, Cai YJ et al. (2005) Cytotoxic and apoptotic activities of diarylheptanoids and gingerol-related compounds from the rhizome of Chinese ginger. J Ethnopharmacol 102:177–184.
- Flynn DL, Rafferty MF, Boctor AM (1968) Inhibition of human neutrophil 5-lipoxygenase activity by gingerdione, shogaol, capsaicin and related pungent compounds. Prostaglandins Leukot Med 24:195–198.
- Kim JK, Kim Y, Na KM et al. (2007) [6]-Gingerol prevents UVB induced ROS production and COX-2 expression in vitro and in vivo. Free Rad Res 41:603–614.
- Nurtjahja-Tjendraputra E, Ammit AJ, Roufogalis BD et al. (2003) Effective anti-platelet and COX-1 enzyme inhibitors from pungent constituents of ginger. Thromb Res 111(4–5):259–265.
- Lantz RC, Chen GJ, Sarihan M et al. (2007) The effect of extracts from ginger rhizome on inflammatory mediator production. Phytomed 14:123–128.
- Sharifi-Rad M, Varoni EM, Salehi B, Sharifi-Rad J, Matthews KR, Ayatollahi SA, et al. Plants of the genus Zingiber as source of antimicrobial agents: From Tradition to Pharmacy;2017.
- Feixiong Cheng, Weihua Li, Yadi Zhou, Jie Shen, Zengrui Wu, Guixia Liu, Philip W. Lee, Yun Tang. admetSAR: a comprehensive source and free tool for evaluating chemical ADMET properties. J. Chem. Inf. Model., 2012, 52(11): 3099-3105. (This paper is the hot paper of JCIM in Dec. 2012).
- Ficker, E. Zhao, S., Obejero-Paz, C. A., & Brown, A. M. (2002). The binding site for channel blockers that rescue misprocessed human long QT syndrome type 2 ether-a-gogorelated gene (HERG) mutations. Journal of Biological Chemistry, 277(7), 4989-4998.
- Lin, J. H. , & Yamazaki, M. (2003). Role of P-glycoprotein in pharmacokinetics. Clinical pharmacokinetics, 42(1), 59-98.
- Halgren, T. A. (1996). Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. Journal of Computational Chemistry, 17(5-6), 520-552.
- Zhu, C. Gao, Y., Li, H., Meng, S., Li, L., Francisco, J. S., & Zeng, X. C. (2016). Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planar peptide network. Proceedings of the National Academy of Sciences, 113(46), 12946-12951.
- Payton, J. L. , Morton, S. M., Moore, J. E., & Jensen, L. (2014). A hybrid atomistic electrodynamics–quantum mechanical approach for simulating surface-enhanced Raman scattering. Accounts of chemical research, 47(1), 88-99.
- Carrasco, M. J. Alishetty, S., Alameh, M. G., Said, H., Wright, L., Paige, M., ... & Buschmann, M. D. (2021). Ionization and structural properties of mRNA lipid nanoparticles influence expression in intramuscular and intravascular administration. Communications biology, 4(1), 1-15.
- Schiebel, J. , Gaspari, R., Wulsdorf, T., Ngo, K., Sohn, C., Schrader, T. E.,... & Klebe, G. (2018). Intriguing role of water in protein-ligand binding studied by neutron crystallography on trypsin complexes. Nature communications, 9(1), 1-15.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
