Submitted:
20 March 2025
Posted:
21 March 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Applications of ChatGPT in Academic Direction
3. The Impact of ChatGPT on the Educational Process
4. The Impact of ChatGPT on Research and Publication
4.1. The Use of ChatGPT in the Academic Community
4.2. ChatGPT as a Scientific Researcher
4.3. ChatGPT as an Article Writing Tool
5. Challenges and Limitations of ChatGPT
6. Prospects and Evolution of ChatGPT in the Academic Direction
7. Conclusions
Acknowledgements
Conflicts of Interest
References
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008. [Google Scholar]
- Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; et al. Language Models Are Few-Shot Learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901. [Google Scholar]
- OpenAI. GPT-4 Technical Report. 2023. Available online: https://cdn.openai.com/papers/gpt-4.pdf (accessed on 16 March 2025).
- OpenAI. ChatGPT: Optimizing Language Models for Dialogue. 2023. Available online: https://openai.com/blog/chatgpt (accessed on 16 March 2025).
- OpenAI. GPT-5: Future of AI Language Models. 2024. Available online: https://openai.com/research/gpt-5 (accessed on 16 March 2025).
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. Proc. NAACL-HLT 2019, 1, 4171–4186. [Google Scholar]
- Raffel, C.; Shinn, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. J. Mach. Learn. Res. 2020, 21, 1–67. [Google Scholar]
- Rosset, C. Turing-NLG: A 17-Billion-Parameter Language Model by Microsoft. Microsoft Res. Blog 2020. Available online: https://www.microsoft.com/en-us/research/blog/turing-nlg (accessed on 16 March 2025).
- OpenAI. Comparing GPT Models. 2023. Available online: https://openai.com/research/comparison-gpt (accessed on 16 March 2025).
- Liu, Z.; Zhang, Y. BERT for Sentiment Analysis: A Survey. Proc. Int. Conf. Mach. Learn. Appl. 2019, 357–364. [Google Scholar]
- Microsoft Research. Microsoft Research. Turing-NLG vs. GPT-3: A Performance Comparison. arXiv 2020, arXiv:2006.07399. [Google Scholar]
- Bender, E.M.; Gebru, T.; McMillan-Major, A.; Shmitchell, S. On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? ACM Conf. Fairness Account. Transp. 2021, 610–623. [Google Scholar]
- Thorp, H.H. ChatGPT Is Fun, but Not an Author. Science 2023, 379, 313. [Google Scholar] [CrossRef]
- Zhang, C., Zhang, C., Zheng, S., Qiao, Y., Li, C., Zhang, M., ... & Hong, C. S. (2023). A complete survey on generative ai (aigc): Is chatgpt from gpt-4 to gpt-5 all you need?. arXiv preprint. arXiv:2303.11717.
- Boiko, D.A.; MacKnight, R.; Kline, B.; Gomes, G. Autonomous Chemical Research with Large Language Models. Nature 2023, 624, 570–578. [Google Scholar] [CrossRef]
- Anthropic. Claude 2: A Safer and More Honest AI. 2023. Available online: https://www.anthropic.com/claude-2 (accessed on 16 March 2025).
- Chowdhery, A.; Narang, S.; Devlin, J.; et al. PaLM 2 Technical Report. arXiv arXiv:2305.10403, 2023.
- Srivastava, A.; Rastogi, A.; Rao, A.; et al. Beyond the Imitation Game: Quantifying and Extrapolating the Capabilities of Language Models. arXiv arXiv:2206.04615, 2023.
- GitHub. GitHub Copilot: Your AI Pair Programmer. 2023. Available online: https://github.com/features/copilot (accessed on 16 March 2025).
- Jumper, J.; Evans, R.; Pritzel, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Borji, A. A Categorical Archive of ChatGPT Failures. arXiv arXiv:2302.03494, 2023.
- Floridi, L.; Chiriatti, M. GPT-3: Its Nature, Scope, Limits, and Consequences. Minds Mach. 2020, 30, 681–694. [Google Scholar] [CrossRef]
- Lund, B.D.; Wang, T. Chatting About ChatGPT: How May AI and GPT Impact Academia and Libraries? Libr. Hi Tech News 2023, 40, 26–29. [Google Scholar] [CrossRef]
- Dale, R. The Development of Generative Pretrained Transformers. J. Mach. Learn. Res. 2021, 22, 1–18. [Google Scholar]
- Niu, Z.; Chen, Y.; Wang, X.; et al. Attention Mechanism in Neural Networks. Int. J. Artif. Intell. 2021, 12, 56–74. [Google Scholar]
- Manning, C.D.; Schütze, H. Foundations of Statistical Natural Language Processing; MIT Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Erhan, D.; Bengio, Y.; Courville, A.; et al. Why Does Unsupervised Pre-Training Help Deep Learning? Int. Conf. Learn. Represent. 2010, 1–8. [Google Scholar]
- Goh, A.; Cammarata, N.; Voss, C.; et al. Multimodal Neurons in Neural Networks. J. Neural Inf. Process. 2021, 45, 113–126. [Google Scholar]
- Makridakis, S. The Forthcoming Artificial Intelligence Revolution: Its Impact on Society and Firms. Futures 2017, 90, 46–60. [Google Scholar] [CrossRef]
- Bozkurt, A.; Xiao, J.; Lambert, S.; et al. Speculative Futures on ChatGPT and Generative Artificial Intelligence (AI): A Collective Reflection from the Educational Landscape. Asian J. Distance Educ. 2023, 18, 50–130. [Google Scholar]
- Bozkurt, A. Generative Artificial Intelligence (AI) Powered Conversational Educational Agents: The Inevitable Paradigm Shift. Asian J. Distance Educ. 2023, 18, 1–12. [Google Scholar]
- Mondal, S.; Das, S.; Vrana, V.G. How to Bell the Cat? A Theoretical Review of Generative Artificial Intelligence Towards Digital Disruption in All Walks of Life. Technologies 2023, 11, 44. [Google Scholar]
- Zhang, C.; Zhang, C.; Li, C.; et al. One Small Step for Generative AI, One Giant Leap for AGI: A Complete Survey on ChatGPT in AIGC Era. arXiv arXiv:2304.06488, 2023.
- Jovanovic, M.; Campbell, M. Generative Artificial Intelligence: Trends and Prospects. Computer 2022, 55, 107–112. [Google Scholar] [CrossRef]
- Mathew, A. Is Artificial Intelligence a World Changer? A Case Study of OpenAI’s Chat GPT. Recent Prog. Sci. Technol. 2023, 5, 35–42. [Google Scholar]
- Rivas, P.; Zhao, L. Marketing with ChatGPT: Navigating the Ethical Terrain of GPT-Based Chatbot Technology. AI 2023, 4, 375–384. [Google Scholar] [CrossRef]
- Baidoo-Anu, D.; Owusu Ansah, L. Education in the Era of Generative Artificial Intelligence (AI): Understanding the Potential Benefits of ChatGPT in Promoting Teaching and Learning. Soc. Sci. Res. Netw. 2023. [CrossRef]
- Lo, C.K. What Is the Impact of ChatGPT on Education? A Rapid Review of the Literature. Educ. Sci. 2023, 13, 410. [Google Scholar]
- Sallam, M. ChatGPT Utility in Healthcare Education, Research, and Practice: Systematic Review on the Promising Perspectives and Valid Concerns. Healthcare 2023, 11, 887. [Google Scholar] [CrossRef]
- Biswas, S.S. Role of ChatGPT in Public Health. Ann. Biomed. Eng. 2023, 51, 868–869. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S. ChatGPT and the Future of Medical Writing. Radiology 2023, 307, e223312. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, F.; Abadi, A.T.B. ChatGPT and Publication Ethics. Arch. Med. Res. 2023, 54, 272–274. [Google Scholar] [CrossRef] [PubMed]
- Hassani, H.; Silva, E.S. The Role of ChatGPT in Data Science: How AI-Assisted Conversational Interfaces Are Revolutionizing the Field. Big Data Cogn. Comput. 2023, 7, 62. [Google Scholar] [CrossRef]
- Koubaa, A. GPT-4 vs. GPT-3.5: A Concise Showdown. AI 2023, 4, 100–112. [Google Scholar]
- Katz, D.M.; Bommarito, M.J.; Gao, S.; Arredondo, P. GPT-4 Passes the Bar Exam. SSRN 2023, 4389233. [Google Scholar] [CrossRef]
- Sanderson, K. GPT-4 Is Here: What Scientists Think. Nature 2023, 615, 773. [Google Scholar] [CrossRef]
- Skavronskaya, L.; Hadinejad, A.; Cotterell, D. Reversing the Threat of Artificial Intelligence to Opportunity: A Discussion of ChatGPT in Tourism Education. J. Teach. Travel Tour. 2023, 23, 253–258. [Google Scholar] [CrossRef]
- Halaweh, M. ChatGPT in Education: Strategies for Responsible Implementation; Bastas: Tokyo, Japan, 2023. [Google Scholar]
- Sabzalieva, E.; Valentini, A. ChatGPT and Artificial Intelligence in Higher Education: Quick Start Guide. UNESCO 2023. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000386693 (accessed on 16 March 2025).
- Rahman, M.M.; Watanobe, Y. ChatGPT for Education and Research: Opportunities, Threats, and Strategies. Appl. Sci. 2023, 13, 5783. [Google Scholar] [CrossRef]
- Carnegie Learning. MATHia: Adaptive Math Learning. 2023. Available online: https://www.carnegielearning.com (accessed on 16 March 2025).
- Knewton. Adaptive Learning Technology. 2023. Available online: https://www.knewton.com (accessed on 16 March 2025).
- Fryer, L.K.; Ainley, M.; Thompson, A.; Gibson, A.; Sherlock, Z. AI in Education: The Impact of ChatGPT on Content Creation. J. Educ. Technol. 2023, 45, 10–15. [Google Scholar]
- Kasneci, E.; Seßler, K.; Küchemann, S.; Bannert, M.; Dementieva, D.; Fischer, F.; et al. ChatGPT for Good? On Opportunities and Challenges of Large Language Models for Education. Learn. Individ. Differ. 2023, 103, 102274. [Google Scholar]
- Schlippe, T.; Stierstorfer, Q.; Koppel, M.T.; Libbrecht, P. Explainability in Automatic Short Answer Grading. In Artificial Intelligence in Education Technologies: New Development and Innovative Practices; Springer: Cham, Switzerland, 2023; pp. 69–87. [Google Scholar]
- Schlippe, T.; Sawatzki, J. Cross-Lingual Automatic Short Answer Grading. In Artificial Intelligence in Education: Emerging Technologies, Models and Applications; Springer: Cham, Switzerland, 2021; pp. 117–129. [Google Scholar]
- Conijn, R.; Kahr, P.; Snijders, C. The Effects of Explanations in Automated Essay Scoring Systems on Student Trust and Motivation. J. Learn. Anal. 2023, 10, 37–53. [Google Scholar] [CrossRef]
- Jiao, W.X.; Wang, W.X.; Huang, J.T.; Wang, X.; Tu, Z.P. Is ChatGPT a Good Translator? arXiv arXiv:2301.08745, 2023.
- Wang, L.; Lyu, C.; Ji, T.; Zhang, Z.; Yu, D.; Shi, S.; Tu, Z. Document-Level Machine Translation with Large Language Models. arXiv arXiv:2304.02210, 2023.
- Deng, X.; Yu, Z. A Systematic Review of Machine-Translation-Assisted Language Learning for Sustainable Education. Sustainability 2022, 14, 7598. [Google Scholar] [CrossRef]
- Tsai, S.C. Using Google Translate in EFL Drafts: A Preliminary Investigation. Comput. Assist. Lang. Learn. 2019, 32, 510–526. [Google Scholar] [CrossRef]
- Fazlollahi, A.M.; Bakhaidar, M.; Alsayegh, A.; et al. Effect of Artificial Intelligence Tutoring vs Expert Instruction on Learning Simulated Surgical Skills Among Medical Students: A Randomized Clinical Trial. JAMA Netw. Open 2022, 5, e2149008. [Google Scholar] [CrossRef]
- Afzal, S.; Dhamecha, T.I.; Gagnon, P.; et al. AI Medical School Tutor: Modelling and Implementation. In Artificial Intelligence in Medicine; Springer: Cham, Switzerland, 2020; pp. 133–145. [Google Scholar]
- Chan, K.S.; Zary, N. Applications and Challenges of Implementing Artificial Intelligence in Medical Education: Integrative Review. JMIR Med. Educ. 2019, 5, e13930. [Google Scholar] [CrossRef]
- Francisco, R.E.; Oliveira Silva, F. Intelligent Tutoring System for Computer Science Education and the Use of Artificial Intelligence: A Literature Review. Educ. Inf. Technol. 2022, 27, 12145–12168. [Google Scholar]
- Grossman, J.; Lin, Z.; Sheng, H.; Wei, J.T.Z.; Williams, J.J.; Goel, S.M. Transforming Online Resources for Learning Math into Conversational Interactions. Proc. AAAI Conf. Artif. Intell. 2019, 33, 7841–7848. [Google Scholar]
- Dempere, J.; Modugu, K.; Hesham, A.; Ramasamy, L.K. The Impact of ChatGPT on Higher Education. Front. Educ. 2023, 8, 1206936. [Google Scholar] [CrossRef]
- Mbakwe, A.B.; Lourentzou, I.; Celi, L.A.; et al. ChatGPT Passing USMLE Shines a Spotlight on the Flaws of Medical Education. PLOS Digit. Health 2023, 2, e0000205. [Google Scholar] [CrossRef]
- Gravel, J.; D’Amours-Gravel, M.; Osmanlliu, E. Learning to Fake It: Limited Responses and Fabricated References Provided by ChatGPT for Medical Questions. Mayo Clin. Proc. Digit. Health 2023, 1, 226–234. [Google Scholar] [CrossRef]
- Alkaissi, H.; McFarlane, S.I. Artificial Hallucinations in ChatGPT: Implications in Scientific Writing. Cureus 2023, 15, e35179. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.; Er, E. Will ChatGPT Get You Caught? arXiv arXiv:2302.04335, 2023.
- Basic, Z.; Banovac, A.; Kruzic, I.; Jerkovic, I. Better by You, Better Than Me, ChatGPT3 as Writing Assistance in Students Essays. arXiv arXiv:2302.04536, 2023.
- Oker, A.; Pecune, F.; Declercq, C. Virtual Tutor and Pupil Interaction: A Study of Empathic Feedback as Extrinsic Motivation for Learning. Educ. Inf. Technol. 2020, 25, 3643–3658. [Google Scholar] [CrossRef]
- Tilli, A.; Shehata, B.; Adarkwah, M.A.; et al. What If the Devil Is My Guardian Angel: ChatGPT as a Case Study of Using Chatbots in Education. Smart Learn. Environ. 2023, 10, 15. [Google Scholar] [CrossRef]
- Farrokhnia, M.; Banihashem, S.K.; Noroozi, O.; Wals, A. A SWOT Analysis of ChatGPT: Implications for Educational Practice and Research. Innov. Educ. Teach. Int. 2023, 60, 1–15. [Google Scholar] [CrossRef]
- Sullivan, M.; Kelly, A.; McLaughlan, P. ChatGPT in Higher Education: Considerations for Academic Integrity and Student Learning. J. Appl. Learn. Teach. 2023, 6, 1–12. [Google Scholar]
- Susnjak, T. ChatGPT: The End of Online Exam Integrity? arXiv arXiv:2212.09292, 2022. [CrossRef]
- Adiguzel, T.; Kaya, M.H.; Cansu, F.K. Revolutionizing Education with AI: Exploring the Transformative Potential of ChatGPT. Contemp. Educ. Technol. 2023, 15, 429. [Google Scholar] [CrossRef] [PubMed]
- Turnitin. AI Writing Detection. 2023. Available online: https://www.turnitin.com (accessed on 16 March 2025).
- Caliskan, A.; Bryson, J.J.; Narayanan, A. Semantics Derived Automatically from Language Corpora Contain Human-Like Biases. Science 2017, 356, 183–186. [Google Scholar] [CrossRef]
- Zawacki-Richter, O.; Marín, V.I.; Bond, M.; Gouverneur, F. Systematic Review of Research on Artificial Intelligence Applications in Higher Education. Int. J. Educ. Technol. High. Educ. 2019, 16, 39. [Google Scholar] [CrossRef]
- Smith, J.; Brown, T.; Davis, R. Implementing AI Chatbots in Higher Education: A Case Study. J. High. Educ. Technol. 2023, 34, 65–70. [Google Scholar]
- Johnson, R.; Smith, K.; Lee, M. AI-Generated Questions in Medical Education: A Pilot Study. Med. Educ. J. 2023, 56, 44–49. [Google Scholar]
- Inside Universities’ Love-Hate Relationship with ChatGPT. The Wall Street Journal 2023. Available online: https://www.wsj.com (accessed on 16 March 2025).
- ChatGPT ya tiene plaza fija en la universidad: «Desde que lo uso, pienso menos por mí misma». El País 2024. Available online: https://elpais.com (accessed on 16 March 2025).
- Khan, S. The Role of AI in Personalized Learning. Khan Acad. Blog 2023. Available online: https://www.khanacademy.org (accessed on 16 March 2025).
- Subakan, C. , Ravanelli, M., Cornell, S., Bronzi, M., & Zhong, J. (2021, June). Attention is all you need in speech separation. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 21-25).
- Jumper, J.; Hassabis, D. Protein structure predictions to atomic accuracy with AlphaFold. Nature methods 2022, 19(1), 11–12. [Google Scholar] [CrossRef]
- Carleo, G.; Troyer, M. Solving the Quantum Many-Body Problem with Artificial Neural Networks. Science 2017, 355, 602–606. [Google Scholar] [CrossRef]
- Brunton, S.L.; Proctor, J.L.; Kutz, J.N. Discovering Governing Equations from Data by Sparse Identification of Nonlinear Dynamical Systems. Proc. Natl. Acad. Sci. USA 2016, 113, 3932–3937. [Google Scholar] [CrossRef]
- Segler, M.H.S.; Preuss, M.; Waller, M.P. Planning Chemical Syntheses with Deep Neural Networks and Symbolic AI. Nature 2018, 555, 604–610. [Google Scholar] [CrossRef]
- Perez, E.; Kiela, D.; Cho, K. True few-shot learning with language models. Advances in neural information processing systems 2021, 34, 11054–11070. [Google Scholar]
- Thoppilan, R.; De Freitas, D.; Hall, J.; et al. LaMDA: Language Models for Dialog Applications. arXiv arXiv:2201.08239, 2022.
- Yotsumoto, Y.; Nakajima, Y.; Takamoto, R.; et al. Autonomous Robotic Experimentation System for Powder X-ray Diffraction. Digit. Discov. 2024, 3, 2523–2532. [Google Scholar] [CrossRef]
- Cui, Z.; Li, N.; Zhou, H. Can AI Replace Human Subjects? arXiv arXiv:2409.00128, 2024.
- Bolukbasi, T.; Chang, K.-W.; Zou, J.Y.; et al. Man Is to Computer Programmer as Woman Is to Homemaker? Debiasing Word Embeddings. Adv. Neural Inf. Process. Syst. 2016, 29, 4349–4357. [Google Scholar]
- Arseniev-Koehler, A.; Foster, J.G. Machine learning as a model for cultural learning: Teaching an algorithm what it means to be fat. Sociological Methods & Research 2022, 51, 1484–1539. [Google Scholar]
- Lin, S.; Hilton, J.; Evans, O. TruthfulQA: Measuring How Models Mimic Human Falsehoods. Proc. ACL 2022, 1, 3214–3252. [Google Scholar]
- Huang, L.; Yu, W.; Ma, W.; et al. A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions. ACM Trans. Inf. Syst. 2025, 43, 1–55. [Google Scholar] [CrossRef]
- Frieder, S.; Pinzuti, A.; Akbulut, L.; et al. Mathematical Capabilities of ChatGPT. PNAS Nexus 2023, 2, pgad258. [Google Scholar]
- Wei, J.; Tay, Y.; Bommasani, R.; et al. Emergent Abilities of Large Language Models. Trans. Mach. Learn. Res. 2022, 1, 1–25. [Google Scholar]
- Ganguli, D.; Lovitt, L.; Kernion, J.; et al.; The Capacity for Moral Self-Correction in Large Language Models Anthropic 2023. Available online: https://www.anthropic.com (accessed on 16 March 2025).
- Wani, A.G.; Astunkar, G.S. Open Artificial Intelligence (AI) of ChatGPT for Library Services and Library Science Professionals. Libr. Sch. 2024, 4, 1–12. [Google Scholar]
- Wei, Z.; Guo, D.; Huang, D.; Zhang, Q.; Zhang, S.; Jiang, K.; Li, R. Detecting and Mitigating the Ungrounded Hallucinations in Text Generation by LLMs. Proc. Int. Conf. Artif. Intell. Syst. Netw. Secur. 2023, 77–81. [Google Scholar]
- Freedman, J. D. , & Nappier, I. A. (2023). GPT-4 to GPT-3.5:'Hold My Scalpel'--A Look at the Competency of OpenAI's GPT on the Plastic Surgery In-Service Training Exam. arXiv:2304.01503.
- Mu, Y.; Bai, P.; Bontcheva, K.; Song, X. Addressing Topic Granularity and Hallucination in Large Language Models for Topic Modelling. arXiv arXiv:2405.00611, 2024.
- Gil, Y.; Baker, D.; de Melo, G.; et al. AI-Assisted Meta-Analysis of Permafrost Studies. Environ. Res. Lett. 2023, 18, 075001. [Google Scholar]
- Bhattacharya, A.; Kumar, S. Cross-Disciplinary Modeling of Biogeochemical Cycles. Nat. Comput. Sci. 2023, 12, 45–59. [Google Scholar]
- Chemaya, N. , & Martin, D. ( 19(7), e0304807.
- Smith, J.; Patel, R.; Kim, H. Enhancing Perovskite Solar Cell Papers with NLP. Adv. Mater. 2023, 35, 2208912. [Google Scholar]
- Jung, I. Pathways to International Publication in the Social Sciences: A Guide for Early Career and Non-Native English Researchers. Springer Nature, 2024.
- Myers, A.; AI-Detectors Biased Against Non-Native English Writers. Stanford HAI Blog 2023. Available online: https://hai.stanford.edu (accessed on 16 March 2025).
- Rosen, B. P. , Li, Q. V., Cho, H. S., Liu, D., Yang, D., Graff, S.,... & Huangfu, D. (2024). Parallel genome-scale CRISPR-Cas9 screens uncouple human pluripotent stem cell identity versus fitness. Nature Communications, 15(1), 8966.
- Thompson, E. The Ethics of AI in Publishing. Science 2023, 381, 124–125. [Google Scholar]
- Wang, Q.; Liu, F.; Zhang, T. AI in Scientific Workflows. Nat. Rev. Methods Prim. 2024, 4, 12. [Google Scholar]
- López, G.; Martínez, J.; García, R. Human-AI Collaboration Frameworks. Proc. Natl. Acad. Sci. USA 2023, 120, e2216237120. [Google Scholar]
- Lehr, S.A.; Caliskan, A.; Liyanage, S.; Banaji, M.R. ChatGPT as Research Scientist: Probing GPT’s Capabilities as a Research Librarian, Research Ethicist, Data Generator, and Data Predictor. Proc. Natl. Acad. Sci. USA 2024, 121, e2404328121. [Google Scholar] [CrossRef] [PubMed]
- Zashikhina, I.M. Preparing a Scientific Article: Can ChatGPT Handle It? High. Educ. Russ. 2023, 32, 24–47. [Google Scholar] [CrossRef]
- Khlaif, Z.N.; Mousa, A.; Hattab, M.K.; et al. The Potential and Concerns of Using AI in Scientific Research: ChatGPT Performance Evaluation. JMIR Med. Educ. 2023, 9, e47049. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y. Can an Artificial Intelligence Chatbot Be the Author of a Scholarly Article? J. Educ. Eval. Health Prof. 2023, 20, 6. [Google Scholar] [CrossRef]
- Chen, T.J. ChatGPT and Other AI Applications Speed Up Scientific Writing. J. Chin. Med. Assoc. 2023, 86, 351–353. [Google Scholar] [CrossRef]
- Altmäe, S.; Sola-Leyva, A.; Salumets, A. Artificial Intelligence in Scientific Writing: A Friend or a Foe? Reprod. Biomed. Online 2023, 47, 3–9. [Google Scholar] [CrossRef]
- Neumeister, L.; Lawyers Blame ChatGPT for Tricking Them into Citing Bogus Case Law. Associated Press News 2023. Available online: https://apnews.com (accessed on 16 March 2025).
- Tlili, A. , & Solans, D. B. (2025). Ai hallucinations? what about human hallucination?!: Addressing human imperfection is needed for an ethical AI. IJIMAI.
- Kacena, M.A.; Plotkin, L.I.; Fehrenbacher, J.C. The Use of Artificial Intelligence in Writing Scientific Review Articles. Curr. Osteoporos. Rep. 2024, 22, 115–121. [Google Scholar] [CrossRef]
- Athaluri, S.A.; Manthena, S.V.; Kesapragada, V.; et al. Exploring the Boundaries of Reality: Investigating the Phenomenon of Artificial Intelligence Hallucination in Scientific Writing through ChatGPT References. Cureus 2023, 15, e37432. [Google Scholar] [CrossRef] [PubMed]
- Korteling, J.E.H.; van de Boer-Visschedijk, G.C.; Bosse, T. Human- versus Artificial Intelligence. Front. Artif. Intell. 2021, 4, 622364. [Google Scholar] [CrossRef]
- Gao, C.A.; Howard, F.M.; Markov, N.S.; et al. Comparing Scientific Abstracts Generated by ChatGPT to Real Abstracts. NPJ Digit. Med. 2023, 6, 75. [Google Scholar] [CrossRef]
- Karnik, S.J.; Margetts, T.J.; Wang, H.S.; et al. Mind the Gap: Unraveling the Intricate Dance Between Alzheimer’s Disease and Related Dementias and Bone Health. Curr. Osteoporos. Rep. 2024, 22, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Li, Z. (2023). The dark side of chatgpt: Legal and ethical challenges from stochastic parrots and hallucination. arXiv:2304.14347.
- Weidinger, L.; Mellor, J.; Rauh, M.; et al. Ethical and Social Risks of Harm from Language Models. ACM Comput. Surv. 2022, 55, 1–38. [Google Scholar]
- Park, Y. J. , Kaplan, D., Ren, Z., Hsu, C. W., Li, C., Xu, H.,... & Li, J. (2024). Can ChatGPT be used to generate scientific hypotheses?. Journal of Materiomics, 10(3), 578-584.
- Dehouche, N. (2021). Plagiarism in the age of massive Generative Pre-trained Transformers (GPT-3). Ethics in Science and Environmental Politics, 21, 17-23.
- Dale, R. GPT-3: What’s It Good For? Nat. Lang. Eng. 2021, 27, 113–118. [Google Scholar] [CrossRef]
- Bommasani, R.; Hudson, D.A.; Adeli, E.; et al. On the Opportunities and Risks of Foundation Models. arXiv arXiv:2108.07258, 2021.
- Aithal, S. , & Aithal, P. S. (2023). Effects of AI-based ChatGPT on higher education libraries. International Journal of Management, Technology, and Social Sciences (IJMTS), 8(2), 95-108.
- McGee, J. The Future of Academic Integrity in the Age of AI. J. Acad. Ethics 2023, 21, 1–15. [Google Scholar]
- Yan, D. , Fauss, M., Hao, J., & Cui, W. (2023). Detection of AI-generated essays in writing assessments. Psychological Test and Assessment Modeling, 65(1), 125-144.
- Cotton, D.R.E.; Cotton, P.A.; Shipway, J.R. ChatGPT, AI, and the Educational Landscape: Disruptions and Ethical Challenges. Teach. High. Educ. 2023, 28, 1–18. [Google Scholar]
- Brundage, M.; Avin, S.; Clark, J.; et al. Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable Claims. arXiv arXiv:2206.05838, 2022.
- OpenAI. ChatGPT and Data Privacy: Risks and Recommendations. 2023. Available online: https://openai.com (accessed on 16 March 2025).
- U.S. Copyright Office. AI-Generated Content and Copyright Law: Policy Considerations. 2023. Available online: https://copyright.gov (accessed on 16 March 2025).
- Marcus, G.; Davis, E. AI and Scientific Discovery: Where Do We Stand? AI Mag. 2022, 43, 1–12. [Google Scholar]
- Mitchell, M.; Krakauer, D.C. AI Alignment and the Challenges of Updating Language Models. AI Alignment Res. J. 2023, 1, 1–25. [Google Scholar]
- Lipton, Z.C. The Mythos of Model Interpretability. ACM Queue 2018, 16, 31–57. [Google Scholar] [CrossRef]
- Dwivedi, Y. K. , Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K.,... & Wright, R. (2023). Opinion Paper:“So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International journal of information management, 71, 102642.
- Cotton, D.R.E.; Cotton, P.A.; Shipway, J.R. Chatting and Cheating: Ensuring Academic Integrity in the Era of ChatGPT. Innov. Educ. Teach. Int. 2023, 60, 1–10. [Google Scholar] [CrossRef]
- Spitale, G. , Biller-Andorno, N., & Germani, F. (2023). AI model GPT-3 (dis) informs us better than humans. Science Advances, 9(26), eadh1850.
- Gallegos, I. O. , Rossi, R. A., Barrow, J., Tanjim, M. M., Kim, S., Dernoncourt, F.,... & Ahmed, N. K. (2024). Bias and fairness in large language models: A survey. Computational Linguistics, 50(3), 1097-1179.
- Akgun, S.; Greenhow, C. Artificial Intelligence in Education: Addressing Ethical Challenges in K-12 Settings. AI Ethics 2022, 2, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Bond, M. , Khosravi, H., De Laat, M., Bergdahl, N., Negrea, V., Oxley, E.,... & Siemens, G. (2024). A meta systematic review of artificial intelligence in higher education: A call for increased ethics, collaboration, and rigour. International Journal of Educational Technology in Higher Education, 21(1), 4.
- Stokel-Walker, C. ChatGPT Listed as Author on Research Papers: Many Scientists Disapprove. Nature 2023, 613, 620–621. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, M.; Horbach, S.P.J.M. Ethics of ChatGPT in Academia: A Call for Global Regulations. Res. Ethics 2023, 19, 1–14. [Google Scholar]
- Dhamala, J., Sun, T., Kumar, V., Krishna, S., Pruksachatkun, Y., Chang, K. W., & Gupta, R. (2021, March). Bold: Dataset and metrics for measuring biases in open-ended language generation. In Proceedings of the 2021 ACM conference on fairness, accountability, and transparency (pp. 862-872).
- Zawacki-Richter, O.; Lück, M. The Impact of Artificial Intelligence on Education; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Popović, L.; Zrnić, D. Machine Translation for Academic Purposes: Benefits and Limitations. J. Educ. Technol. Soc. 2019, 22, 118–127. [Google Scholar]
- Binns, R.; Kuipers, B. Artificial Intelligence and Academic Integrity: Challenges and Solutions. AI Ethics 2022, 1, 45–58. [Google Scholar]
- Sweeney, L. Discrimination in Online Ad Delivery. ACM Trans. Internet Technol. 2020, 10, 40–52. [Google Scholar]
- De Masi, G.; Grasso, G. The Future of AI in Academic Research: Challenges and Opportunities. J. Res. Comput. 2023, 34, 85–98. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
