Submitted:
19 March 2025
Posted:
20 March 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Atmospheric Circulation of MPs
3. Influence of Rain on Atmospheric MPS
4. Aerosols and MPS
4.1. Ocean Spray
4.2. Anthropogenic Aerosols
4.3. Air Conditioning
4.4. Steam
4.5. Paint Sprays
4.6. Body Sprays
4.7. Agricultural Sprays
4.8. Industrial Procedures
5. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Dris, R.; Gasperi, J.; Rocher, V.; Saad, M.; Renault, N.; Tassin, B. Microplastic contamination in an urban area: a case study in Greater Paris. Environ. Chem. 2015, 12, 592–599. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Saad, M.; Mirande, C.; Tassin, B. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Mar. Pollut. Bull. 2016, 104, 290–293. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Fu, Z.; Yang, H.; Wang, J. An overview of analytical methods for detecting microplastics in the atmosphere. TrAC Trends Anal. Chem. 2020, 130. [Google Scholar] [CrossRef]
- Fang, C.; Awoyemi, O.S.; Saianand, G.; Xu, L.; Niu, J.; Naidu, R. Characterising microplastics in indoor air: Insights from Raman imaging analysis of air filter samples. J. Hazard. Mater. 2023, 464, 132969. [Google Scholar] [CrossRef]
- Luo, Y.; Awoyemi, O.; Liu, S.; Niu, J.; Naidu, R.; Fang, C. From celebration to contamination: Analysing microplastics released by burst balloons. J. Hazard. Mater. 2023, 464, 133021. [Google Scholar] [CrossRef]
- Liu, Z.; Nowack, B. Probabilistic material flow analysis and emissions modeling for five commodity plastics (PUR, ABS, PA, PC, and PMMA) as macroplastics and microplastics✰. Resour. Conserv. Recycl. 2022, 179, 106071. [Google Scholar] [CrossRef]
- Evangeliou, N.; Tichý, O.; Eckhardt, S.; Zwaaftink, C.G.; Brahney, J. Sources and fate of atmospheric microplastics revealed from inverse and dispersion modelling: From global emissions to deposition. J. Hazard. Mater. 2022, 432, 128585. [Google Scholar] [CrossRef]
- Wang, T.; Zou, X.; Li, B.; Yao, Y.; Li, J.; Hui, H.; Yu, W.; Wang, C. Microplastics in a wind farm area: A case study at the Rudong Offshore Wind Farm, Yellow Sea, China. Mar. Pollut. Bull. 2018, 128, 466–474. [Google Scholar] [CrossRef]
- Allen, S.; Allen, D.; Phoenix, V.R.; Le Roux, G.; Jiménez, P.D.; Simonneau, A.; Binet, S.; Galop, D. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 2019, 12, 339–344. [Google Scholar] [CrossRef]
- Wang, T.; Zou, X.; Li, B.; Yao, Y.; Li, J.; Hui, H.; Yu, W.; Wang, C. Microplastics in a wind farm area: A case study at the Rudong Offshore Wind Farm, Yellow Sea, China. Mar. Pollut. Bull. 2018, 128, 466–474. [Google Scholar] [CrossRef]
- Klein, M.; Fischer, E.K. Microplastic abundance in atmospheric deposition within the Metropolitan area of Hamburg, Germany. Sci. Total. Environ. 2019, 685, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Brahney, J.; Hallerud, M.; Heim, E.; Hahnenberger, M.; Sukumaran, S. Plastic rain in protected areas of the United States. Science 2020, 368, 1257–1260. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, M.; Mützel, S.; Primpke, S.; Tekman, M.B.; Trachsel, J.; Gerdts, G. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci. Adv. 2019, 5, eaax1157. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Wang, J.; Peng, J.; Tan, Z.; Zhan, Z.; Tan, X.; Chen, Q. Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: preliminary research and first evidence. Environ. Sci. Pollut. Res. 2017, 24, 24928–24935. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Mirande, C.; Mandin, C.; Guerrouache, M.; Langlois, V.; Tassin, B. A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ. Pollut. 2017, 221, 453–458. [Google Scholar] [CrossRef]
- Wright, S.; Ulke, J.; Font, A.; Chan, K.; Kelly, F. Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environ. Int. 2020, 136, 105411. [Google Scholar] [CrossRef]
- Boucher, J., Friot, D. Primary Microplastics in the Oceans: A Global Evaluation of Sources; IUCN: Gland, Switzerland, 2017: 43.
- Xu C, Zhang B, Gu C, Shen, C., Yin, S., et al. Are we underestimating the sources of microplastic pollution in terrestrial environment? J Hazard Mater 2020; 400: 123228.
- Siegfried, M.; Koelmans, A.A.; Besseling, E.; Kroeze, C. Export of microplastics from land to sea. A modelling approach. Water Res. 2017, 127, 249–257. [Google Scholar] [CrossRef]
- Barboza, L.G.A.; Gimenez, B.C.G. Microplastics in the marine environment: Current trends and future perspectives. Mar. Pollut. Bull. 2015, 97, 5–12. [Google Scholar] [CrossRef]
- Cózar, A.; Echevarría, F.; González-Gordillo, J.I.; Irigoien, X.; Úbeda, B.; Hernández-León, S.; Palma, Á.T.; Navarro, S.; García-De-Lomas, J.; Ruiz, A.; et al. Plastic debris in the open ocean. Proc. Natl. Acad. Sci. USA 2014, 111, 10239–10244. [Google Scholar] [CrossRef]
- Hale, R.C.; Seeley, M.E.; La Guardia, M.J.; Mai, L.; Zeng, E.Y. A Global Perspective on Microplastics. J. Geophys. Res. Oceans 2020, 125, e2018JC014719. [Google Scholar] [CrossRef]
- Zarfl, C.; Fleet, D.; Fries, E.; Galgani, F.; Gerdts, G.; Hanke, G.; Matthies, M. Microplastics in oceans. Mar. Pollut. Bull. 2011, 62, 1589–1591. [Google Scholar] [CrossRef] [PubMed]
- Zhang K, Hamidian AH, Tubi´c A, Zhang Y, Fang JKH, et al. Understanding plastic degradation and microplastic formation in the environment: A review. Environ Pollut 2021; 274: 116554.
- Napper, I.E.; Davies, B.F.; Clifford, H.; Elvin, S.; Koldewey, H.J.; Mayewski, P.A.; Miner, K.R.; Potocki, M.; Elmore, A.C.; Gajurel, A.P.; et al. Reaching New Heights in Plastic Pollution—Preliminary Findings of Microplastics on Mount Everest. One Earth 2020, 3, 621–630. [Google Scholar] [CrossRef]
- Aves, A.R.; Revell, L.E.; Gaw, S.; Ruffell, H.; Schuddeboom, A.; Wotherspoon, N.E.; LaRue, M.; McDonald, A.J. First evidence of microplastics in Antarctic snow. Cryosphere 2022, 16, 2127–2145. [Google Scholar] [CrossRef]
- Adams, J.K.; Dean, B.Y.; Athey, S.N.; Jantunen, L.M.; Bernstein, S.; Stern, G.; Diamond, M.L.; Finkelstein, S.A. Anthropogenic particles (including microfibers and microplastics) in marine sediments of the Canadian Arctic. Sci. Total. Environ. 2021, 784, 147155. [Google Scholar] [CrossRef]
- Huntington, A.; Corcoran, P.L.; Jantunen, L.; Thaysen, C.; Bernstein, S.; Stern, G.A.; Rochman, C.M. A first assessment of microplastics and other anthropogenic particles in Hudson Bay and the surrounding eastern Canadian Arctic waters of Nunavut. FACETS 2020, 5, 432–454. [Google Scholar] [CrossRef]
- Liu, K.; Wu, T.; Wang, X.; Song, Z.; Zong, C.; Wei, N.; Li, D. Consistent Transport of Terrestrial Microplastics to the Ocean through Atmosphere. Environ. Sci. Technol. 2019, 53, 10612–10619. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.; Liu, K.; Zhu, L.; Song, Z.; Li, D. Atmospheric microplastic over the South China Sea and East Indian Ocean: abundance, distribution and source. J. Hazard. Mater. 2020, 389, 121846. [Google Scholar] [CrossRef]
- Yang, H.; He, Y.; Yan, Y.; Junaid, M.; Wang, J. Characteristics, Toxic Effects, and Analytical Methods of Microplastics in the Atmosphere. Nanomaterials 2021, 11, 2747. [Google Scholar] [CrossRef]
- Li, Y.; Shao, L.; Wang, W.; Zhang, M.; Feng, X.; Li, W.; Zhang, D. Airborne fiber particles: Types, size and concentration observed in Beijing. Sci. Total. Environ. 2020, 705, 135967. [Google Scholar] [CrossRef]
- Stubbins, A.; Law, K.L.; Muñoz, S.E.; Bianchi, T.S.; Zhu, L. Plastics in the Earth system. Science 2021, 373, 51–55. [Google Scholar] [CrossRef]
- Szewc, K.; Graca, B.; Dołęga, A. Atmospheric deposition of microplastics in the coastal zone: Characteristics and relationship with meteorological factors. Sci. Total. Environ. 2021, 761, 143272. [Google Scholar] [CrossRef]
- Gouin, T. Addressing the importance of microplastic particles as vectors for long-range transport of chemical contaminants: perspective in relation to prioritizing research and regulatory actions. Microplastics Nanoplastics 2021, 1, 1–19. [Google Scholar] [CrossRef]
- Ferrero, L.; Scibetta, L.; Markuszewski, P.; Mazurkiewicz, M.; Drozdowska, V.; Makuch, P.; Jutrzenka-Trzebiatowska, P.; Zaleska-Medynska, A.; Andò, S.; Saliu, F.; et al. Airborne and marine microplastics from an oceanographic survey at the Baltic Sea: An emerging role of air-sea interaction? Sci. Total. Environ. 2022, 824, 153709. [Google Scholar] [CrossRef]
- Huang, Y.; He, T.; Yan, M.; Yang, L.; Gong, H.; Wang, W.; Qing, X.; Wang, J. Atmospheric transport and deposition of microplastics in a subtropical urban environment. J. Hazard. Mater. 2021, 416, 126168. [Google Scholar] [CrossRef]
- Evangeliou, N.; Grythe, H.; Klimont, Z.; Heyes, C.; Eckhardt, S.; Lopez-Aparicio, S.; Stohl, A. Atmospheric transport is a major pathway of microplastics to remote regions. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef]
- Ding, Y.; Zou, X.; Wang, C.; Feng, Z.; Wang, Y.; Fan, Q.; Chen, H. The abundance and characteristics of atmospheric microplastic deposition in the northwestern South China Sea in the fall. Atmospheric Environ. 2021, 253. [Google Scholar] [CrossRef]
- Fu, Y.; Pang, Q.; Ga, S.L.Z.; Wu, P.; Wang, Y.; Mao, M.; Yuan, Z.; Xu, X.; Liu, K.; Wang, X.; et al. Modeling atmospheric microplastic cycle by GEOS-Chem: An optimized estimation by a global dataset suggests likely 50 times lower ocean emissions. One Earth 2023, 6, 705–714. [Google Scholar] [CrossRef]
- Can-Güven, E. Microplastics as emerging atmospheric pollutants: a review and bibliometric analysis. Air Qual. Atmosphere Heal. 2020, 14, 203–215. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, J.; Zhu, F.; Zhou, S. Airborne Microplastics: A Review on the Occurrence, Migration and Risks to Humans. Bull. Environ. Contam. Toxicol. 2021, 107, 657–664. [Google Scholar] [CrossRef]
- Beaurepaire, M.; Dris, R.; Gasperi, J.; Tassin, B. Microplastics in the atmospheric compartment: a comprehensive review on methods, results on their occurrence and determining factors. Curr. Opin. Food Sci. 2021, 41, 159–168. [Google Scholar] [CrossRef]
- Yao X, Luo XS, Fan J, Zhang T, Li H et al. Ecological and human health risks of atmospheric microplastics (MPs): a review. Environ Sci: Atmos 2022. [CrossRef]
- Jahandari, A. Microplastics in the urban atmosphere: Sources, occurrences, distribution, and potential health implications. J. Hazard. Mater. Adv. 2023, 12, 100346. [Google Scholar] [CrossRef]
- Yoon, Y.H.; Brimblecombe, P. Clothing as a source of fibres within museums. J. Cult. Heritage 2000, 1, 445–454. [Google Scholar] [CrossRef]
- Gaylarde, C.; Baptista-Neto, J.A.; da Fonseca, E.M. Plastic microfibre pollution: how important is clothes’ laundering? Heliyon 2021, 7, e07105. [Google Scholar] [CrossRef]
- Lim, J.; Choi, J.; Won, A.; Kim, M.; Kim, S.; Yun, C. Cause of microfibers found in the domestic washing process of clothing; focusing on the manufacturing, wearing, and washing processes. Fash. Text. 2022, 9, 1–14. [Google Scholar] [CrossRef]
- Jenner, L.C.; Sadofsky, L.R.; Danopoulos, E.; Chapman, E.; White, D.; Jenkins, R.L.; Rotchell, J.M. Outdoor Atmospheric Microplastics within the Humber Region (United Kingdom): Quantification and Chemical Characterisation of Deposited Particles Present. Atmosphere 2022, 13, 265. [Google Scholar] [CrossRef]
- Vujanović, A.; Puhar, J.; Čolnik, M.; Plohl, O.; Vidovič, T.; Valh, J.V.; Škerget, M.; Čuček, L. Sustainable industrial ecology and environmental analysis: A case of melamine etherified resin fibres. J. Clean. Prod. 2022, 369, 133301. [Google Scholar] [CrossRef]
- Hitchcock, J.N. Storm events as key moments of microplastic contamination in aquatic ecosystems. Sci. Total. Environ. 2020, 734, 139436. [Google Scholar] [CrossRef]
- Wei, Y.; Dou, P.; Xu, D.; Zhang, Y.; Gao, B. Microplastic reorganization in urban river before and after rainfall. Environ. Pollut. 2022, 314, 120326. [Google Scholar] [CrossRef]
- Chen, Y., Niu, J., Xu, D., Zhang, M., Sun, K., et al. Wet Deposition of Globally Transportable Microplastics (<25 μm) Hovering over the Megacity of Beijing. Environ Sci Technol 2023. [CrossRef]
- Do, T.; Park, Y.; Lim, B.; Kim, S.; Chae, M.-Y.; Chun, C.-H. Effect of the first-flush phenomenon on the quantification of microplastics in rainwater. Mar. Pollut. Bull. 2023, 187, 114559. [Google Scholar] [CrossRef]
- Imbulana, S.; Tanaka, S.; Moriya, A.; Oluwoye, I. Inter-event and intra-event dynamics of microplastic emissions in an urban river during rainfall episodes. Environ. Res. 2023, 243, 117882. [Google Scholar] [CrossRef]
- Allen, S.; Materić, D.; Allen, D.; MacDonald, A.; Holzinger, R.; Le Roux, G.; Phoenix, V.R. An early comparison of nano to microplastic mass in a remote catchment's atmospheric deposition. J. Hazard. Mater. Adv. 2022, 7. [Google Scholar] [CrossRef]
- Napper, I.; Parker-Jurd, F.; Wright, S.; Thompson, R. Examining the release of synthetic microfibres to the environment via two major pathways: Atmospheric deposition and treated wastewater effluent. Sci. Total. Environ. 2022, 857, 159317. [Google Scholar] [CrossRef]
- Kernchen, S.; Schmalz, H.; Löder, M.G.J.; Georgi, C.; Einhorn, A.; Greiner, A.; Nölscher, A.C.; Laforsch, C.; Held, A. Atmospheric deposition studies of microplastics in Central Germany. Air Qual. Atmosphere Heal. 2024, 17, 2247–2261. [Google Scholar] [CrossRef]
- Kernchen, S.; Löder, M.G.; Fischer, F.; Fischer, D.; Moses, S.R.; Georgi, C.; Nölscher, A.C.; Held, A.; Laforsch, C. Airborne microplastic concentrations and deposition across the Weser River catchment. Sci. Total. Environ. 2022, 818, 151812. [Google Scholar] [CrossRef]
- Edo, C.; Fernández-Piñas, F.; Leganes, F.; Gómez, M.; Martínez, I.; Herrera, A.; Hernández-Sánchez, C.; González-Sálamo, J.; Borges, J.H.; López-Castellanos, J.; et al. A nationwide monitoring of atmospheric microplastic deposition. Sci. Total. Environ. 2023, 905, 166923. [Google Scholar] [CrossRef]
- Welsh, B.; Aherne, J.; Paterson, A.M.; Yao, H.; McConnell, C. Atmospheric deposition of anthropogenic particles and microplastics in south-central Ontario, Canada. Sci. Total. Environ. 2022, 835, 155426. [Google Scholar] [CrossRef]
- Liu, Z.; Bai, Y.; Ma, T.; Liu, X.; Wei, H.; Meng, H.; Fu, Y.; Ma, Z.; Zhang, L.; Zhao, J. Distribution and possible sources of atmospheric microplastic deposition in a valley basin city (Lanzhou, China). Ecotoxicol. Environ. Saf. 2022, 233, 113353. [Google Scholar] [CrossRef]
- Sun, J.; Peng, Z.; Zhu, Z.-R.; Fu, W.; Dai, X.; Ni, B.-J. The atmospheric microplastics deposition contributes to microplastic pollution in urban waters. Water Res. 2022, 225, 119116. [Google Scholar] [CrossRef]
- Li, J.; Zhang, J.; Ren, S.; Huang, D.; Liu, F.; Li, Z.; Zhang, H.; Zhao, M.; Cao, Y.; Mofolo, S.; et al. Atmospheric deposition of microplastics in a rural region of North China Plain. Sci. Total. Environ. 2023, 877, 162947. [Google Scholar] [CrossRef]
- Zhang, R.; Jia, X.; Wang, K.; Lu, L.; Li, F.; Li, J.; Xu, L. Characteristics, sources and influencing factors of atmospheric deposition of microplastics in three different ecosystems of Beijing, China. Sci. Total. Environ. 2023, 883, 163567. [Google Scholar] [CrossRef]
- Purwiyanto, A.I.S.; Prartono, T.; Riani, E.; Naulita, Y.; Cordova, M.R.; Koropitan, A.F. The deposition of atmospheric microplastics in Jakarta-Indonesia: The coastal urban area. Mar. Pollut. Bull. 2022, 174, 113195. [Google Scholar] [CrossRef] [PubMed]
- Parashar, N.; Hait, S. Plastic rain—Atmospheric microplastics deposition in urban and peri-urban areas of Patna City, Bihar, India: Distribution, characteristics, transport, and source analysis. J. Hazard. Mater. 2023, 458, 131883. [Google Scholar] [CrossRef]
- Truong, T.-N.; Strady, E.; Kieu-Le, T.-C.; Tran, Q.-V.; Le, T.-M.; Thuong, Q.-T. Microplastic in atmospheric fallouts of a developing Southeast Asian megacity under tropical climate. Chemosphere 2021, 272, 129874. [Google Scholar] [CrossRef]
- Li, J.; Zhang, J.; Ren, S.; Huang, D.; Liu, F.; Li, Z.; Zhang, H.; Zhao, M.; Cao, Y.; Mofolo, S.; et al. Atmospheric deposition of microplastics in a rural region of North China Plain. Sci. Total. Environ. 2023, 877, 162947. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, R.; Niu, T.; Liu, Y. Using street view images and a geographical detector to understand how street-level built environment is associated with urban poverty: A case study in Guangzhou. Appl. Geogr. 2023, 156, 102980. [Google Scholar] [CrossRef]
- Amato-Lourenço, L.F.; Galvão, L.d.S.; Wiebeck, H.; Carvalho-Oliveira, R.; Mauad, T. Atmospheric microplastic fallout in outdoor and indoor environments in São Paulo megacity. Sci. Total. Environ. 2022, 821, 153450. [Google Scholar] [CrossRef]
- Jia, Q.; Duan, Y.; Han, X.; Sun, X.; Munyaneza, J.; Ma, J.; Xiu, G. Atmospheric deposition of microplastics in the megalopolis (Shanghai) during rainy season: Characteristics, influence factors, and source. Sci. Total. Environ. 2022, 847, 157609. [Google Scholar] [CrossRef]
- Jong, M.-C.; Tong, X.; Li, J.; Xu, Z.; Chng, S.H.Q.; He, Y.; Gin, K.Y.-H. Microplastics in equatorial coasts: Pollution hotspots and spatiotemporal variations associated with tropical monsoons. J. Hazard. Mater. 2022, 424, 127626. [Google Scholar] [CrossRef]
- Rezaei, M.; Riksen, M.J.; Sirjani, E.; Sameni, A.; Geissen, V. Wind erosion as a driver for transport of light density microplastics. Sci. Total. Environ. 2019, 669, 273–281. [Google Scholar] [CrossRef]
- Rezaei, M.; Riksen, M.J.; Sirjani, E.; Sameni, A.; Geissen, V. Wind erosion as a driver for transport of light density microplastics. Sci. Total. Environ. 2019, 669, 273–281. [Google Scholar] [CrossRef]
- Hu, T.; He, P.; Yang, Z.; Wang, W.; Zhang, H.; Shao, L.; Lü, F. Emission of airborne microplastics from municipal solid waste transfer stations in downtown. Sci. Total. Environ. 2022, 828, 154400. [Google Scholar] [CrossRef]
- Österlund, H., Blecken, G., Parashar, N., Hait, S. Plastic rain-Atmospheric microplastics deposition in urban and peri-urban areas of Patna City, Bihar, India: Distribution, characteristics, transport, and source analysis. J Haz Mats 2023; 131883. [CrossRef]
- Dong, H.; Wang, L.; Wang, X.; Xu, L.; Chen, M.; Gong, P.; Wang, C. Microplastics in a Remote Lake Basin of the Tibetan Plateau: Impacts of Atmospheric Transport and Glacial Melting. Environ. Sci. Technol. 2021, 55, 12951–12960. [Google Scholar] [CrossRef]
- Xia, W.; Rao, Q.; Deng, X.; Chen, J.; Xie, P. Rainfall is a significant environmental factor of microplastic pollution in inland waters. Sci. Total. Environ. 2020, 732, 139065. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.; Li, X.; Zhang, Y.; Gao, W.; Jiang, J.; Mo, A.; He, D. Size/shape-dependent migration of microplastics in agricultural soil under simulative and natural rainfall. Sci. Total. Environ. 2022, 815, 152507. [Google Scholar] [CrossRef]
- Wei, L.; Yue, Q.; Chen, G.; Wang, J. Microplastics in rainwater/stormwater environments: Influencing factors, sources, transport, fate, and removal techniques. TrAC Trends Anal. Chem. 2023, 165, 117147. [Google Scholar] [CrossRef]
- Abbasi, S.; Jaafarzadeh, N.; Zahedi, A.; Ravanbakhsh, M.; Abbaszadeh, S.; Turner, A. Microplastics in the atmosphere of Ahvaz City, Iran. J. Environ. Sci. 2022, 126, 95–102. [Google Scholar] [CrossRef]
- Beaurepaire, M.; Gasperi, J.; Tassin, B.; Dris, R. COVID lockdown significantly impacted microplastic bulk atmospheric deposition rates. Environ. Pollut. 2024, 344, 123354. [Google Scholar] [CrossRef]
- Perera, K.; Ziajahromi, S.; Nash, S.B.; Leusch, F.D. Microplastics in Australian indoor air: Abundance, characteristics, and implications for human exposure. Sci. Total. Environ. 2023, 889, 164292. [Google Scholar] [CrossRef]
- Wright, S.L.; Gouin, T.; Koelmans, A.A.; Scheuermann, L. Development of screening criteria for microplastic particles in air and atmospheric deposition: critical review and applicability towards assessing human exposure. Microplastics Nanoplastics 2021, 1, 1–18. [Google Scholar] [CrossRef]
- Uddin, S.; Fowler, S.W.; Habibi, N.; Sajid, S.; Dupont, S.; Behbehani, M. A Preliminary Assessment of Size-Fractionated Microplastics in Indoor Aerosol—Kuwait’s Baseline. Toxics 2022, 10, 71. [Google Scholar] [CrossRef]
- Huang, X.; Chen, Y.; Meng, Y.; Liu, G.; Yang, M. Are we ignoring the role of urban forests in intercepting atmospheric microplastics? J. Hazard. Mater. 2022, 436, 129096. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zulpiya, M.; Wang, P. Occurrence and sources of microplastics in dust of the Ebinur lake Basin, northwest China. Environ. Geochem. Heal. 2022, 45, 1461–1474. [Google Scholar] [CrossRef] [PubMed]
- Gaylarde, C.C.; Neto, J.A.B.; da Fonseca, E.M. Microplastics in the cryosphere - a potential time bomb? Water Emerg. Contam. Nanoplastics 2023, 2. [Google Scholar] [CrossRef]
- Lombardi G, Di Russo M, Zjalic D, Lanza T, Simmons M, Moscato U, Ricciardi W, Chiara. 2022. Microplastics inhalation and their effects on human health: a systematic review. Europ J Pub Health, 32(Supplement_3), pp.ckac131-152. [CrossRef]
- Geng, Y.; Zhang, Z.; Zhou, W.; Shao, X.; Li, Z.; Zhou, Y. Individual Exposure to Microplastics through the Inhalation Route: Comparison of Microplastics in Inhaled Indoor Aerosol and Exhaled Breath Air. Environ. Sci. Technol. Lett. 2023, 10, 464–470. [Google Scholar] [CrossRef]
- Borgatta, M.; Breider, F. Inhalation of Microplastics—A Toxicological Complexity. Toxics 2024, 12, 358. [Google Scholar] [CrossRef]
- Ageel, H.K.; Harrad, S.; Abdallah, M.A.-E. Microplastics in indoor air from Birmingham, UK: Implications for inhalation exposure. Environ. Pollut. 2024, 362, 124960. [Google Scholar] [CrossRef]
- Allen, S.; Allen, D.; Moss, K.; Le Roux, G.; Phoenix, V.R.; Sonke, J.E. Examination of the ocean as a source for atmospheric microplastics. PLOS ONE 2020, 15, e0232746. [Google Scholar] [CrossRef]
- Marks, R.; Górecka, E.; McCartney, K.; Borkowski, W. Rising bubbles as mechanism for scavenging and aerosolization of diatoms. J. Aerosol Sci. 2019, 128, 79–88. [Google Scholar] [CrossRef]
- Sofiev M, Soares J, Prank M, De Leeuw G, Kukkonen J. A regional-to-global model of emission and transport of sea salt particles in the atmosphere. J Geophys Res Atmos 2011, 116. [Google Scholar] [CrossRef]
- Erinin, M.A.; Wang, S.D.; Liu, R.; Towle, D.; Liu, X.; Duncan, J.H. Spray Generation by a Plunging Breaker. Geophys. Res. Lett. 2019, 46, 8244–8251. [Google Scholar] [CrossRef]
- Lehmann, M.; Häusl, F.P.; Gekle, S. Modeling of vertical microplastic transport by rising bubbles. Microplastics Nanoplastics 2023, 3, 1–6. [Google Scholar] [CrossRef]
- Lewis E., Schwartz S. Sea salt aerosol production: mechanisms, methods, measurements and models. Washington, USA: American Geophysical Union; 2004. ISBN 087590-417-3.
- Richter, D.H.; Veron, F. Ocean spray: An outsized influence on weather and climate. Phys. Today 2016, 69, 34–39. [Google Scholar] [CrossRef]
- O'Dowd, C.D.; de Leeuw, G. Marine aerosol production: a review of the current knowledge. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 2007, 365, 1753–1774. [Google Scholar] [CrossRef] [PubMed]
- Quinn, J.A.; Steinbrook, R.A.; Anderson, J.L. Breaking bubbles and the water-to-air transport of particulate matter. Chem. Eng. Sci. 1975, 30, 1177–1184. [Google Scholar] [CrossRef]
- Ganguly, M.; Ariya, P.A. Ice Nucleation of Model Nanoplastics and Microplastics: A Novel Synthetic Protocol and the Influence of Particle Capping at Diverse Atmospheric Environments. ACS Earth Space Chem. 2019, 3, 1729–1739. [Google Scholar] [CrossRef]
- Pósfai, M.; Li, J.; Anderson, J.R.; Buseck, P.R. Aerosol bacteria over the Southern Ocean during ACE-1. Atmospheric Res. 2003, 66, 231–240. [Google Scholar] [CrossRef]
- Reche, I.; D’orta, G.; Mladenov, N.; Winget, D.M.; A Suttle, C. Deposition rates of viruses and bacteria above the atmospheric boundary layer. ISME J. 2018, 12, 1154–1162. [Google Scholar] [CrossRef]
- Trainic, M.; Flores, J.M.; Pinkas, I.; Pedrotti, M.L.; Lombard, F.; Bourdin, G.; Gorsky, G.; Boss, E.; Rudich, Y.; Vardi, A.; et al. Airborne microplastic particles detected in the remote marine atmosphere. Commun. Earth Environ. 2020, 1, 1–9. [Google Scholar] [CrossRef]
- Noorimotlagh, Z.; Hopke, P.K.; Mirzaee, S.A. A systematic review of airborne microplastics emissions as emerging contaminants in outdoor and indoor air environments. Emerg. Contam. 2024, 10. [Google Scholar] [CrossRef]
- Aves, A.; Ruffell, H.; Evangeliou, N.; Gaw, S.; Revell, L.E. Modelled sources of airborne microplastics collected at a remote Southern Hemisphere site. Atmospheric Environ. 2024, 325. [Google Scholar] [CrossRef]
- Harb, C.; Pokhrel, N.; Foroutan, H. Quantification of the Emission of Atmospheric Microplastics and Nanoplastics via Sea Spray. Environ. Sci. Technol. Lett. 2023, 10, 513–519. [Google Scholar] [CrossRef]
- Bucci, S.; Richon, C.; Bakels, L. Exploring the Transport Path of Oceanic Microplastics in the Atmosphere. Environ. Sci. Technol. 2024, 58, 14338–14347. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Lu, X.; Wang, X. A Perspective on the Controversy over Global Emission Fluxes of Microplastics from Ocean into the Atmosphere. Environ. Sci. Technol. 2024, 58, 12304–12312. [Google Scholar] [CrossRef] [PubMed]
- Pedrotti, M.; Petit, S.; Eyheraguibel, B.; Kerros, M.; Elineau, A.; Ghiglione, J.; Loret, J.; Rostan, A.; Gorsky, G. Pollution by anthropogenic microfibers in North-West Mediterranean Sea and efficiency of microfiber removal by a wastewater treatment plant. Sci. Total. Environ. 2021, 758, 144195. [Google Scholar] [CrossRef]
- Tao, D.; Zhang, K.; Xu, S.; Lin, H.; Liu, Y.; Kang, J.; Yim, T.; Giesy, J.P.; Leung, K.M.Y. Microfibers Released into the Air from a Household Tumble Dryer. Environ. Sci. Technol. Lett. 2022, 9, 120–126. [Google Scholar] [CrossRef]
- Salthammer, T. Microplastics and their Additives in the Indoor Environment. Angew. Chem. Int. Ed. Engl. 2022, 61, e202205713. [Google Scholar] [CrossRef]
- Aini, S.A.; Syafiuddin, A.; Bent, G.-A. presence of microplastics in air environment and their potential impacts on health. Environ. Toxicol. Manag. 2022, 2, 31–39. [Google Scholar] [CrossRef]
- Choi, H.; Lee, I.; Kim, H.; Park, J.; Cho, S.; Oh, S.; Lee, M.; Kim, H. Comparison of Microplastic Characteristics in the Indoor and Outdoor Air of Urban Areas of South Korea. Water, Air, Soil Pollut. 2022, 233, 1–10. [Google Scholar] [CrossRef]
- Sobhani, Z.; Lei, Y.; Tang, Y.; Wu, L.; Zhang, X.; Naidu, R.; Megharaj, M.; Fang, C. Microplastics generated when opening plastic packaging. Sci. Rep. 2020, 10, 123807. [Google Scholar] [CrossRef]
- Prasittisopin, L.; Ferdous, W.; Kamchoom, V. Microplastics in construction and built environment. Dev. Built Environ. 2023, 15. [Google Scholar] [CrossRef]
- Chen, E.-Y.; Lin, K.-T.; Jung, C.-C.; Chang, C.-L.; Chen, C.-Y. Characteristics and influencing factors of airborne microplastics in nail salons. Sci. Total. Environ. 2022, 806, 151472. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Ji, X.; Ma, Y.; Lv, B.; Huang, W.; Zhu, X.; Fang, M.; Wang, Q.; Wang, X.; Dahlgren, R.; et al. Airborne microplastics in indoor and outdoor environments of a coastal city in Eastern China. J. Hazard. Mater. 2021, 417, 126007. [Google Scholar] [CrossRef] [PubMed]
- Jenner, L.C.; Sadofsky, L.R.; Danopoulos, E.; Rotchell, J.M. Household indoor microplastics within the Humber region (United Kingdom): Quantification and chemical characterisation of particles present. Atmospheric Environ. 2021, 259, 118512. [Google Scholar] [CrossRef]
- Boakes, L.C.; Patmore, I.R.; Bancone, C.E.P.; Rose, N.L. High temporal resolution records of outdoor and indoor airborne microplastics. Environ. Sci. Pollut. Res. 2023, 30, 39246–39257. [Google Scholar] [CrossRef]
- Rasmussen, L.A.; Lykkemark, J.; Andersen, T.R.; Vollertsen, J. Permeable pavements: A possible sink for tyre wear particles and other microplastics? Sci. Total. Environ. 2023, 869, 161770. [Google Scholar] [CrossRef]
- Burghardt, T.E.; Pashkevich, A.; Mosböck, H.; Babić, D.; Żakowska, L. Microplastics and road markings: the role of glass beads and loss estimation. Transp. Res. Part D: Transp. Environ. 2022, 102, 103123. [Google Scholar] [CrossRef]
- Kallenbach EM, Rødland ES, Buenaventura NT, Hurley R Microplastics in terrestrial and freshwater environments. In: Microplastic in the environment: Pattern and process,, Bank, MS (ed.), p.87. 030-78627-4 (eBook), Springer 2022. [CrossRef]
- Hu, T.; He, P.; Yang, Z.; Wang, W.; Zhang, H.; Shao, L.; Lü, F. Emission of airborne microplastics from municipal solid waste transfer stations in downtown. Sci. Total. Environ. 2022, 828, 154400. [Google Scholar] [CrossRef]
- Miino, M.C.; Galafassi, S.; Zullo, R.; Torretta, V.; Rada, E.C. Microplastics removal in wastewater treatment plants: A review of the different approaches to limit their release in the environment. Sci. Total. Environ. 2024, 930, 172675. [Google Scholar] [CrossRef]
- Ormaniec, P. Occurrence and analysis of microplastics in municipal wastewater, Poland. Environ. Sci. Pollut. Res. 2024, 31, 49646–49655. [Google Scholar] [CrossRef]
- Haave M, Henriksen T. Sources and Fate of Microplastics in Urban Systems. In: Rocha-Santos T, Costa MF, Mouneyrac C (eds) Handbook of Microplastics in the Environment. Springer, Cham. 2022. [CrossRef]
- Hasan, M.; Islam, A.R.M.T.; Jion, M.M.M.F.; Rahman, N.; Peu, S.D.; Das, A.; Bari, A.M.; Islam, S.; Pal, S.C.; Islam, A.; et al. RETRACTED: Personal protective equipment-derived pollution during Covid-19 era: A critical review of ecotoxicology impacts, intervention strategies, and future challenges. Sci. Total. Environ. 2023, 887, 164164–164164. [Google Scholar] [CrossRef]
- Le, V.-G.; Nguyen, M.-K.; Lin, C.; Nguyen, H.-L.; Nguyen, T.Q.H.; Hue, N.K.; Truong, Q.-M.; Chang, S.W.; Nguyen, X.H.; Nguyen, D.D. Review on personal protective equipment: Emerging concerns in micro(nano)plastic pollution and strategies for addressing environmental challenges. Environ. Res. 2024, 257, 119345. [Google Scholar] [CrossRef] [PubMed]
- Soo, J.-C.; Wei, C.-H.; Chen, J.-K.; Dong, G.-C.; Liu, Z.-S.; Chou, H.-C.; Perez, R.L.; Adhikari, A.; Chen, Y.-C. Assessment of inhalation exposure to microplastic particles when disposable masks are repeatedly used. Sci. Total. Environ. 2024, 912, 169428. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, X.; Zhang, X.; Zhang, Y.; Gao, W.; Wang, R.; He, D. Air conditioner filters become sinks and sources of indoor microplastics fibers. Environ. Pollut. 2022, 292, 118465. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, X.; Gao, W.; Zhang, Y.; Mo, A.; Jiang, J.; He, D. Microfiber-loaded bacterial community in indoor fallout and air-conditioner filter dust. Sci. Total. Environ. 2022, 856, 159211. [Google Scholar] [CrossRef]
- Zhai, X.; Zheng, H.; Xu, Y.; Zhao, R.; Wang, W.; Guo, H. Characterization and quantification of microplastics in indoor environments. Heliyon 2023, 9, e15901. [Google Scholar] [CrossRef]
- Al-Hussayni, R.S.; Al-Ahmady, K.K.; Mhemid, R.K.S. Assessment of Indoor Microplastic Particles Pollution in Selected Sites of Mosul City. J. Ecol. Eng. 2023, 24, 322–332. [Google Scholar] [CrossRef]
- Al-Hussayni, R.S.; Al-Ahmady, K.K.; Mhemid, R.K.S. Assessment of Indoor Microplastic Particles Pollution in Selected Sites of Mosul City. J. Ecol. Eng. 2023, 24, 322–332. [Google Scholar] [CrossRef]
- Haque MR, Ahmed W, Islam Rayhan MR, Rahman MM. Microplastics in indoor dust at Dhaka city: unveiling the unseen contaminants within our homes. Front Environ Sci 2024; 12: 1437866.
- Torres-Agullo, A.; Karanasiou, A.; Moreno, T.; Lacorte, S. Airborne microplastic particle concentrations and characterization in indoor urban microenvironments. Environ. Pollut. 2022, 308, 119707. [Google Scholar] [CrossRef]
- Haque, R.; Ahmed, W.; Rayhan, R.I.; Rahman, M. Microplastics in indoor dust at Dhaka city: unveiling the unseen contaminants within our homes. Front. Environ. Sci. 2024, 12, 1437866. [Google Scholar] [CrossRef]
- Yasin, S.; Hussain, M.; Uddin, A.; Zheng, Q.; Shi, J.; Song, Y. Recycling of binary polymer (PET/SBR) carpet into microfibrillar composites: A life cycle perspective with microplastics quantification. Sustain. Mater. Technol. 2024, 40. [Google Scholar] [CrossRef]
- Alipour, S., Hashemi, S.H., Alavian Petroody, S.S., 2021. Release of microplastic fibers from carpet-washing workshops wastewater. J Water Wastewater 2021; 31: 27-33.
- Lim, J.; Choi, J.; Won, A.; Kim, M.; Kim, S.; Yun, C. Cause of microfibers found in the domestic washing process of clothing; focusing on the manufacturing, wearing, and washing processes. Fash. Text. 2022, 9, 1–14. [Google Scholar] [CrossRef]
- Morales, A.C.; Tomlin, J.M.; West, C.P.; Rivera-Adorno, F.A.; Peterson, B.N.; Sharpe, S.A.L.; Noh, Y.; Sendesi, S.M.T.; Boor, B.E.; Howarter, J.A.; et al. Atmospheric emission of nanoplastics from sewer pipe repairs. Nat. Nanotechnol. 2022, 17, 1171–1177. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Wang, N.; Liu, D.; Ge, W.; Song, N.; Wang, F.; Chai, C. Release of microplastics and nanoplastics in water from disposable surgical masks after disinfection. Mar. Pollut. Bull. 2022, 184, 114184–114184. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Hu, X.; Tang, H.; Lu, K.; Li, H.; Liu, S.; Xing, B.; Ji, R. Steam disinfection releases micro(nano)plastics from silicone-rubber baby teats as examined by optical photothermal infrared microspectroscopy. Nat. Nanotechnol. 2021, 17, 76–85. [Google Scholar] [CrossRef]
- Hartmann, N.B.; Hüffer, T.; Thompson, R.C.; Hassellöv, M.; Verschoor, A.; Daugaard, A.E.; Rist, S.; Karlsson, T.M.; Brennholt, N.; Cole, M.; et al. Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environ. Sci. Technol. 2019, 53, 1039–1047. [Google Scholar] [CrossRef]
- Primpke, S.; Wirth, M.; Lorenz, C.; Gerdts, G. Reference database design for the automated analysis of microplastic samples based on Fourier transform infrared (FTIR) spectroscopy. Anal. Bioanal. Chem. 2018, 410, 5131–5141. [Google Scholar] [CrossRef]
- Liu, P.; Shao, L.; Li, Y.; Jones, T.; Cao, Y.; Yang, C.-X.; Zhang, M.; Santosh, M.; Feng, X.; Bérubé, K. Microplastic atmospheric dustfall pollution in urban environment: Evidence from the types, distribution, and probable sources in Beijing, China. Sci. Total. Environ. 2022, 838, 155989. [Google Scholar] [CrossRef]
- Fang, C.; Luo, Y.; Naidu, R. Raman imaging for the analysis of silicone microplastics and nanoplastics released from a kitchen sealant. Front. Chem. 2023, 11, 1165523. [Google Scholar] [CrossRef]
- Heitbrink, W.A.; Verb, R.H.; Fischbach, T.J.; Wallace, M.E. A Comparison of Conventional and High Volume-Low Pressure Spray-Painting Guns. Am. Ind. Hyg. Assoc. J. 1996, 57, 304–310. [Google Scholar] [CrossRef]
- Xu, Y.; Rillig, M.C.; Waldman, W.R. New separation protocol reveals spray painting as a neglected source of microplastics in soils. Environ. Chem. Lett. 2022, 20, 3363–3369. [Google Scholar] [CrossRef]
- Sobhani, Z.; Zhang, X.; Gibson, C.; Naidu, R.; Megharaj, M.; Fang, C. Identification and visualisation of microplastics/nanoplastics by Raman imaging (i): Down to 100 nm. Water Res. 2020, 174, 115658. [Google Scholar] [CrossRef] [PubMed]
- Pal KC Environmental pain with human beauty: emerging environmental hazards attributed to cosmetic ingredients and packaging. In: Cognitive Data Models for Sustainable Environment Academic Press. 2022. pp. 231-252. [CrossRef]
- Joseph A, Goel S Microbead nuisance: Estimation of microplastic release into water bodies through personal care and cosmetic products, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-10819. [CrossRef]
- Qi, H.; Zeng, S.; Wang, Y.; Dong, X. Exploring the discharge characteristics of personal care behaviors for high precision estimation of microplastic emission. J. Environ. Manag. 2022, 312, 114917. [Google Scholar] [CrossRef] [PubMed]
- Banica, A.L. Banica, A.L., Bucur, R.M., Daniela, I., Dulama, I.A.B., Stirbescu, R.M, et al. 2023. Assessment of microplastics in personal care products by microscopic methods and vibrational spectroscopy. Scientific Study & Research. Chemistry & Chemical Engineering, Biotechnology, Food Industry, 24(2), pp.155-171. ISSN 1582-540X.
- Sun, Q.; Ren, S.-Y.; Ni, H.-G. Incidence of microplastics in personal care products: An appreciable part of plastic pollution. Sci. Total. Environ. 2020, 742, 140218. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowska, A.; Mielańczuk, M.; Syczewski, M. The Raman spectroscopy and SEM/EDS investigation of the primary sources of microplastics from cosmetics available in Poland. Chemosphere 2022, 308, 136407. [Google Scholar] [CrossRef]
- Zhu, S.; Qin, L.; Li, Z.; Hu, X.; Yin, D. Effects of nanoplastics and microplastics on the availability of pharmaceuticals and personal care products in aqueous environment. J. Hazard. Mater. 2023, 458, 131999. [Google Scholar] [CrossRef]
- Habib, R.Z.; Aldhanhani, J.A.K.; Ali, A.H.; Ghebremedhin, F.; Elkashlan, M.; Mesfun, M.; Kittaneh, W.; Al Kindi, R.; Thiemann, T. Trends of microplastic abundance in personal care products in the United Arab Emirates over the period of 3 years (2018–2020). Environ. Sci. Pollut. Res. 2022, 29, 89614–89624. [Google Scholar] [CrossRef]
- Kaur, R.; Kukkar, D.; Bhardwaj, S.K.; Kim, K.-H.; Deep, A. Potential use of polymers and their complexes as media for storage and delivery of fragrances. J. Control. Release 2018, 285, 81–95. [Google Scholar] [CrossRef]
- Camerlo, A.; Vebert-Nardin, C.; Rossi, R.M.; Popa, A.-M. Fragrance encapsulation in polymeric matrices by emulsion electrospinning. Eur. Polym. J. 2013, 49, 3806–3813. [Google Scholar] [CrossRef]
- Cubas, A.L.V.; Bianchet, R.T.; dos Reis, I.M.A.S.; Gouveia, I.C. Plastics and Microplastic in the Cosmetic Industry: Aggregating Sustainable Actions Aimed at Alignment and Interaction with UN Sustainable Development Goals. Polymers 2022, 14, 4576. [Google Scholar] [CrossRef]
- Agumba, D.O.; Kumar, B.; Kim, J. Advanced hydrostable, recyclable and degradable cellulose hybrid films as renewable alternatives to synthetic plastics. Int. J. Biol. Macromol. 2024, 260, 129370. [Google Scholar] [CrossRef]
- Nizamuddin, S.; Chen, C. Biobased, biodegradable and compostable plastics: chemical nature, biodegradation pathways and environmental strategy. Environ. Sci. Pollut. Res. 2024, 31, 8387–8399. [Google Scholar] [CrossRef] [PubMed]
- Goyal, N.; Jerold, F. Biocosmetics: technological advances and future outlook. Environ. Sci. Pollut. Res. 2021, 30, 25148–25169. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xie, Y.; Liu, J.; Zhong, S.; Qian, Y.; Gao, P. An Overlooked Entry Pathway of Microplastics into Agricultural Soils from Application of Sludge-Based Fertilizers. Environ. Sci. Technol. 2020, 54, 4248–4255. [Google Scholar] [CrossRef] [PubMed]
- Ziajahromi, S.; Neale, P.A.; Leusch, F.D.L. Wastewater treatment plant effluent as a source of microplastics: review of the fate, chemical interactions and potential risks to aquatic organisms. Water Sci. Technol. 2016, 74, 2253–2269. [Google Scholar] [CrossRef]
- Harley-Nyang, D.; Memon, F.A.; Jones, N.; Galloway, T. Investigation and analysis of microplastics in sewage sludge and biosolids: A case study from one wastewater treatment works in the UK. Sci. Total. Environ. 2022, 823, 153735. [Google Scholar] [CrossRef]
- Hooge, A.; Hauggaard-Nielsen, H.; Heinze, W.M.; Lyngsie, G.; Ramos, T.M.; Sandgaard, M.H.; Vollertsen, J.; Syberg, K. Fate of microplastics in sewage sludge and in agricultural soils. TrAC Trends Anal. Chem. 2023, 166. [Google Scholar] [CrossRef]
- Ou, H., Liu, R., Liao, Z. and Zeng, E.Y., 2024. Occurrence and fate of microplastics in urban water management systems. In Microplastic Contamination in Aquatic Environments. Elsevier, 2024. pp. 181-228. [CrossRef]
- Hechmi, S.; Bhat, M.A.; Kallel, A.; Khiari, O.; Louati, Z.; Khelil, M.N.; Zoghlami, R.I.; Cherni, Y.; Melki, S.; Trabelsi, I.; et al. Soil contamination with microplastics (MPs) from treated wastewater and sewage sludge: risks and sustainable mitigation strategies. Discov. Environ. 2024, 2, 1–23. [Google Scholar] [CrossRef]
- Fu, B.; Zhou, W.; Chen, Y.; Wu, Y.; Gan, W.; She, N.; Ma, Y. A bibliometric perspective on the occurrence and migration of microplastics in soils amended with sewage sludge. Water Environ. Res. 2024, 96, e11054. [Google Scholar] [CrossRef]
- Radford, F.; Horton, A.; Hudson, M.; Shaw, P.; Williams, I. Agricultural soils and microplastics: Are biosolids the problem? Front. Soil Sci. 2023, 2, 941837. [Google Scholar] [CrossRef]
- Hoang, V.-H.; Nguyen, M.-K.; Hoang, T.-D.; Ha, M.C.; Huyen, N.T.T.; Bui, V.K.H.; Pham, M.-T.; Nguyen, C.-M.; Chang, S.W.; Nguyen, D.D. Sources, environmental fate, and impacts of microplastic contamination in agricultural soils: A comprehensive review. Sci. Total. Environ. 2024, 950, 175276. [Google Scholar] [CrossRef]
- Campanale, C.; Galafassi, S.; Savino, I.; Massarelli, C.; Ancona, V.; Volta, P.; Uricchio, V.F. Microplastics pollution in the terrestrial environments: Poorly known diffuse sources and implications for plants. Sci. Total. Environ. 2022, 805, 150431. [Google Scholar] [CrossRef] [PubMed]
- Jariwala, H.; Santos, R.M.; Lauzon, J.D.; Dutta, A.; Chiang, Y.W. Controlled release fertilizers (CRFs) for climate-smart agriculture practices: a comprehensive review on release mechanism, materials, methods of preparation, and effect on environmental parameters. Environ. Sci. Pollut. Res. 2022, 29, 53967–53995. [Google Scholar] [CrossRef] [PubMed]
- Accinelli, C.; Abbas, H.K.; Shier, W.T.; Vicari, A.; Little, N.S.; Aloise, M.R.; Giacomini, S. Degradation of microplastic seed film-coating fragments in soil. Chemosphere 2019, 226, 645–650. [Google Scholar] [CrossRef] [PubMed]
- Katsumi, N.; Kusube, T.; Nagao, S.; Okochi, H. Accumulation of microcapsules derived from coated fertilizer in paddy fields. Chemosphere 2021, 267, 129185. [Google Scholar] [CrossRef]
- Sa’adu, I.; Farsang, A. Plastic contamination in agricultural soils: a review. Environ. Sci. Eur. 2023, 35, 1–11. [Google Scholar] [CrossRef]
- van Schothorst, B.; Beriot, N.; Lwanga, E.H.; Geissen, V. Sources of Light Density Microplastic Related to Two Agricultural Practices: The Use of Compost and Plastic Mulch. Environments 2021, 8, 36. [Google Scholar] [CrossRef]
- Jagadale SC, Rajkumar K, Chavan RP, Shinde DN, Patil, CL. Environmental concern of pollution in rubber industry. Int J Res Eng Technol 2015, 4, 187–191 eISSN: 2319.
- Morales, A.C.; Tomlin, J.M.; West, C.P.; Rivera-Adorno, F.A.; Peterson, B.N.; Sharpe, S.A.L.; Noh, Y.; Sendesi, S.M.T.; Boor, B.E.; Howarter, J.A.; et al. Atmospheric emission of nanoplastics from sewer pipe repairs. Nat. Nanotechnol. 2022, 17, 1171–1177. [Google Scholar] [CrossRef]
- Morales, A.C.; West, C.P.; Peterson, B.N.; Noh, Y.; Whelton, A.J.; Laskin, A. Diversity of organic components in airborne waste discharged from sewer pipe repairs. Environ. Sci. Process. Impacts 2023, 25, 1670–1683. [Google Scholar] [CrossRef]
- Fujitani, Y.; Ikegami, A.; Morikawa, K.; Kumoi, J.; Yano, T.; Watanabe, A.; Shiono, A.; Watanabe, C.; Teramae, N.; Ichihara, G.; et al. Quantitative assessment of nano-plastic aerosol particles emitted during machining of carbon fiber reinforced plastic. J. Hazard. Mater. 2024, 467, 133679. [Google Scholar] [CrossRef]


| Location | MP (NP where stated) concentration (items/m2/day | Reference | Comments |
|---|---|---|---|
| Urban France (central Paris) | 29-280 | First atmospheric MP study | |
| Suburban Paris | 2-355 | One-year uninterrupted collection using stainless steel funnel | |
| Monitoring station in Bernadouze, Central Pyrenees, France | 87 × 103 ng m−2 day−1 (MPs) 50 × 103 ng m−2 day−1(NPs) |
Remote mountain location. Samples taken in 5 winter months, collecting for 12-41 days. NPs transported further than MPs. |
|
| London, UK | 575-1008 | Large, polluted city. Rain gauge samples twice/week for 4 weeks; 3-4 days continuous exposure, winter | |
| Coastal rivers catchments of Plymouth and Bristol, S-W England | 81.6 | Wet deposition levels in Oct-March greater than treated sewage effluent. Lower numbers in rural areas. | |
| Hamburg, Germany | 136.5-512 | Twice weekly sampling (bulk precipitation samplers) at 6 sites over 12 weeks of winter. | |
| Outskirts of Kassel, Central Germany | 17 ± 14 | Small city with industry and rural areas. Dry+wet deposition, monthly samples, June-Dec. Custom-made samplers. | |
| River Weser catchment area, NW and Central Germany | 99 ± 85 | 6 varied sites and 2 different collection methods. Higher numbers closer to cities. | |
| Gdynia, Poland | 10 ± 8 | Small city on sea, Deposition samples taken on 286 days on roof over 2 years. | |
| Spain (and Canary Islands) | 5.6 - 78.6 | Standard 1 month collections over 10 Spanish towns for 4 consecutive seasons. Higher levels in Barcelona and Madrid and other large cities. | |
| Muskoka-Haliburton, Ontario, Canada | 4–9 | Data from precipitation monitoring stations in relatively pristine area. | |
| Lanzhou, China | 56.97 - 689.05, mean 353.83 (222.25 ± 76.96 during major Covid restrictions) | Sites around the Yellow River during the Covid restrictions. Passive atmospheric deposition sampler used according to standard method for monitoring air and exhaust gas. | |
| Shanghai, China | 910 - 3500 | Highly polluted city. Collected in 2 stainless steel buckets on a roof on 11 days between Sept. 2019 and June 2020. | |
| Quzhou County (North China Plain) | 86–1347 (winter) 892–75,421 (summer) | 35 rainfall samples in rural long-term measurement station, August 2020-August 2021. Major fibers Rayon. | |
| Beijing | 395.07 ± 41.44 (residential) 180.12 ± 42.22 (agricultural) 133.18 ± 47.44 (forest) |
Main sources were textiles. Wind speed was negatively correlated with deposition. | |
| Jakarta, Indonesia | 23.422 (rainy season) 5.745 (dry season) |
Coastal urban area. Rain gauge used for collections over 12 months. | |
| Parna City, Bihar, E. India | 1959.6 ± 205.0 (urban) 1320.4 ± 126.0 (peri-urban). |
Wet atmospheric fallout samples in the monsoon period. | |
| Ho Chi Minh City, Vietnam | 71–917 (300–5000 μm) | Atmospheric fallouts measured twice per month for a year. Smaller MPs more abundant. No apparent effect of monsoon season. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
