Submitted:
18 March 2025
Posted:
19 March 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BNP | Brain natriuretic peptide |
| CVD | Cardiovascular diseases |
| T2DM | Type 2 diabetes mellitus |
| AMPK | AMP-dependent kinase |
| SGLT-2 | Sodium-glucose cotransorter 2 |
| GLP-1 | Glucagon-like peptide-1 |
| AST | Aspartate aminotransferase |
| ALT | Alanine aminotransferase |
| HDL | High-density lipoprotein |
| LDL | Low-density lipoprotein |
| CLIA | Chemiluminescence immunoassay |
| Hb | Hemoglobin |
References
- Ma CX, Ma XN, Guan CH, Li YD, Mauricio D, Fu SB. Cardiovascular disease in type 2 diabetes mellitus: progress toward personalized management. Cardiovasc Diabetol. 2022 May 14;21(1):74. [CrossRef]
- Haffner SM, D'Agostino R Jr, Mykkänen L, Tracy R, Howard B, Rewers M, et al. Insulin sensitivity in subjects with type 2 diabetes. Relationship to cardiovascular risk factors: the Insulin Resistance Atherosclerosis Study. Diabetes Care. 1999 Apr;22(4):562-8. [CrossRef]
- Morrish NJ, Wang SL, Stevens LK, Fuller JH, Keen H. Mortality and causes of death in the WHO Multinational Study of Vascular Disease in Diabetes. Diabetologia. 2001 Sep;44 Suppl 2:S14-21. [CrossRef]
- Huang PL. A comprehensive definition for metabolic syndrome. Dis Model Mech. 2009 May-Jun;2(5-6):231-7. [CrossRef] [PubMed] [PubMed Central]
- Palazzuoli A, Iacoviello M. Diabetes leading to heart failure and heart failure leading to diabetes: epidemiological and clinical evidence. Heart Fail Rev. 2023 May;28(3):585-596. [CrossRef]
- Sacre JW, Magliano DJ, Shaw JE. Heart failure hospitalisation relative to major atherosclerotic events in type 2 diabetes with versus without chronic kidney disease: a meta-analysis of cardiovascular outcomes trials. Diabetes Metab. 2021;47:101249. [CrossRef]
- Nadar SK, Shaikh MM. Biomarkers in Routine Heart Failure Clinical Care. Card Fail Rev. 2019 Feb;5(1):50-56. [CrossRef]
- Novack ML, Zubair M. Natriuretic Peptide B Type Test. [Updated 2023 Apr 23]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK556136/.
- Pagana KD, Pagana TJ, Pagana TN. Mosby’s Diagnostic & Laboratory Test Reference. 14th ed. St. Louis, Mo: Elsevier; 2019.
- Taylor CJ, Lay-Flurrie SL, Ordóñez-Mena JM, Goyder CR, Jones NR, Roalfe AK, et al. Natriuretic peptide level at heart failure diagnosis and risk of hospitalisation and death in England 2004-2018. Heart. 2022 Apr;108(7):543-549. [CrossRef]
- Tiwari D, Aw TC. Emerging Role of Natriuretic Peptides in Diabetes Care: A Brief Review of Pertinent Recent Literature. Diagnostics (Basel). 2024 Oct 9;14(19):2251. [CrossRef]
- Pop-Busui R, Januzzi JL, Bruemmer D, Butalia S, Green JB, Horton WB, et al. Heart Failure: An Underappreciated Complication of Diabetes. A Consensus Report of the American Diabetes Association. Diabetes Care. 2022 Jul 7;45(7):1670-1690. [CrossRef]
- Tsai SH, Lin YY, Chu SJ, Hsu CW, Cheng SM. Interpretation and use of natriuretic peptides in non-congestive heart failure settings. Yonsei Med J. 2010 Mar;51(2):151-63. [CrossRef]
- Herman R, Kravos NA, Jensterle M, Janež A, Dolžan V. Metformin and Insulin Resistance: A Review of the Underlying Mechanisms behind Changes in GLUT4-Mediated Glucose Transport. Int J Mol Sci. 2022 Jan 23;23(3):1264. [CrossRef] [PubMed] [PubMed Central]
- Schernthaner G, Brand K, Bailey CJ. Metformin and the heart: Update on mechanisms of cardiovascular protection with special reference to comorbid type 2 diabetes and heart failure. Metabolism. 2022 May;130:155160. [CrossRef]
- Salvatore T, Galiero R, Caturano A, Vetrano E, Rinaldi L, Coviello F, et al. Effects of Metformin in Heart Failure: From Pathophysiological Rationale to Clinical Evidence. Biomolecules. 2021 Dec 4;11(12):1834. [CrossRef]
- Templer S, Abdo S, Wong T. Preventing diabetes complications. Intern Med J. 2024 Aug;54(8):1264-1274. [CrossRef]
- Nathan DM, Bennett PH, Crandall JP, Edelstein SL, Goldberg RB, Kahn SE, et al. Does diabetes prevention translate into reduced long-term vascular complications of diabetes? Diabetologia. 2019 Aug;62(8):1319-1328. [CrossRef]
- Marinescu M, Oprea VD, Nechita A, Tutunaru D, Nechita LC, Romila A. The Use of Brain Natriuretic Peptide in the Evaluation of Heart Failure in Geriatric Patients. Diagnostics (Basel). 2023 Apr 23;13(9):1512. [CrossRef]
- Keyzer JM, Hoffmann JJ, Ringoir L, Nabbe KC, Widdershoven JW, Pop VJ. Age- and gender-specific brain natriuretic peptide (BNP) reference ranges in primary care. Clin Chem Lab Med. 2014 Sep;52(9):1341-6. [CrossRef]
- Yan P, Wan Q, Zhang Z, Xu Y, Miao Y, Chen P, et al. Association between Circulating B-Type Natriuretic Peptide and Diabetic Peripheral Neuropathy: A Cross-Sectional Study of a Chinese Type 2 Diabetic Population. J Diabetes Res. 2020 Oct 12;2020:3436549. [CrossRef]
- Bachmann KN, Huang S, Lee H, Dichtel LE, Gupta DK, Burnett JC Jr, et al. Effect of Testosterone on Natriuretic Peptide Levels. J Am Coll Cardiol. 2019 Mar 26;73(11):1288-1296. [CrossRef]
- Cediel G, Codina P, Spitaleri G, Domingo M, Santiago-Vacas E, Lupón J, et al. Gender-Related Differences in Heart Failure Biomarkers. Front Cardiovasc Med. 2021 Jan 5;7:617705. [CrossRef]
- Maffei S, Del Ry S, Prontera C, Clerico A. Increase in circulating levels of cardiac natriuretic peptides after hormone replacement therapy in postmenopausal women. Clin Sci (Lond). 2001 Nov;101(5):447-53. [PubMed]
- Wold Knudsen C, Vik-Mo H, Omland T. Blood haemoglobin is an independent predictor of B-type natriuretic peptide (BNP). Clin Sci (Lond). 2005 Jul;109(1):69-74. [CrossRef]
- Karakoyun I, Colak A, Arslan FD, Hasturk AG, Duman C. Anemia considerations when assessing natriuretic peptide levels in ED patients. Am J Emerg Med. 2017 Nov;35(11):1677-1681. [CrossRef]
- He WT, Mori M, Yu XF, Kanda T. Higher BNP levels within physiological range correlate with beneficial nonfasting lipid profiles in the elderly: a cross-sectional study. Lipids Health Dis. 2016 Jan 5;15:3. [CrossRef]
- Srisawasdi P, Vanavanan S, Charoenpanichkit C, Kroll MH. The effect of renal dysfunction on BNP, NT-proBNP, and their ratio. Am J Clin Pathol. 2010 Jan;133(1):14-23. [CrossRef]
- Vickery S, Price CP, John RI, Abbas NA, Webb MC, Kempson ME, et al. B-type natriuretic peptide (BNP) and amino-terminal proBNP in patients with CKD: relationship to renal function and left ventricular hypertrophy. Am J Kidney Dis. 2005 Oct;46(4):610-20. [CrossRef]
- Khan AM, Cheng S, Magnusson M, Larson MG, Newton-Cheh C, McCabe EL, et al. Cardiac natriuretic peptides, obesity, and insulin resistance: evidence from two community-based studies. J Clin Endocrinol Metab. 2011 Oct;96(10):3242-9. [CrossRef]
- Chang HR, Hsieh JC, Hsu BG, Wang LY, Yu-Chih Chen M, Wang JH. N-terminal pro-B-type natriuretic peptide is inversely associated with metabolic syndrome in hypertensive patients. Am J Med Sci. 2014 Sep;348(3):210-4. [CrossRef]
- Tsukamoto O, Fujita M, Kato M, Yamazaki S, Asano Y, Ogai A, et al. Natriuretic peptides enhance the production of adiponectin in human adipocytes and in patients with chronic heart failure. J Am Coll Cardiol. 2009 Jun 2;53(22):2070-7. [CrossRef]
- Mezzasoma L, Talesa VN, Romani R, Bellezza I. ANP and BNP Exert Anti-Inflammatory Action via NPR-1/cGMP Axis by Interfering with Canonical, Non-Canonical, and Alternative Routes of Inflammasome Activation in Human THP1 Cells. Int J Mol Sci. 2020 Dec 22;22(1):24. [CrossRef]
- Chen J, Jiang C, Guo M, Zeng Y, Jiang Z, Zhang D, et al. Effects of SGLT2 inhibitors on cardiac function and health status in chronic heart failure: a systematic review and meta-analysis. Cardiovasc Diabetol. 2024 Jan 3;23(1):2. [CrossRef]
- Lundin M, Ferrannini G, Mellbin L, Johansson I, Norhammar A, Näsman P, et al. SOdium-glucose CO-transporter inhibition in patients with newly detected Glucose Abnormalities and a recent Myocardial Infarction (SOCOGAMI). Diabetes Res Clin Pract. 2022 Nov;193:110141. [CrossRef]
- Shimizu W, Kubota Y, Hoshika Y, Mozawa K, Tara S, Tokita Y, et al. Effects of empagliflozin versus placebo on cardiac sympathetic activity in acute myocardial infarction patients with type 2 diabetes mellitus: the EMBODY trial. Cardiovasc Diabetol. 2020 Sep 25;19(1):148. [CrossRef]
- Dorkhan M, Frid A, Groop L. Differences in effects of insulin glargine or pioglitazone added to oral anti-diabetic therapy in patients with type 2 diabetes: what to add—insulin glargine or pioglitazone? Diabetes Res Clin Pract. 2008;82(3):340–5.
- Tahrani AA, Varughese GI, Scarpello JH, Hanna FW. Metformin, heart failure, and lactic acidosis: is metformin absolutely contraindicated? BMJ. 2007 Sep 8;335(7618):508-12. [CrossRef]
- Top WMC, Lehert P, Schalkwijk CG, Stehouwer CDA, Kooy A. Metformin and N-terminal pro B-type natriuretic peptide in type 2 diabetes patients, a post-hoc analysis of a randomized controlled trial. PLoS One. 2021 Apr 8;16(4):e0247939. [CrossRef]
- Sabbar R, Kadhim SAA, Fawzi HA, Flayih A, Mohammad B, Swadi A. Metformin effects on cardiac parameters in non-diabetic Iraqi patients with heart failure and mid-range ejection fraction - a comparative two-arm parallel clinical study. J Med Life. 2023 Sep;16(9):1400-1406. [CrossRef]
- Sokolova L, Belchina Y, Pushkarev V, Cherviakova S, Vatseba T, Kovzun O, et al. The effect of metformin treatment on the level of GLP-1, NT-proBNP and endothelin-1 in patients with type 2 diabetes mellitus. Internatıonal journal of endocrınology (Ukraine). 2020; 16(8), 616–621. [CrossRef]
| Variable | Mean±std | Min.-Max. (Median) |
|---|---|---|
| Age (years) | 56.82±9,2 | 23-75 (58) |
| Diabetes duration (years) | 9.96±5.04 | 1-17 (12) |
| Gender (F/M) | 132/120 | |
| BNP (ng/l) | 37.43±39.59 | 2-314 (25.7) |
| HbA1c (%) | 7.90±1.77 | 4.8-15.5 (7.45) |
| Glucose (mg/dl) | 152.24±59.59 | 47-430 (137) |
| Total cholesterol (mg/dl) | 176.73±42.13 | 77-335 (174) |
| HDL-cholesterol (mg/dl) | 43.64±12.05 | 16-95 (42) |
| LDL-cholesterol (mg/dl) | 101.58±35.52 | 20-251 (94.8) |
| Triglyceride (mg/dl) | 160.45±94.06 | 37-602 (133.5) |
| Hemoglobin (g/dl) | 13.55±1.58 | 9.2-17.1 (13.5) |
| Urea (mg/dl) | 35.03±11.26 | 12-96 (33) |
| Creatinine (mg/dl) | 0.90±0.22 | 0.48-1.84 (0.87) |
| AST (U/l) | 16.71±14.59 | 4-188 (14) |
| ALT (U/l) | 27.17±19.19 | 8-160 (22) |
| Comorbidities | N (%) | |
| Hyperlipidemia | 131 (51.9) | |
| Hypertension | 104 (41.2) | |
| Coronary artery disease | 26 (10.3) | |
| Hypothyroidism | 14 (5.5) |
| Medications (n) | BNP | p | |
|---|---|---|---|
| Metformin | Non-user (61) | 49,18±45,69 | 0,034 |
| User (191) | 33,68±36,78 | ||
| SGLT2 inhibitors | Non-user (110) | 42,02±45,49 | 0.162 |
| User (142) | 33,88±34,08 | ||
| DPP-4 inhibitors | Non-user (122) | 40,47±40,03 | 0.523 |
| User (130) | 34,58±39,12 | ||
| Pioglitazone | Non-user (180) | 41,46±43,98 | 0.021 |
| User (72) | 27,37±22,85 | ||
| Sulfonylureas | Non-user (215) | 38,12±41,49 | 0.764 |
| User (37) | 33,42±25,99 | ||
| Insulin | Non-user (104) | 31,44±27,07 | 0.195 |
| User (148) | 41,64±46,04 | ||
| Statins | Non-user (165) | 40,12±40,33 | 0,060 |
| User (87) | 32,33±37,85 | ||
| Fibrates | Non-user (232) | 37,84±40,51 | 0.714 |
| User (20) | 32.70±26,99 | ||
| R | p | |
|---|---|---|
| Age | 0.410 | <0.001 |
| Diabetes duration | 0.149 | 0.018 |
| HbA1c | 0.091 | 0.150 |
| Fasting glucose | 0.095 | 0.131 |
| HDL-cholesterol | 0.092 | 0.145 |
| LDL-cholesterol | -0.100 | 0.115 |
| Triglyceride | -0.034 | 0.589 |
| Urea | 0.072 | 0.253 |
| Creatinine | 0.000 | 0.995 |
| Hemoglobin | -0.284 | <0.001 |
| ALT | -0.151 | 0.016 |
| AST | -0.044 | 0.491 |
| Model 1 | ||||
|---|---|---|---|---|
| B | S.E. |
%95 CI for B (lower-upper) |
p | |
| (Constant) Age Diabetes duration Male gender Metformin Pioglitazone |
-21.180 1.305 0.078 -12.915 -11.312 -5.486 |
15.936 0.281 0.504 4.653 5.474 5.297 |
-52.569 – 10.209 0.750 – 1.859 -0.915 – 1.071 -22.080 - -3.750 -22.094 - -0.530 -15.920 – 4.947 |
0.185 <0.001 0.877 0.006 0.040 0.301 |
| Model 2 | ||||
| B | S.E. |
%95 CI for B (lower-upper) |
p | |
| (Constant) Age Metformin Male gender HbA1c LDL-cholesterol HDL-cholesterol Hemoglobin Creatinine |
31.531 1.293 -11.857 -6.218 0.738 -0.040 0.069 -3.980 -7.106 |
33.886 0.266 5.948 5.724 1.373 0.068 0.209 1.701 12.807 |
-35.216 - 98.279 0.769 - 1.816 -23.573 - -0.142 -17.494 - 5.057 -1.966 - 3.442 -0.174 – 0.093 -0.344 – 0.481 -7.331- - 0.628 -32.333 – 18.121 |
0.353 <0.001 0.047 0.278 0.591 0.551 0.743 0.020 0.580 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
