Submitted:
15 March 2025
Posted:
17 March 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Material Collection
2.2. Aqueous Extraction
2.3. Organic Extraction
2.4. Bacteria and Culture Conditions
2.4.1. Antibiogram Assay
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Gu, Y.C.; Su, M.Z.; Guo, Y.W. Chemistry and bioactivity of secondary metabolites from South China Sea marine fauna and flora: recent research advances and perspective. Acta Pharmacol Sin 2022, 43, 3062–3079. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.K.; Albarico, F.P.J.B.; Perumal, P.K.; Vadrale, A.P.; Nian, C.T.; Chau, H.T.B.; Anwar, C.; Wani, H.M.U.D.; Pal, A.; Saini, R.; et al. Algae as an emerging source of bioactive pigments. Bioresource Technol 2022, 351, 126910. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, R.; Kannappan, A.; Shi, C.; Lin, X. Marine Bacterial Secondary Metabolites: A Treasure House for Structurally Unique and Effective Antimicrobial Compounds. Mar Drugs 2021, 19, 530. [Google Scholar] [CrossRef]
- Bharathi, D.; Lee, J.T. Recent Advances in Marine-Derived Compounds as Potent Antibacterial and Antifungal Agents: A Comprehensive Review. Marine Drugs 2024, 22, 348. [Google Scholar] [CrossRef]
- Santhiravel, S.; Dave, D.; Shahidi, F. Bioactives from marine resources as natural health products: A review. Pharmacological reviews 2024, 77, 100006. [Google Scholar] [CrossRef]
- Malve, H. Exploring the ocean for new drug developments: Marine pharmacology. J Pharm Bioallied Sci 2016, 8, 83–91. [Google Scholar] [CrossRef]
- Mayer, A.M.S.; Rodríguez, A.D.; Taglialatela-Scafati, O.; Fusetani, N. Marine pharmacology in 2009–2011: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Marine drugs 2013, 11, 2510–2573. [Google Scholar]
- Blaser, M.J.; Melby, M.K.; Lock, M.; Nichter, M. Accounting for variation in and overuse of antibiotics among humans. Bioessays 2021, 43, 2000163. [Google Scholar] [CrossRef]
- Beesoo, R.; Bhagooli, R.; Neergheen-Bhujun, V.S.; Li, W.W.; Kagansky, A.; Bahorun, T. Antibacterial and antibiotic potentiating activities of tropical marine sponge extracts. Comp Biochem Physiol C Toxicol Pharmacol 2017, 196, 81–90. [Google Scholar] [CrossRef]
- Hamayeli, H.; Hassanshahian, M.; Hesni, M.A. The antibacterial and antibiofilm activity of sea anemone (Stichodactyla haddoni) against antibiotic-resistant bacteria and characterization of bioactive metabolites. International Aquatic Research 2019, 11, 85–97. [Google Scholar] [CrossRef]
- Madkour, F.; El-Shoubaky, G.; Ebada, M. Antibacterial activity of some seaweeds from the Red Sea coast of Egypt. Egyptian Journal of Aquatic Biology Fisheries 2019, 23, 265–274. [Google Scholar]
- Nugroho, A.; Harahap, I.A.; Ardiansyah, A.; Bayu, A.; Rasyid, A.; Murniasih, T.; Setyastuti, A.; Putra, M.Y. Antioxidant and antibacterial activities in 21 species of Indonesian sea cucumbers. J Food Sci Technol 2022, 59, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Saleh, B.; Al-Mariri, A. Antimicrobial Activity of the Marine Algal Extracts against Selected Pathogens. J Agr Sci Tech-Iran 2017, 19, 1067–1077. [Google Scholar]
- Fitzpatrick, S.R.; Garvey, M.; Jordan, K.; Flynn, J.; O’Brien, B.; Gleeson, D. Screening commercial teat disinfectants against bacteria isolated from bovine milk using disk diffusion. Vet World 2019, 12, 629–637. [Google Scholar] [CrossRef]
- Vennila, K.K.; Chitra, P.S.; Hilda, K.; Janarthanan, S.; Martin, P. Screening of Anti-Bacterial Activity of Brown Seaweeds from South East Coast of India. Int J Pharm Sci Res 2020, 11, 3993–4009. [Google Scholar] [CrossRef]
- Macedo, M.W.F.S.; da Cunha, N.B.; Carneiro, J.A.; da Costa, R.A.; de Alencar, S.A.; Cardoso, M.H.; Franco, O.L.; Dias, S.C. Marine Organisms as a Rich Source of Biologically Active Peptides. Frontiers in Marine Science 2021, 8, 667764. [Google Scholar] [CrossRef]
- Thomas, A.M.; Antony, S.P. Marine Antimicrobial Peptides: An Emerging Nightmare to the Life-Threatening Pathogens. Probiotics Antimicrob Proteins 2024, 16, 552–578. [Google Scholar] [CrossRef]
- Wang, X.; Yu, H.; Xing, R.; Li, P. Characterization, Preparation, and Purification of Marine Bioactive Peptides. Biomed Res Int 2017, 2017, 9746720. [Google Scholar] [CrossRef]
- Shiney, E.; Reginald, M.; Wilsy, J.I. Antibacterial activity and phytochemical screening of marine macro algae amphiroa anceps using three solvent extracts. Int J Pharmacogn 2014, 1, 605–608. [Google Scholar]
- Varier, K.M.; Milton, M.C.J.; Arulvasu, C.; Gajendran, B. Evaluation of antibacterial properties of selected red seaweeds from Rameshwaram, Tamil Nadu, India. Journal of Academia Industrial Research 2013, 1, 667–670. [Google Scholar]
- Bianco, E.M.; de Oliveira, S.Q.; Rigotto, C.; Tonini, M.L.; da Rosa Guimaraes, T.; Bittencourt, F.; Gouvea, L.P.; Aresi, C.; de Almeida, M.T.; Moritz, M.I.; et al. Anti-infective potential of marine invertebrates and seaweeds from the Brazilian coast. Molecules 2013, 18, 5761–5778. [Google Scholar] [CrossRef] [PubMed]
- Arai, M.; Sobou, M.; Vilchéze, C.; Baughn, A.; Hashizume, H.; Pruksakorn, P.; Ishida, S.; Matsumoto, M.; Jacobs, W.R.; Kobayashi, M. Halicyclamine A, a marine spongean alkaloid as a lead for anti-tuberculosis agent. Bioorgan Med Chem 2008, 16, 6732–6736. [Google Scholar] [CrossRef] [PubMed]
- Maarisit, W.; Abdjul, D.B.; Yamazaki, H.; Kato, H.; Rotinsulu, H.; Wewengkang, D.S.; Sumilat, D.A.; Kapojos, M.M.; Ukai, K.; Namikoshi, M. Anti-mycobacterial alkaloids, cyclic 3-alkyl pyridinium dimers, from the Indonesian marine sponge Haliclona sp. Bioorg Med Chem Lett 2017, 27, 3503–3506. [Google Scholar] [CrossRef]
- Nazemi, M.; Alidoust Salimi, M.; Alidoust Salimi, P.; Motallebi, A.; Tamadoni Jahromi, S.; Ahmadzadeh, O. Antifungal and antibacterial activity of Haliclona sp. from the Persian Gulf, Iran. J Mycol Med 2014, 24, 220–224. [Google Scholar] [CrossRef]
- Shushizadeh, M.R.; Behroozi, S.; Behfar, A.A.; Nazemi, M. Antibacterial activity and Gc-mass analysis of organic extract from Persian gulf Haliclona sp. J Pharmacophore 2018, 9, 19–24. [Google Scholar]
- Bianco, E.M.; Krug, J.L.; Zimath, P.L.; Kroger, A.; Paganelli, C.J.; Boeder, A.M.; dos Santos, L.; Tenfen, A.; Ribeiro, S.M.; Kuroshima, K.N. Antimicrobial (including antimollicutes), antioxidant and anticholinesterase activities of Brazilian and Spanish marine organisms–evaluation of extracts and pure compounds. Revista Brasileira de Farmacognosia 2015, 25, 668–676. [Google Scholar] [CrossRef]
- Morales, T.; Cubero, J.; Lanz, Z.; Gomez-Guinan, Y.; Segnini-Bravo, M.I. Antimicrobial activity of organic extracts isolated from Aplysina fistularis (Demospongiae: Aplysinidae). Rev Biol Trop 2000, 48 Suppl 1, 199–206. [Google Scholar]
- Afifi, R.; Khabour, O.F. Antibacterial activity of the Saudi Red Sea sponges against Gram-positive pathogens. J King Saud Univ Sci 2019, 31, 753–757. [Google Scholar] [CrossRef]
- Indraningrat, A.A.G.; Micheller, S.; Runderkamp, M.; Sauerland, I.; Becking, L.E.; Smidt, H.; Sipkema, D. Cultivation of Sponge-Associated Bacteria from Agelas sventres and Xestospongia muta Collected from Different Depths. Mar Drugs 2019, 17, 578. [Google Scholar] [CrossRef]
- Chu, M.J.; Li, M.; Ma, H.; Li, P.L.; Li, G.Q. Secondary metabolites from marine sponges of the genus Agelas: a comprehensive update insight on structural diversity and bioactivity. RSC Adv 2022, 12, 7789–7820. [Google Scholar] [CrossRef]
- Lhullier, C.; Moritz, M.I.G.; Tabalipa, E.O.; Sardá, F.N.; Schneider, N.F.Z.; Moraes, M.H.; Constantino, L.; Reginatto, F.H.; Steindel, M.; Pinheiro, U.S. Biological activities of marine invertebrates extracts from the northeast brazilian coast. Brazilian Journal of Biology 2019, 80, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Shady, N.H.; Fouad, M.A.; Salah Kamel, M.; Schirmeister, T.; Abdelmohsen, U.R. Natural Product Repertoire of the Genus Amphimedon. Mar Drugs 2018, 17, 19. [Google Scholar] [CrossRef] [PubMed]
- Widyani, K.A.M.; Wewengkang, D.; Rumondor, E. THE POTENCY OF Mycale vansoesti SPONGE EXTRACT AND FRACTIONS FROM MANADO TUA ISLAND WATERS AGAINST THE GROWTH OF Staphylococcus aureus AND Escherichia coli. PHARMACON 2022, 11, 1583–1590. [Google Scholar]
- Seradj, S.H.; Hashemi, S.Z.; Zomorodian, K.; Moein, M.R. Antimicrobial effects of some Persian gulf marine sponges. Iranian South Medical Journal 2020, 23, 494–504. [Google Scholar]
- Galeano, E.; Martínez, A. Antimicrobial activity of marine sponges from Urabá Gulf, Colombian Caribbean region. Journal de Mycologie Médicale 2007, 17, 21–24. [Google Scholar]
- Quintana, J.; Brango-Vanegas, J.; Costa, G.M.; Castellanos, L.; Arévalo, C.; Duque, C. Marine organisms as source of extracts to disrupt bacterial communication: bioguided isolation and identification of quorum sensing inhibitors from. Rev Bras Farmacogn 2015, 25, 199–207. [Google Scholar] [CrossRef]
- Berne, S.; Kalauz, M.; Lapat, M.; Savin, L.; Janussen, D.; Kersken, D.; Avgutin, J.A.; Jokhadar, S.Z.; Jaklic, D.; Gunde-Cimerman, N.; et al. Screening of the Antarctic marine sponges (Porifera) as a source of bioactive compounds. Polar Biol 2016, 39, 947–959. [Google Scholar] [CrossRef]
- Kibungu, W.C.; Clarke, A.M.; Fri, J.; Njom, H.A. Antimicrobial Potential and Phytochemical Screening of Clathria sp. 1 and Tedania (Tedania) stylonychaeta Sponge Crude Extracts Obtained from the South East Coast of South Africa. Biomed Res Int-Uk 2021, 2021, 6697944. [Google Scholar] [CrossRef]
- Kasmiati, K.; Nurunnisa, A.T.; Amran, A.; Resya, M.I.; Rahmi, M.H. Antibacterial activity and toxicity of Halymenia durvillei red seaweed from Kayangan island, South Sulawesi, Indonesia. Fisheries Aquatic Sciences 2022, 25, 417–428. [Google Scholar] [CrossRef]
- Uddin, S.A.; Akter, S.; Hossen, S.; Rahman, M.; Research, I. Antioxidant, antibacterial and cytotoxic activity of Caulerpa racemosa (Forsskål) J. Agardh and Ulva (Enteromorpha) intestinalis L. J Bangladesh Journal of Scientific 2020, 55, 237–244. [Google Scholar]
- Afonso, C.; Correia, A.P.; Freitas, M.V.; Mouga, T.; Baptista, T. In Vitro Evaluation of the Antibacterial and Antioxidant Activities of Extracts of Gracilaria gracilis with a View into Its Potential Use as an Additive in Fish Feed. Appl Sci-Basel 2021, 11, 6642. [Google Scholar] [CrossRef]
- Chukwu-Osazuwa, J.; Cao, T.; Vasquez, I.; Gnanagobal, H.; Hossain, A.; Machimbirike, V.I.; Santander, J. Comparative Reverse Vaccinology of Piscirickettsia salmonis, Aeromonas salmonicida, Yersinia ruckeri, Vibrio anguillarum and Moritella viscosa, Frequent Pathogens of Atlantic Salmon and Lumpfish Aquaculture. Vaccines (Basel) 2022, 10, 473. [Google Scholar] [CrossRef]
- Pereira, C.; Duarte, J.; Costa, P.; Braz, M.; Almeida, A. Bacteriophages in the Control of Aeromonas sp. in Aquaculture Systems: An Integrative View. Antibiotics (Basel) 2022, 11, 163. [Google Scholar] [CrossRef]
- Ghafari, M.; Taheri, A. Antimicrobial properties of Dictyota cervicornis algae against several bacteria. Journal of Sabzevar University of Medical Sciences 2018, 25, 241–249. [Google Scholar]
- Lecuit, M. Listeria monocytogenes, a model in infection biology. Cell Microbiol 2020, 22, e13186. [Google Scholar] [CrossRef]
- Bakar, K.; Mohamad, H.; Tan, H.S.; Latip, J. Sterols compositions, antibacterial, and antifouling properties from two Malaysian seaweeds: Dictyota dichotoma and Sargassum granuliferum. Journal of Applied Pharmaceutical Science 2019, 9, 047–053. [Google Scholar]
- Al-Saif, S.S.; Abdel-Raouf, N.; El-Wazanani, H.A.; Aref, I.A. Antibacterial substances from marine algae isolated from Jeddah coast of Red sea, Saudi Arabia. Saudi J Biol Sci 2014, 21, 57–64. [Google Scholar] [CrossRef]
- Alves, R.C.C.; Merces, P.F.F.; Souza, I.R.A.; Almeida, C.M.A.; Lima, V.L.M.; Correia, M.T.S.; Silva, M.V.; Silva, A.G. Antimicrobial activity of seaweeds of Pernambuco, northeastern coast of Brazil. J African Journal of Microbiology Research 2016, 10, 312–318. [Google Scholar]
- Lima-Filho, J.V.M.; Carvalho, A.F.F.U.; Freitas, S.M.; Melo, V.M.M. Antibacterial activity of extracts of six macroalgae from the northeastern brazilian coast. Brazilian Journal of Microbiology 2002, 33, 311–314. [Google Scholar]
- Capillo, G.; Savoca, S.; Costa, R.; Sanfilippo, M.; Rizzo, C.; Lo Giudice, A.; Albergamo, A.; Rando, R.; Bartolomeo, G.; Spano, N.; et al. New Insights into the Culture Method and Antibacterial Potential of Gracilaria gracilis. Mar Drugs 2018, 16, 492. [Google Scholar] [CrossRef]
- Graça, A.P.; Viana, F.; Bondoso, J.; Correia, M.I.; Gomes, L.; Humanes, M.; Reis, A.; Xavier, J.R.; Gaspar, H.; Lage, O.M. The antimicrobial activity of heterotrophic bacteria isolated from the marine sponge Erylus deficiens (Astrophorida, Geodiidae). Frontiers in microbiology 2015, 6, 389. [Google Scholar]
- Graça, A.P.; Bondoso, J.; Gaspar, H.; Xavier, J.R.; Monteiro, M.C.; de la Cruz, M.; Oves-Costales, D.; Vicente, F.; Lage, O.M. Antimicrobial activity of heterotrophic bacterial communities from the marine sponge Erylus discophorus (Astrophorida, Geodiidae). PLoS One 2013, 8, e78992. [Google Scholar] [CrossRef] [PubMed]
- Marinho, P.R.; Moreira, A.P.; Pellegrino, F.L.; Muricy, G.; Bastos Mdo, C.; Santos, K.R.; Giambiagi-deMarval, M.; Laport, M.S. Marine Pseudomonas putida: a potential source of antimicrobial substances against antibiotic-resistant bacteria. Mem Inst Oswaldo Cruz 2009, 104, 678–682. [Google Scholar] [CrossRef] [PubMed]
- Scopel, M.; dos Santos, O.; Frasson, A.P.; Abraham, W.R.; Tasca, T.; Henriques, A.T.; Macedo, A.J. Anti-Trichomonas vaginalis activity of marine-associated fungi from the South Brazilian Coast. Exp Parasitol 2013, 133, 211–216. [Google Scholar] [CrossRef]
- Thirunavukkarasu, N.; Suryanarayanan, T.S.; Girivasan, K.P.; Venkatachalam, A.; Geetha, V.; Ravishankar, J.P.; Doble, M. Fungal symbionts of marine sponges from Rameswaram, southern India: species composition and bioactive metabolites. Fungal Divers 2012, 55, 37–46. [Google Scholar] [CrossRef]
- Pasquina-Lemonche, L.; Burns, J.; Turner, R.D.; Kumar, S.; Tank, R.; Mullin, N.; Wilson, J.S.; Chakrabarti, B.; Bullough, P.A.; Foster, S.J.; et al. The architecture of the Gram-positive bacterial cell wall. Nature 2020, 582, 294–297. [Google Scholar] [CrossRef]
- Rojas, E.R.; Billings, G.; Odermatt, P.D.; Auer, G.K.; Zhu, L.; Miguel, A.; Chang, F.; Weibel, D.B.; Theriot, J.A.; Huang, K.C. The outer membrane is an essential load-bearing element in Gram-negative bacteria. Nature 2018, 559, 617. [Google Scholar] [CrossRef]
- Li, X.Z.; Plesiat, P.; Nikaido, H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015, 28, 337–418. [Google Scholar] [CrossRef]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
| Marine Organism | Order | Species |
|---|---|---|
| Marine Sponges | Agelasida | Agelas sp. |
| Agelas sventres | ||
| Dictyoceratida | Ircinia strobilina | |
| Haplosclerida | Amphimedon compressa | |
| Callyspongia vaginalis | ||
| Niphates erecta | ||
| Poecilosclerida | Clathria nicoleae | |
| Mycale sp. | ||
| Suberitida | Pseudosuberites sp. | |
| Topsentia ophiraphidites | ||
| Tetractinellida | Erylus formosus | |
| Geodia sp. | ||
| Verongiida | Aiolochroia crassa | |
| Aplysina cauliformis | ||
| Aplysina fistularis | ||
| Aplysina lactuca |
| Marine Organism | Phylum or Order | Species |
|---|---|---|
| Marine Sponges | Dictyoceratida | Ircinia felix |
| Haplosclerida | Amphimedon viridis | |
| Haliclona implexiformis | ||
| Verongiida | Aplysina fulva | |
| Tethyida | Tethya sp. | |
| Marine Macroalgae | Chlorophyta | Caulerpa cupressoides |
| Caulerpa prolifera | ||
| Caulerpa racemosa | ||
| Caulerpa sertularioides | ||
| Ulva fasciata | ||
| Ulva lactuca | ||
| Phaeophyta | Dictyopteris delicatula | |
| Lobophora variegata | ||
| Rhodophyta | Amansia multifida | |
| Botryocladia occidentalis | ||
| Cryptonemia crenulata | ||
| Cryptonemia luxurians | ||
| Cryptonemia sp. | ||
| Dictyurus occidentalis | ||
| Gracilaria domingensis | ||
| Gracilariopsis sjoestedtii | ||
| Halymenia sp. | ||
| Hypnea musciformis | ||
| Osmundaria obtusiloba | ||
| Pterocladiella capillacea | ||
| Solieria filiformis |
| Marine Organism | Phylum or Order | Species |
|---|---|---|
| Marine Sponges | Chondrillida | Chondrilla caribensis |
| Clionaida | Placospongia sp. | |
| Haplosclerida | Haliclona caerulea | |
| Haliclona melana | ||
| Poecilosclerida | Tedania ignis | |
| Tetractinellida | Cinachyrella alloclada | |
| Marine Macroalgae | Chlorophyta | Anadyomene stellata |
| Bryopsis pennata | ||
| Bryopsis sp. | ||
| Caulerpa mexicana | ||
| Codium isthmocladum | ||
| Dictyosphaeria cavernosa | ||
| Enteromorpha prolifera | ||
| Udotea flabellum | ||
| Valonia aegagropila | ||
| Phaeophyta | Dictyota dichotoma | |
| Dictyota mertensii | ||
| Padina gymnospora | ||
| Sargassum vulgare | ||
| Spatoglossum schroederi | ||
| Rhodophyta | Acanthophora spicifera | |
| Bryothamnion seaforthii | ||
| Bryothamnion triquetum | ||
| Corallina panizzoi | ||
| Corynomorpha clavata | ||
| Digenea simplex | ||
| Galaxaura sp. | ||
| Gelidiella acerosa | ||
| Gracilaria cervicornis | ||
| Gracilaria ferox | ||
| Gracilaria ramosíssima | ||
| Gracilaria wrightii | ||
| Gracilaria sp. | ||
| Laurencia sp. | ||
| Meristiella echinocarpum | ||
| Ochtodes seundiramea |
| Marine Organism | Species | Bacterial strains | ||
|---|---|---|---|---|
| E. coli | S. aureus | S. epidermidis | ||
| Marine Sponges | Agelas sventres | - | 9,0 | - |
| Amphimedom compressa | 8,7 | 9,7 | 8,7 | |
| Amphimedon viridis | 8,0 | - | 8,0 | |
| Aplysina fistularis | 10,0 | 14,0 | 13,0 | |
| Aplysina fulva | 11,3 | 15,0 | 14,0 | |
| Aplysina lactuca | 12,3 | 14,0 | 15,3 | |
| Mycale sp. | 7,0 | 11,3 | 8,7 | |
| Pseudosuberites sp. | 15,0 | 19,3 | 14,7 | |
| Tedania ignis | - | 15,7 | 9,3 | |
| Topsentia ophiraphidites | - | 16,0 | 10,7 | |
| Positive Control | Ampicillin | 16,7 | 26,7 | 18,3 |
| Negative Control | Distilled water | - | - | - |
| Marine Organism | Species | Bacterial strains | ||
|---|---|---|---|---|
| E. coli | S. aureus | S. epidermidis | ||
| Marine Sponges | Agelas sventres | - | 15,0 | 12,3 |
| Aiolochroia crassa | - | 9,3 | - | |
| Amphimedon compressa | 9,0 | 10,3 | 9,3 | |
| Amphimedon viridis | 9,0 | 9,0 | 9,3 | |
| Aplysina cauliformes | 15,7 | 15,7 | - | |
| Aplysina fistularis | 14,3 | 16,0 | - | |
| Aplysina fulva | 16,3 | 23,0 | 18,0 | |
| Aplysina lactuca | 16,3 | 19,0 | 8,3 | |
| Erylus formosus | - | - | 15,0 | |
| Ircinia felix | - | 10,3 | 8,0 | |
| Mycale sp. | 16,3 | 22,7 | 18,3 | |
| Pseudosuberites sp. | 17,7 | - | - | |
| Topsentia ophiraphidites | - | 18,3 | 14,0 | |
| Marine Macroalgae | Amansia multifida | - | 24,0 | - |
| Corallina panizzoi | - | - | 9,0 | |
| Cryptonemia crenulata | - | - | 10,0 | |
| Dictyota dichotoma | - | 8,0 | - | |
| Dictyota mertensii | - | 8,0 | 8,3 | |
| Gracilaria ramosissima | - | - | 8,7 | |
| Gracilaria sp. | - | 9,3 | 8,3 | |
| Laurencia sp. | - | - | 8,3 | |
| Sargassum vulgare | - | 11,0 | - | |
| Valonia aegagropila | - | 12,0 | - | |
| Positive Control | Ampicillin | 16,7 | 26,7 | 18,3 |
| Negative Control | Evaporated acetonitrile | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
