Submitted:
17 March 2025
Posted:
17 March 2025
You are already at the latest version
Abstract
Keywords:
Introduction
Limitations of Current Therapeutic Strategies
The Concept of Cancer Stem Cells in Glioblastoma
Characteristics of GBM Stem Cells (GSCs)
Identification and Isolation of GSCs
Biological Properties of GSCs
Signaling Pathways Focusing on GSCs
GSCs in Tumor Initiation and Progression
Role in Tumor Heterogeneity
| GSC Subtype | Developmental | Injury-Response |
|---|---|---|
| Key Transcriptional Programs & Features | - Linked to neurodevelopmental processes - High expression of neurodevelopmental TFs (e.g., OLIG2, SOX2) - Often enriched for pathways driving progenitor-like phenotypes |
- Associated with tissue repair and immune/inflammatory signaling - Activated integrin/focal adhesion pathways - Often co-express markers tied to stress response (e.g., integrin α6) |
| Unique Dependencies / Vulnerabilities | - OLIG2 expression critical for proliferation and GSC maintenance - Neurodevelopmental signaling hubs (e.g., Hedgehog, Notch) |
- Integrin–FAK axis for adhesion, migration, and survival - Upregulated MAPK/MEK signaling - Stress-related survival pathways (e.g., NF-κB) |
| Targeted Pathways / Genes | - OLIG2 - SOX2 - Hedgehog/Notch signaling |
- β1/α6 integrins - FAK (focal adhesion kinase) - MEK (in MAPK pathway) |
| Representative Experimental Drugs or Approaches | - OLIG2 inhibitors (gene therapy or small-molecule approaches) - Hedgehog/Notch pathway inhibitors (e.g., vismodegib for Hedgehog; γ-secretase inhibitors for Notch) |
- FAK inhibitors (e.g., defactinib) - Integrin-blocking antibodies (e.g., volociximab targeting α5β1 or cilengitide targeting αvβ3/αvβ5) - MEK inhibitors (e.g., trametinib, cobimetinib) |
| Rationale / Mechanism | - Blocking OLIG2 disrupts core developmental programs critical for GSC self-renewal. - Inhibiting developmental pathways (Hedgehog, Notch) impairs stemness and forces differentiation, potentially reducing tumor propagation. |
- Disrupting FAK or integrin signaling decreases GSC migration, adhesion, and survival within the injured/tumor microenvironment. - MEK inhibition blocks downstream survival and proliferation signals. - Targeting these nodes selectively impairs 'injury-response' GSCs reliant on these pathways. |
Angiogenesis and the Vascular Niche
Immune Modulation
| Mechanism | Important Molecules | GSC-Driven Effects | Potential Interventions |
|---|---|---|---|
| Secretion of immunosuppressive cytokines | - TGF-β - IL-10 - PGE2 |
- Suppresses T cell, NK cell function - Reduces pro-inflammatory cytokine production - Induces regulatory T cell (Treg) expansion |
- TGF-β inhibitors (e.g., galunisertib) - IL-10 blocking antibodies - COX-2 inhibitors (to reduce PGE2) |
| Immune checkpoint molecule expression | - PD-L1 - PD-1 (on T cells) |
- Inhibits T cell activity via PD-1/PD-L1 axis - Promotes T cell exhaustion - Leads to apoptosis of effector T cells |
- Anti–PD-1 (e.g., nivolumab) - Anti–PD-L1 (e.g., atezolizumab) - Combination with other immunotherapies |
| GSC-modulated APC dysfunction | - Dendritic cells - Tumor-associated macrophages (TAMs) and microglia - GSC-secreted TFPI2 (JNK–STAT3 activation) |
- Induces tolerogenic DCs with impaired antigen presentation - Polarizes macrophages/microglia toward immunosuppressive phenotypes (M2-type) - Promotes Treg cells |
- DC-based vaccines with matured DCs - Macrophage reprogramming (e.g., CSF-1R inhibitors) - TFPI2 pathway inhibitors |
| Rewiring of amino acid metabolism | - Lysine transporters (SLC7A2) - Crotonyl-CoA–producing enzyme (GCDH) - Crotonyl-CoA hydratase (ECHS1) |
- Alters immune cell infiltration and activation - Promotes an immunosuppressive microenvironment - Dampens type I IFN signaling |
- Targeted inhibition of lysine transporters - Crotonylation inhibitors - Dietary lysine restriction + MYC/PD-1 blockade |
| Enhanced extracellular stress response | - Cell surface GRP78 (csGRP78) - ER stress pathways |
- Upregulated under ER stress - Creates an escape mechanism from immune surveillance - Potentially reduces cytotoxic T cell recognition |
- CAR T cells targeting csGRP78 - ER stress modulators |
GSCs and Therapy Resistance
Mechanisms of Chemotherapy Resistance
Metabolic Adaptations
Therapeutic Strategies Targeting GSCs
Targeting Surface Markers
Immunotherapeutic Approaches
| Combination Strategy | Mechanism of Action | Synergy & Key Findings | Evidence (Preclinical/Clinical) |
|---|---|---|---|
| GSC-Targeted Inhibitors + SOC (TMZ/Radiotherapy) | - Inhibition of GSC survival pathways (e.g., Notch, Hedgehog, Wnt/β-catenin) - DNA damage from TMZ/radiation |
- Targeted inhibitors sensitize GSCs to DNA-damaging agents - Reduced ability of GSCs to repair DNA lesions under pathway inhibition |
Preclinical and early-phase trials |
| Small-Molecule EGFR Inhibitors (e.g., Erlotinib) + SOC | - Blockade of EGFR signaling, reducing proliferation - TMZ/radiation damage increases reliance on EGFR pathway |
- Enhanced apoptosis in GSCs that rely on EGFR survival signaling - Prolonged survival in xenograft models |
Preclinical studies |
| Immune Checkpoint Inhibitors + GSC-Targeted Therapy | - Immune re-activation (anti-PD-1, anti-CTLA-4) - Direct blockade of GSC-maintaining pathways (e.g., STAT3, TFPI2) |
- Encourages T-cell-mediated elimination of GSCs - Decrease in immunosuppressive factors secreted by GSCs |
Ongoing clinical trials |
| CAR T Cells + Standard-of-Care | - CAR T cells specifically target GSC surface markers (e.g., IL13Ra2, EGFRvIII, csGRP78) - TMZ or radiation to reduce tumor bulk |
- Dual targeting: bulk tumor reduction by SOC plus immunologic targeting of therapy-resistant GSCs - Potential for durable responses |
Phase 1/2 clinical trials |
| Metabolic Inhibitors (e.g., Lysine Restriction) + Immune Tx | - Interference with GSC-specific metabolic pathways (e.g., lysine catabolism) - Enhanced T-cell response (anti-PD-1, adoptive T cells) |
- Disruption of GSC metabolic reprogramming - Synergistic effect on immune activation and GSC depletion |
Preclinical models |
| Angiogenesis Inhibitors (Bevacizumab) + GSC-Directed Agents | - VEGF pathway inhibition disrupts vascular niche supporting GSCs - GSC-targeted agents (e.g., integrin α6 inhibitors) impair adhesion and survival |
- Decreased blood supply to GSC niche - Reduced ability of GSCs to invade and self-renew |
Preclinical and clinical settings |
| Epigenetic Modulators (HDAC/BMI1 Inhibitors) + SOC | - Reversal of GSC-associated epigenetic changes - TMZ/radiotherapy exert cytotoxic effects |
- Epigenetic sensitization of GSCs to DNA-damaging therapies - Inhibition of self-renewal pathways (BMI1, etc.) |
Preclinical |
| Multi-Targeted Approach: GSC-Targeted Vaccine + Checkpoint Inhibitors + SOC | - Vaccine primes immune system against GSC-specific antigens - Checkpoint blockers sustain T-cell activity - SOC reduces tumor mass |
- Immunological 'double hit': vaccine-activated T cells plus checkpoint blockade - Reduced immune evasion by GSCs - Lower tumor burden |
Early clinical trials |
Challenges in Targeting GSCs
Marker Heterogeneity and Specificity
Tumor Microenvironment Influence
Therapeutic Resistance and Adaptation
Future Perspectives
Advancements in GSC Research Models
Single-Cell Omics and Personalized Medicine
Combination Therapies
Discussion and Conclusion
Author Contributions
Funding
Conflicts of Interest
References
- Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021;23(8):1231-51. [CrossRef]
- Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359(5):492-507. [CrossRef]
- Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396-401. [CrossRef]
- Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756-60. [CrossRef]
- Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CL, Rich JN. Cancer stem cells in glioblastoma. Genes Dev. 2015;29(12):1203-17.
- Gimple RC, Bhargava S, Dixit D, Rich JN. Glioblastoma stem cells: lessons from the tumor hierarchy in a lethal cancer. Genes Dev. 2019;33(11-12):591-609. [CrossRef]
- Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987-96. [CrossRef]
- Weller M, Wick W, Aldape K, Brada M, Berger M, Pfister SM, et al. Glioma. Nat Rev Dis Primers. 2015;1:15017.
- Sanai N, Berger MS. Surgical oncology for gliomas: the state of the art. Nat Rev Clin Oncol. 2018;15(2):112-25. [CrossRef]
- Sottoriva A, Spiteri I, Piccirillo SG, Touloumis A, Collins VP, Marioni JC, et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A. 2013;110(10):4009-14. [CrossRef]
- Senft C, Bink A, Franz K, Vatter H, Gasser T, Seifert V. Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol. 2011;12(11):997-1003. [CrossRef]
- Sener UT, Sulman EP, Sarkaria JN. Temozolomide use in elderly patients with MGMT promoter unmethylated glioblastoma: Is it finally time to dismount a dead horse? Neuro Oncol. 2024;26(10):1876-7. [CrossRef]
- Bhaskaran D, Savage J, Patel A, Collinson F, Mant R, Boele F, et al. A randomised phase II trial of temozolomide with or without cannabinoids in patients with recurrent glioblastoma (ARISTOCRAT): protocol for a multi-centre, double-blind, placebo-controlled trial. BMC Cancer. 2024;24(1):83. [CrossRef]
- Johannessen TC, Bjerkvig R. Molecular mechanisms of temozolomide resistance in glioblastoma multiforme. Expert Rev Anticancer Ther. 2012;12(5):635-42. [CrossRef]
- Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H. The brain tumor microenvironment. Glia. 2012;60(3):502-14.
- Semenza, GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148(3):399-408. [CrossRef]
- Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423-37. [CrossRef]
- Pardridge, WM. Blood-brain barrier delivery. Drug Discov Today. 2007;12(1-2):54-61.
- van Tellingen O, Yetkin-Arik B, de Gooijer MC, Wesseling P, Wurdinger T, de Vries HE. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat. 2015;19:1-12. [CrossRef]
- Omuro A, DeAngelis LM. Glioblastoma and other malignant gliomas: a clinical review. Jama. 2013;310(17):1842-50.
- Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105-11.
- Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63(18):5821-8.
- Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;64(19):7011-21. [CrossRef]
- Rich JN, Bao S. Chemotherapy and cancer stem cells. Cell Stem Cell. 2007;1(4):353-5.
- Jordan CT, Guzman ML, Noble M. Cancer stem cells. N Engl J Med. 2006;355(12):1253-61.
- Vescovi AL, Galli R, Reynolds BA. Brain tumour stem cells. Nat Rev Cancer. 2006;6(6):425-36. [CrossRef]
- Lathia JD, Liu H. Overview of Cancer Stem Cells and Stemness for Community Oncologists. Target Oncol. 2017;12(4):387-99. [CrossRef]
- Diehn M, Cho RW, Clarke MF. Therapeutic implications of the cancer stem cell hypothesis. Semin Radiat Oncol. 2009;19(2):78-86. [CrossRef]
- Safa, AR. Drug and apoptosis resistance in cancer stem cells: a puzzle with many pieces. Cancer Drug Resist. 2022;5(4):850-72. [CrossRef]
- Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5(4):275-84. [CrossRef]
- Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983-8. [CrossRef]
- Moore N, Lyle S. Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance. J Oncol. 2011;2011. [CrossRef]
- Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 2012;488(7412):522-6. [CrossRef]
- Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 2006;66(16):7843-8.
- Eyler CE, Rich JN. Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol. 2008;26(17):2839-45. [CrossRef]
- Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, et al. CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res. 2007;67(9):4010-5.
- Visvader JE, Lindeman GJ. Cancer stem cells: current status and evolving complexities. Cell Stem Cell. 2012;10(6):717-28. [CrossRef]
- Singh SK, Clarke ID, Hide T, Dirks PB. Cancer stem cells in nervous system tumors. Oncogene. 2004;23(43):7267-73. [CrossRef]
- Wang J, Sakariassen P, Tsinkalovsky O, Immervoll H, Bøe SO, Svendsen A, et al. CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int J Cancer. 2008;122(4):761-8. [CrossRef]
- Brescia P, Richichi C, Pelicci G. Current strategies for identification of glioma stem cells: adequate or unsatisfactory? J Oncol. 2012;2012:376894.
- Pietras A, Katz AM, Ekström EJ, Wee B, Halliday JJ, Pitter KL, et al. Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth. Cell Stem Cell. 2014;14(3):357-69. [CrossRef]
- Anido J, Sáez-Borderías A, Gonzàlez-Juncà A, Rodón L, Folch G, Carmona MA, et al. TGF-β Receptor Inhibitors Target the CD44(high)/Id1(high) Glioma-Initiating Cell Population in Human Glioblastoma. Cancer Cell. 2010;18(6):655-68. [CrossRef]
- Lathia JD, Gallagher J, Myers JT, Li M, Vasanji A, McLendon RE, et al. Direct in vivo evidence for tumor propagation by glioblastoma cancer stem cells. PLoS One. 2011;6(9):e24807. [CrossRef]
- Bao S, Wu Q, Li Z, Sathornsumetee S, Wang H, McLendon RE, et al. Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res. 2008;68(15):6043-8.
- Tchoghandjian A, Baeza N, Colin C, Cayre M, Metellus P, Beclin C, et al. A2B5 cells from human glioblastoma have cancer stem cell properties. Brain Pathol. 2010;20(1):211-21. [CrossRef]
- Jin X, Kim LJY, Wu Q, Wallace LC, Prager BC, Sanvoranart T, et al. Targeting glioma stem cells through combined BMI1 and EZH2 inhibition. Nat Med. 2017;23(11):1352-61. [CrossRef]
- Venere M, Fine HA, Dirks PB, Rich JN. Cancer stem cells in gliomas: identifying and understanding the apex cell in cancer's hierarchy. Glia. 2011;59(8):1148-54. [CrossRef]
- Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344(6190):1396-401. [CrossRef]
- Laks DR, Masterman-Smith M, Visnyei K, Angenieux B, Orozco NM, Foran I, et al. Neurosphere formation is an independent predictor of clinical outcome in malignant glioma. Stem Cells. 2009;27(4):980-7. [CrossRef]
- Reynolds BA, Rietze RL. Neural stem cells and neurospheres--re-evaluating the relationship. Nat Methods. 2005;2(5):333-6. [CrossRef]
- Pastrana E, Silva-Vargas V, Doetsch F. Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell. 2011;8(5):486-98. [CrossRef]
- den Hollander P, Joseph R, Vasaikar S, Kuburich NA, Deshmukh AP, Mani SA. Limiting Dilution Tumor Initiation Assay: An In Vivo Approach for the Study of Cancer Stem Cells. Methods Mol Biol. 2022;2429:547-54.
- Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 2006;9(5):391-403. [CrossRef]
- Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, Russell R, et al. Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell. 2009;4(6):568-80. [CrossRef]
- Smith LR, Cho S, Discher DE. Stem Cell Differentiation is Regulated by Extracellular Matrix Mechanics. Physiology (Bethesda). 2018;33(1):16-25. [CrossRef]
- Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A. 2003;100(25):15178-83. [CrossRef]
- Gangemi RM, Griffero F, Marubbi D, Perera M, Capra MC, Malatesta P, et al. SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem Cells. 2009;27(1):40-8. [CrossRef]
- Lathia JD, Hitomi M, Gallagher J, Gadani SP, Adkins J, Vasanji A, et al. Distribution of CD133 reveals glioma stem cells self-renew through symmetric and asymmetric cell divisions. Cell Death Dis. 2011;2(9):e200. [CrossRef]
- Gilbertson RJ, Rich JN. Making a tumour's bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer. 2007;7(10):733-6. [CrossRef]
- Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, et al. A perivascular niche for brain tumor stem cells. Cancer Cell. 2007;11(1):69-82. [CrossRef]
- Stiles CD, Rowitch DH. Glioma stem cells: a midterm exam. Neuron. 2008;58(6):832-46. [CrossRef]
- Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321(5897):1807-12. [CrossRef]
- Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007;21(21):2683-710. [CrossRef]
- Fouse SD, CJ. Cancer stem cells in brain tumors and their therapeutic implications. Neurotherapeutics. 2009;6(3):694-702.
- Choi JD, Lee JS. Interplay between Epigenetics and Genetics in Cancer. Genomics Inform. 2013;11(4):164-73. [CrossRef]
- Suvà ML, Riggi N, Bernstein BE. Epigenetic reprogramming in cancer. Science. 2013;339(6127):1567-70.
- Shah AH, Rivas SR, Doucet-O'Hare TT, Govindarajan V, DeMarino C, Wang T, et al. Human endogenous retrovirus K contributes to a stem cell niche in glioblastoma. J Clin Invest. 2023;133(13).
- Mehta S, Huillard E, Kesari S, Maire CL, Golebiowski D, Harrington EP, et al. The central nervous system-restricted transcription factor Olig2 opposes p53 responses to genotoxic damage in neural progenitors and malignant glioma. Cancer Cell. 2011;19(3):359-71. [CrossRef]
- Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY, et al. The transcriptional network for mesenchymal transformation of brain tumours. Nature. 2010;463(7279):318-25. [CrossRef]
- Yin J, Seo Y, Rhim J, Jin X, Kim TH, Kim SS, et al. Cross-talk between PARN and EGFR-STAT3 Signaling Facilitates Self-Renewal and Proliferation of Glioblastoma Stem Cells. Cancer Res. 2023;83(22):3693-709.
- Pang L, Dunterman M, Guo S, Khan F, Liu Y, Taefi E, et al. Kunitz-type protease inhibitor TFPI2 remodels stemness and immunosuppressive tumor microenvironment in glioblastoma. Nat Immunol. 2023;24(10):1654-70. [CrossRef]
- Snuderl M, Fazlollahi L, Le LP, Nitta M, Zhelyazkova BH, Davidson CJ, et al. Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell. 2011;20(6):810-7. [CrossRef]
- MacLeod G, Molaei F, Haider S, Almeida MP, Lin S, Kushida M, et al. Fitness Screens Map State-Specific Glioblastoma Stem Cell Vulnerabilities. Cancer Res. 2024;84(23):3967-83.
- Wang J, Cazzato E, Ladewig E, Frattini V, Rosenbloom DI, Zairis S, et al. Clonal evolution of glioblastoma under therapy. Nat Genet. 2016;48(7):768-76. [CrossRef]
- Folkins C, Shaked Y, Man S, Tang T, Lee CR, Zhu Z, et al. Glioma tumor stem-like cells promote tumor angiogenesis and vasculogenesis via vascular endothelial growth factor and stromal-derived factor 1. Cancer Res. 2009;69(18):7243-51.
- Zhao L, Qiu Z, Yang Z, Xu L, Pearce TM, Wu Q, et al. Lymphatic endothelial-like cells promote glioblastoma stem cell growth through cytokine-driven cholesterol metabolism. Nat Cancer. 2024;5(1):147-66. [CrossRef]
- Wu A, Wei J, Kong LY, Wang Y, Priebe W, Qiao W, et al. Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol. 2010;12(11):1113-25. [CrossRef]
- Yi L ZQ, Xu X. B7-H4 expression in activated astrocyte promotes the proliferation of glioma stem-like cells. J Exp Clin Cancer Res. 2016;35(1):1-13.
- Han J, Alvarez-Breckenridge CA, Wang QE, Yu J. TGF-β signaling and its targeting for glioma treatment. Am J Cancer Res. 2015;5(3):945-55.
- Himes SR, Sester DP, Ravasi T, Cronau SL, Sasmono T, Hume DA. The JNK are important for development and survival of macrophages. J Immunol. 2006;176(4):2219-28.
- Bleau AM, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW, et al. PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell. 2009;4(3):226-35. [CrossRef]
- Dean, M. ABC transporters, drug resistance, and cancer stem cells. J Mammary Gland Biol Neoplasia. 2009;14(1):3-9.
- Vlashi E, Lagadec C, Vergnes L, Matsutani T, Masui K, Poulou M, et al. Metabolic state of glioma stem cells and nontumorigenic cells. Proc Natl Acad Sci U S A. 2011;108(38):16062-7. [CrossRef]
- Lyssiotis CA, Kimmelman AC. Metabolic Interactions in the Tumor Microenvironment. Trends Cell Biol. 2017;27(11):863-75. [CrossRef]
- Yuan H, Wu X, Wu Q, Chatoff A, Megill E, Gao J, et al. Lysine catabolism reprograms tumour immunity through histone crotonylation. Nature. 2023;617(7962):818-26. [CrossRef]
- Dahan P MGJ, Delmas C. Ionizing radiations sustain glioblastoma stem cell self-renewal through FOXO3a activation. Cell Death Differ. 2014;21(2):369-80.
- Lathia JD, Li M, Hall PE, Gallagher J, Hale JS, Wu Q, et al. Laminin alpha 2 enables glioblastoma stem cell growth. Ann Neurol. 2012;72(5):766-78. [CrossRef]
- Bidlingmaier S, Zhu X, Liu B. The utility and limitations of glycosylated human CD133 epitopes in defining cancer stem cells. J Mol Med (Berl). 2008;86(9):1025-32. [CrossRef]
- Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med. 2006;12(10):1167-74. [CrossRef]
- Pellegatta S SB, Di Ianni N. Constitutive and inducible expression of IL-15 by glioblastoma stem cells enhances the therapeutic effect of IL-15-activated cytokine-induced killer cells against autologous human glioblastomas. Clin Cancer Res. 2009;15(21):6945-56.
- Jackson HJ, Rafiq S, Brentjens RJ. Driving CAR T-cells forward. Nat Rev Clin Oncol. 2016;13(6):370-83. [CrossRef]
- Ahmed N, Brawley V, Hegde M, Bielamowicz K, Kalra M, Landi D, et al. HER2-Specific Chimeric Antigen Receptor-Modified Virus-Specific T Cells for Progressive Glioblastoma: A Phase 1 Dose-Escalation Trial. JAMA Oncol. 2017;3(8):1094-101.
- City of Hope Medical Center A Phase 1 Study to Evaluate IL13Rα2-Targeted Chimeric Antigen Receptor (CAR) T Cells Combined with Checkpoint Inhibition for Patients with Resectable Recurrent Glioblastoma. Clinicaltrials.gov. Available from: https://clinicaltrials.gov/study/NCT04003649.
- Wang S, Wei W, Yuan Y, Sun B, Yang D, Liu N, et al. Chimeric antigen receptor T cells targeting cell surface GRP78 efficiently kill glioblastoma and cancer stem cells. J Transl Med. 2023;21(1):493. [CrossRef]
- Choi BD, Gerstner ER, Frigault MJ, Leick MB, Mount CW, Balaj L, et al. Intraventricular CARv3-TEAM-E T Cells in Recurrent Glioblastoma. N Engl J Med. 2024;390(14):1290-8. [CrossRef]
- University of Florida. Phase I Study of IL-8 Receptor-modified CD70 CAR T Cell Therapy in CD70+ Adult Glioblastoma (IMPACT) (IMPACT) [Internet]. ClinicalTrials.gov; 2025 Mar 5 Available from: https://clinicaltrials.gov/study/NCT05353530.
- City of Hope Medical Center. Chimeric Antigen Receptor (CAR) T Cells With a Chlorotoxin Tumor-Targeting Domain for the Treatment of MMP2+ Recurrent or Progressive Glioblastoma [Internet]. ClinicalTrials.gov; 2024 Nov 29. Available from: https://clinicaltrials.gov/study/NCT04214392.
- University of Pennsylvania. CART-EGFRvIII + Pembrolizumab in GBM [Internet]. ClinicalTrials.gov; 2023 Jun 22. Available from: https://clinicaltrials.gov/study/NCT03726515.
- Bradshaw A, Wickremsekera A, Tan ST, Peng L, Davis PF, Itinteang T. Cancer Stem Cell Hierarchy in Glioblastoma Multiforme. Front Surg. 2016;3:21. [CrossRef]
- Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65(23):10946-51. [CrossRef]
- Joo KM, Kim SY, Jin X, Song SY, Kong DS, Lee JI, et al. Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Lab Invest. 2008;88(8):808-15. [CrossRef]
- Tamura K, Aoyagi M, Wakimoto H, Ando N, Nariai T, Yamamoto M, et al. Accumulation of CD133-positive glioma cells after high-dose irradiation by Gamma Knife surgery plus external beam radiation. J Neurosurg. 2010;113(2):310-8. [CrossRef]
- Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN. The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle. 2009;8(20):3274-84. [CrossRef]
- Soeda A, Park M, Lee D, Mintz A, Androutsellis-Theotokis A, McKay RD, et al. Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene. 2009;28(45):3949-59. [CrossRef]
- Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):699-708. [CrossRef]
- Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell. 2009;15(6):501-13. [CrossRef]
- Hamburg EJ, Atit RP. Sustained β-catenin activity in dermal fibroblasts is sufficient for skin fibrosis. J Invest Dermatol. 2012;132(10):2469-72. [CrossRef]
- Bhat KP, Salazar KL, Balasubramaniyan V, Wani K, Heathcock L, Hollingsworth F, et al. The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma. Genes Dev. 2011;25(24):2594-609. [CrossRef]
- Auffinger B, Spencer D, Pytel P, Ahmed AU, Lesniak MS. The role of glioma stem cells in chemotherapy resistance and glioblastoma multiforme recurrence. Expert Rev Neurother. 2015;15(7):741-52. [CrossRef]
- Pampaloni F, Reynaud EG, Stelzer EH. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol. 2007;8(10):839-45. [CrossRef]
- Heinrich MA, Bansal R, Lammers T, Zhang YS, Michel Schiffelers R, Prakash J. 3D-Bioprinted Mini-Brain: A Glioblastoma Model to Study Cellular Interactions and Therapeutics. Adv Mater. 2019;31(14):e1806590. [CrossRef]
- Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM, et al. Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol. 2012;9(6):338-50. [CrossRef]
- Hubert CG, Rivera M, Spangler LC, Wu Q, Mack SC, Prager BC, et al. A Three-Dimensional Organoid Culture System Derived from Human Glioblastomas Recapitulates the Hypoxic Gradients and Cancer Stem Cell Heterogeneity of Tumors Found In Vivo. Cancer Res. 2016;76(8):2465-77.
- Navin, NE. Cancer genomics: one cell at a time. Genome Biol. 2014;15(8):452.
- Tirosh I, Suvà ML. Tackling the Many Facets of Glioblastoma Heterogeneity. Cell Stem Cell. 2020;26(3):303-4. [CrossRef]
- Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, et al. An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma. Cell. 2019;178(4):835-49.e21. [CrossRef]
- Hood L, Friend SH. Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat Rev Clin Oncol. 2011;8(3):184-7. [CrossRef]
- Liu Z LX, Zhang JT. Personalized medicine in the future: cancer personalized therapy. Adv Exp Med Biol. 2016;943:55-69.
- Kahn J HT, Jamal M. The role of cancer stem cells in the immune-suppressive effects of chemotherapy. Transl Cancer Res. 2017;6(Suppl 2):S292-S@94.
- Dean, M. Cancer stem cells: redefining the paradigm of cancer treatment strategies. Mol Interv. 2006;6(3):140-8. [CrossRef]
- Fan X, Khaki L, Zhu TS, Soules ME, Talsma CE, Gul N, et al. NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells. 2010;28(1):5-16. [CrossRef]
- Dunn GP, Rinne ML, Wykosky J, Genovese G, Quayle SN, Dunn IF, et al. Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev. 2012;26(8):756-84. [CrossRef]
- Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008;100(9):672-9. [CrossRef]
- Audia A CS, Glass R, Bhat KP. The impact of the tumor microenvironment on the properties of glioma stem-like cells. Front Oncol. 2017;7:143.
- Sun H XX, Li H. New hope for cancer patients: repurposing drugs for cancer therapy. Transl Oncol. 2020;13(6):100870.
- Prados MD, Byron SA, Tran NL, Phillips JJ, Molinaro AM, Ligon KL, et al. Toward precision medicine in glioblastoma: the promise and the challenges. Neuro Oncol. 2015;17(8):1051-63. [CrossRef]
- Stupp R, Taillibert S, Kanner AA, Kesari S, Steinberg DM, Toms SA, et al. Maintenance Therapy With Tumor-Treating Fields Plus Temozolomide vs Temozolomide Alone for Glioblastoma: A Randomized Clinical Trial. Jama. 2015;314(23):2535-43.
| Marker | Expression/Localization | Key Functional Role | Relevance in GSC Biology | Potential for Targeted Therapy | Additional Comments |
|---|---|---|---|---|---|
| CD133 | Cell-surface glycoprotein (also known as Prominin-1) | Maintenance of stem-like phenotype; Self-renewal | Widely used to isolate GSCs; Expression correlates with poor prognosis | Potential immunotherapy target (e.g., vaccines, antibodies); Strategies under investigation | - Expression can be lost under certain culture or therapeutic conditions - Not entirely exclusive to GSCs but still a dominant marker |
| CD44 | Cell-surface adhesion molecule | Cell adhesion and migration; Contributes to mesenchymal/invasive properties | Enriched in mesenchymal GSC subtypes; Facilitates brain infiltration | Blockade strategies (e.g., antibodies, small-molecule inhibitors) explored | - Multiple isoforms can exert varied effects on GSC properties - Linked to therapy resistance |
| A2B5 | Cell-surface ganglioside marker | Identifies glial precursor-like cells | Widely co-expressed with other stem markers (e.g., CD133); Helps refine GSC populations | Possible immunotherapeutic target in combination with other markers | - Commonly used in combination panels to increase specificity for GSC isolation |
| L1CAM | Cell-surface adhesion molecule | Promotes cell motility and adhesion; Enhances invasiveness | Crucial for GSC maintenance and survival; Associated with radiation resistance | Monoclonal antibodies under development | - Regulates invasive potential - Elevated expression tied to poor patient outcomes |
| Integrin α6 | Cell-surface receptor for laminin | Mediates cell–ECM attachment; Promotes survival and invasion | High levels correlate with stemness; Facilitates basement membrane infiltration | Integrin inhibitors in clinical or preclinical evaluation | - Targeting α6 can reduce GSC viability - Often combined with radiation or chemotherapy for synergy |
| Nestin | Intracellular intermediate filament protein | Structural support in progenitor cells | Neural stem/progenitor cell marker; Reflects high proliferative capacity | Not directly targeted; Primarily used for GSC identification | - Expression often correlates with tumor aggressiveness and poor prognosis |
| SOX2 | Intracellular transcription factor | Maintains pluripotency and self-renewal | Essential for GSC proliferation; Drives stem-like gene programs | Various small-molecule inhibitors under early investigation | - Central regulator of neural development pathways - Overexpression linked to aggressive disease |
| OLIG2 | Intracellular transcription factor | Regulates oligodendrocyte lineage commitment; Contributes to neuronal specification | Critical for GSC proliferation; Associated with radioresistance | Potential gene therapy or epigenetic modulation | - Frequently upregulated in specific GBM subtypes - High OLIG2 often predicts worse outcomes |
| BMI1 | Intracellular polycomb group protein | Chromatin remodeling; Governs self-renewal | Promotes GSC survival; Linked to therapy resistance and aggressiveness | Epigenetic inhibitors targeting BMI1 are being tested | - Overexpression correlates with poor clinical outcomes - Maintains stemness under environmental stress |
| ALDH1A3 | Cytoplasmic enzyme (aldehyde dehydrogenase) | Detoxification; Retinoic acid metabolism | Enriched in tumor-initiating GSC subpopulations; Associated with chemo- and radioresistance | ALDH inhibitors show promise in preclinical models | - Useful for isolating more aggressive GSC populations - Predictive of therapy resistance |
| PDLIM1 | Intracellular scaffold protein containing PDZ and LIM domains; also known as CLP36 | Regulates proliferation, apoptosis, and tumorigenesis; Maintains/expands GSC subpopulations; Confers chemoresistance (via PI3K-AKT pathway) | Specifically enriched in GSCs within GBM; Drives poor prognosis and therapy resistance | Novel target for inhibiting GSC-mediated tumor growth and resistance | - Newly identified GSC marker in GBM; Knockdown reduces GSC ratios and tumorigenic potential - Likely modulates cytoskeletal reorganization and downstream signaling (e.g., PI3K-AKT) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).