Submitted:
13 March 2025
Posted:
14 March 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
2.2. Methods and Measurements
2.3. Data Analysis
3. Results
4. Discussion
5. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgements
Conflicts of Interest
References
- Odetayo, A.F. , Abdulrahim H.A., Fabiyi O.T., Adewole T.A., Ajiboye B.E., Omeiza A.N., Olayaki L.A. Synergistic Effects of Vitamin D and Exercise on Diabetes-induced Gonadotoxicity in Male Wistar Rats: Role of Xanthine Oxidase/Uric Acid and Nrf2/NfkB Signaling. Cell Biochem Biophys. 2024, 82, 2065–2077. [Google Scholar]
- Ni, X. , Su H., Lv Y., Li R., Liu L., Zhu Y., Yang Z., Hu C. Modifiable pathways for longevity: A Mendelian randomization analysis. Clin Nutr. 2023, 42, 1041–1047. [Google Scholar]
- Zheng, J. , Hu Y., Xu H., Lei Y., Zhang J., Zheng Q., Li L., Tu W., Chen R., Guo Q., et al. Normal-weight visceral obesity promotes a higher 10-year atherosclerotic cardiovascular disease risk in patients with type 2 diabetes mellitus-a multicenter study in China. Cardiovasc Diabetol. 2023, 22, 137. [Google Scholar] [CrossRef]
- Levitsky, L.L. , Drews K.L., Haymond M., Glubitosi-Klug R.A., Levitt Katz L.E., Mititelu M., Tamborlane W., Tryggestad J.B., Weinstock R.S. TODAY Study Group. The obesity paradox: Retinopathy, obesity, and circulating risk markers in youth with type 2 diabetes in the TODAY Study. J Diabetes Complications 2022, 36, 108259. [Google Scholar] [CrossRef]
- Hormenu, T. , Salifu I., Paku J.E., Awlime-Ableh E., Antiri E.O., Gabla A.M., Arthur R.A., Nyane B., Amoah S., Banson C., et al. Unmasking the Risk Factors Associated with Undiagnosed Diabetes and Prediabetes in Ghana: Insights from Cardiometabolic Risk (CarMeR) Study-APTI Project. Int J Environ Res Public Health 2024, 21, 836. [Google Scholar] [CrossRef]
- Mousa, A. , Naderpoor N., Teede H., Scragg R., de Courten B. Vitamin D supplementation for improvement of chronic low-grade inflammation in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev. 2018, 76, 380–394. [Google Scholar] [CrossRef]
- Liu, J. , Zhang Y., Shi D., He C., Xia G. Vitamin D Alleviates Type 2 Diabetes Mellitus by Mitigating Oxidative Stress-Induced Pancreatic β-Cell Impairment. Exp Clin Endocrinol Diabetes 2023, 131, 656–666. [Google Scholar]
- MacGirlley, R. , Phoswa W.N., Mokgalaboni K. Modulatory Properties of Vitamin D in Type 2 Diabetic Patients: A Focus on Inflammation and Dyslipidemia. Nutrients 2023, 15, 4575. [Google Scholar] [CrossRef]
- Li, S. , Sun L., Qi L., Jia Y., Cui Z., Wang Z., Li F., Zhao X. Effect of High Homocysteine Level on the Severity of Coronary Heart Disease and Prognosis After Stent Implantation. J Cardiovasc Pharmacol. 2020, 76, 101–105. [Google Scholar] [CrossRef]
- Noor, A. , Rahman M.U., Faraz N., Samin K.A., Ullah H., Ali A. Relationship of Homocysteine With Gender, Blood Pressure, Body Mass Index, Hemoglobin A1c, and the Duration of Diabetes Mellitus Type 2. Cureus 2021, 13, e19211. [Google Scholar] [CrossRef]
- Zhang, L. , Zhao Y., Fan X., Liu D., Geng Y. Effects of continuous negative pressure suction combined with autologous platelet-rich gel on the levels of CRP, IL-6, wound healing and length of stay in clients with diabetic foot. Transfus Apher Sci. 2024, 63, 103989. [Google Scholar] [CrossRef]
- Hirschler, V. , Gonzalez C.D., Rica I., Urrutia I., Marinez Zalazar R., Aguayo A., Castaño L. San Antonio Study Group. Association between hepcidin and type 2 diabetes markers in indigenous Argentinean children living at high altitude. Clin Chim Acta 2022, 537, 194–198. [Google Scholar] [CrossRef]
- Katakami, N. , Mita T., Sato Y., Watada H., Shimomura I. Changes in serum levels of liver-related parameters, uric acid, and hemoglobin in patients with type 2 diabetes mellitus under treatment with tofogliflozin-a post-hoc analysis of the UTOPIA study. Diabetol Int. 2024, 15, 379–388. [Google Scholar] [CrossRef]
- WHO. CVD Risk Chart Working Group. World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. Lancet Glob Health 2019, 7, e1332–e1345. [Google Scholar] [CrossRef]
- Um, S. , Yom A., A. Muir J., Sopheab H. Overweight and obesity among women at reproductive age in Cambodia: Data analysis of Cambodia Demographic and Health Survey 2014. PLOS Glob Public Health 2023, 3, e0001768. [Google Scholar] [CrossRef]
- Brannon, G.E. , Kindratt T.B., Brown K.K. The Role of Respect and Collaborative Decision Making on Diabetes Care Factors Among Nonpregnant Women of Reproductive Age With Diabetes in the United States. J Patient Exp. 2024, 11, 23743735241309474. [Google Scholar] [CrossRef]
- Sohail, S. , Hussain Z. Pathophysiology of ischemic disorders- Ischemia, adipocytokines and diabetes mellitus. International Journal of Biology and Biotechnology 2013, 10, 155–166. [Google Scholar]
- Huang, X. , Wu Y., Ni Y., Xu H., He Y. Global, regional, and national burden of type 2 diabetes mellitus caused by high BMI from 1990 to 2021, and forecasts to 2045: analysis from the global burden of disease study 2021. Front Public Health 2025, 13, 1515797. [Google Scholar] [CrossRef]
- Mohan, V. Lessons Learned From Epidemiology of Type 2 Diabetes in South Asians: Kelly West Award Lecture 2024. Diabetes Care 2025, 48, 153–163. [Google Scholar] [CrossRef]
- Wang, Y. , Jiang Y., Wang N., Zhu M., Liu X., Wang R., Jiang F., Chen Y., Zhao Q., Zhao G. Central But Not General Obesity Is Positively Associated with the Risk of Hyperhomocysteinemia in Middle-Aged Women. Nutrients 2019, 11, 1614. [Google Scholar] [CrossRef]
- Al-Bayyari, N. , Hamadneh J., Hailat R., Hamadneh S. Total homocysteine is positively correlated with body mass index, waist-to-hip ratio, and fat mass among overweight reproductive women: A cross-sectional study. Nutr Res. 2017, 48, 9–15. [Google Scholar]
- Li, Z. , Zhao J., Hou C., Sun F., Dong J., Guo Y., Chu X. Factors Related to Plasma Homocysteine Concentration in Young Adults: A Retrospective Study Based on Checkup Populations. J Clin Med. 2023, 12, 1656. [Google Scholar] [CrossRef]
- De Pergola, G. , Pannacciulli N., Zamboni M., Minenna A., Brocco G., Sciaraffia M., Bosello, Giorgino R. Homocysteine plasma levels are independently associated with insulin resistance in normal weight, overweight and obese pre-menopausal women. Diabetes Nutr Metab. 2001, 14, 253–258. [Google Scholar]
- Al Fatly, M. , Mulder M.T., Roeters van Lennep J., Blom H.J.., Berk K.A.C. The effect of diet-induced weight loss on circulating homocysteine levels in people with obesity and type 2 diabetes. Nutr J. 2024, 23, 2. [Google Scholar] [CrossRef]
- Kumar, J. , Ingelsson E., Lind L., Fall T. No Evidence of a Causal Relationship between Plasma Homocysteine and Type 2 Diabetes: A Mendelian Randomization Study. Front Cardiovasc Med. 2015, 2, 11. [Google Scholar] [CrossRef]
- Ruan, L. , Chen W., Srinivasan S.R., Xu J., Toprak A., Berenson G.S. Plasma homocysteine is adversely associated with glomerular filtration rate in asymptomatic black and white young adults: the Bogalusa heart study. Eur J Epidemiol. 2009, 24, 315–319. [Google Scholar]
- Zulfania, Khan A. , Rehman S., Ghaffar T. Association of homocysteine with body mass index, blood pressure, HbA1c and duration of diabetes in type 2 diabetics. Pak J Med Sci. 2018, 34, 1483–1487. [Google Scholar]
- Arora, P. , Garcia-Bailo B., Dastani Z., Brenner D., Villegas A., Malik S., Spector T.D., Richards B., El-Sohemy A., Karmali M., et al. Genetic polymorphisms of innate immunity-related inflammatory pathways and their association with factors related to type 2 diabetes. BMC Med Genet. 2011, 12, 95. [Google Scholar] [CrossRef]
- Pitsavos, C. , Tampourlou M., Panagiotakos DB., Skoumas Y., Chrysohoou C., Nomikos T., Stefanadis C. Association Between Low-Grade Systemic Inflammation and Type 2 Diabetes Mellitus Among Men and Women from the ATTICA Study. Rev Diabet Stud. 2007, 4, 98–104. [Google Scholar]
- Pasupuleti, P. , Suchitra M.M., Bitla A.R., Sachan A. Attenuation of Oxidative Stress, Interleukin-6, High-Sensitivity C-Reactive Protein, Plasminogen Activator Inhibitor-1, and Fibrinogen with Oral Vitamin D Supplementation in Patients with T2DM having Vitamin D Deficiency. J Lab Physicians 2021, 14, 190–196. [Google Scholar]
- Grabež, M. , Škrbić R., Stojiljković M.P., Vučić V., Rudić Grujić V., Jakovljević V., Djuric D.M., Suručić R., Šavikin K., Bigović D., Vasiljević N. A prospective, randomized, double-blind, placebo-controlled trial of polyphenols on the outcomes of inflammatory factors and oxidative stress in patients with type 2 diabetes mellitus. Rev Cardiovasc Med. 2022, 23, 57. [Google Scholar] [CrossRef]
- Li, J. , Glenn A.J., Yang Q., Ding D., Zheng L., Bao W., Beasley J., LeBlanc E., Lo K., Manson J.E., Philips L., Tinker L., Liu S. Dietary Protein Sources, Mediating Biomarkers, and Incidence of Type 2 Diabetes: Findings From the Women’s Health Initiative and the UK Biobank. Diabetes Care 2022, 45, 1742–1753. [Google Scholar]
- Shivane, V. , Pathak H., Tamoli S., Kohli K.R., Ghungralekar R., Deshmukh P., Hartalkar A., Mahadik S., Indalkar P., Mehta B. Effect of Airborne Low Intensity Multi frequency ultrasound (ALIMFUS) on glycemic control, lipid profile and markers of inflammation in patients with uncontrolled type 2 diabetes: A multicentre proof of concept, randomized double blind Placebo controlled study. Diabetes Metab Syndr. 2022, 16, 102483. [Google Scholar] [CrossRef]
- Galesanu, C. , Mocanu V. Vitamin D deficiency and the clinical consequences. Rev Med Chir Soc Med Nat Iasi. 2015, 119, 310–318. [Google Scholar]
- Mao, X. , Xing X., Xu R., Gong Q., He Y., Li S., Wang H., Liu C., Ding X., Na R., et al., Folic Acid and Vitamins D and B12 Correlate With Homocysteine in Chinese Patients With Type-2 Diabetes Mellitus, Hypertension, or Cardiovascular Disease. Medicine 2016, 95, e2652. [Google Scholar] [CrossRef]
- Serdar, C.C. , Cihan M., Yücel D., Serdar M.A. Sample size, power and effect size revisited: simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem Med 2021, 31, 010502. [Google Scholar] [CrossRef]
- Shah, N.R. , Braverman E.R. Measuring adiposity in patients: the utility of body mass index (BMI), percent body fat, and leptin. PLoS One 2012, 7, e33308. [Google Scholar] [CrossRef]
- Alaamri, S. , Serafi A.S., Hussain Z., Alrooqi M.M., Bafail M.A., Sohail S. Blood pressure correlates with serum leptin and body mass index in overweight male Saudi students. J Pers Med. 2023, 13, 828. [Google Scholar] [CrossRef]
- Harakeh, S. , Kalamegam G., Pushparaj P.N., Al-Hejin A., Alfadul S.M., Al Amri T., Barnawi S., Al Sadoun H., Mirza A.A., Azhar E. Chemokines and their association with body mass index among healthy Saudis. Saudi J Biol Sci. 2020, 27, 6–11. [Google Scholar]
- Hussain, Z. Investigating the role of serum hepcidin and interleukin-6 in non-anemic women with acute ischemic stroke. International Journal of Biomedicine 2024, 14, 260–264. [Google Scholar]
- Jiang, Y. , Jia J., Li J., Huo Y., Fan F., Zhang Y. Impaired fasting blood glucose is associated with incident albuminuria: Data from a Chinese community-based cohort. J Diabetes Complications 2022, 36, 108125. [Google Scholar] [CrossRef] [PubMed]
- Naz, L. , Hussain Z., Husain T. Risk factors and biochemical variations in patients with ischemic stroke. International Journal of Biology and Biotechnology 2009, 6, 83–87. [Google Scholar]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010, 33, S62–S69, Erratum in: Diabetes Care 2010, 33, e57. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zahir, H. , Javaid A., Rehman R., Hussain Z. Statistical concepts in biology and health sciences. J Ayub Med Coll Abbottabad 2014, 26, 95–97. [Google Scholar]
- Bertran, L. , Rusu E.C., Guirro M., Aguilar C., Auguet T., Richart C. Circulating proteomic profiles in women with morbid obesity compared to normal-weight women. J Proteomics 2025, 310, 105317. [Google Scholar] [CrossRef]
- Jafar, T.H. , Chaturvedi N., Pappas G. Prevalence of overweight and obesity and their association with hypertension and diabetes mellitus in an Indo-Asian population. CMAJ 2006, 175, 1071–1077. [Google Scholar]
- Ahrițculesei, R.V. , Boldeanu L., Vladu I.M., Clenciu D., Mitrea A.., Cîmpeanu R.C., Mustață M.L., Siloși I., Boldeanu M.V., Vere C.C. Correlation Between Prognostic Nutritional Index, Glasgow Prognostic Score, and Different Obesity-Related Indices in People with Diabetes or Prediabetes. Diagnostics 2024, 14, 2661. [Google Scholar] [CrossRef]
- Bonfante, I.L.P. , Segantim H.D.S., Mendonça K.N.S., de Oliveira M.A.B., Monfort-Pires M., Duft R.G., da Silva Mateus K.C., Chacon-Mikahil M.P.T., Ramos C.D., Velloso L.A., et al. Better cardiometabolic/inflammatory profile is associated with differences in the supraclavicular adipose tissue activity of individuals with T2DM. Endocrine 2025, 87, 1011–1021. [Google Scholar]
- Guh, D.P. , Zhang W., Bansback N., Amarsi Z., Birmingham C.L., Anis A.H. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health 2009, 9, 88. [Google Scholar] [CrossRef]
- Vayá, A. , Rivera L., Hernández-Mijares A., de la Fuente M., Solá E., Romagnoli M., Alis R., Laiz B. Homocysteine levels in morbidly obese patients: its association with waist circumference and insulin resistance. Clin Hemorheol Microcirc. 2012, 52, 49–56. [Google Scholar]
- Nugrahani, A.S.D. , Muharram F.R., Novida H., Swannjo J.B., Wibisono S., Wungu C.D.K. Trends and disability-attributable risk factors of type 2 diabetes mellitus in Southeast Asia (1990-2019): An in-depth 30-year analysis from the Global Burden of Disease study. Nutr Metab Cardiovasc Dis. 2025, 35, 103750. [Google Scholar] [CrossRef] [PubMed]
- Need, A.G. , O’Loughlin P.D., Horowitz M., Nordin B.E. Relationship between fasting serum glucose, age, body mass index and serum 25 hydroxyvitamin D in postmenopausal women. Clin Endocrinol 2005, 62, 738–741. [Google Scholar]
- Dumitru, N. , Carsote M., Cocolos A., Petrova E., Olaru M., Caragheorgheopol A., Dumitrache C., Ghemigian A. Metabolic and bone profile in postmenopausal women with and without type 2 diabetes: a cross-sectional study. Rom J Intern Med. 2019, 57, 61–67. [Google Scholar] [PubMed]
- Alharazy, S. , Alissa E., Lanham-New S., Naseer M.I., Chaudhary A.G., Robertson M.D. Association between vitamin D and glycaemic parameters in a multi-ethnic cohort of postmenopausal women with type 2 diabetes in Saudi Arabia. BMC Endocr Disord. 2021, 21, 162. [Google Scholar] [CrossRef]
- Raška I., Jr. , Rašková M., Zikán V., Škrha J. High Prevalence of Hypovitaminosis D in Postmenopausal Women with Type 2 Diabetes Mellitus. Prague Med Rep. 2016, 117, 5–17. [Google Scholar]
- Al Masri, F. , Müller M., Straka D., Hahn A., Schuchardt J.P. Nutritional and health status of adult Syrian refugees in the early years of asylum in Germany: a cross-sectional pilot study. BMC Public Health 2022, 22, 2217. [Google Scholar] [CrossRef]
- Vujosevic, S. , Borozan S., Radojevic N., Aligrudic S., Bozovic D. Relationship between 25-hydroxyvitamin D and newly diagnosed type 2 diabetes mellitus in postmenopausal women with osteoporosis. Med Princ Pract. 2014, 23, 229–233. [Google Scholar]
- Fondjo, L.A. , Sakyi S.A., Owiredu W.K.B.A., Laing E.F., Owiredu E.W., Awusi E.K., Ephraim RKD, Kantanka OS. Evaluating Vitamin D Status in Pre- and Postmenopausal Type 2 Diabetics and Its Association with Glucose Homeostasis. Biomed Res Int. 2018, 2018, 9369282. [Google Scholar] [CrossRef]
- Tamer, G. , Mesci B., Tamer I., Kilic D., Arik S. Is vitamin D deficiency an independent risk factor for obesity and abdominal obesity in women? Endokrynol Pol. 2012, 63, 196–201. [Google Scholar]
- Liu, L. , Hu Y., Chui J., Hu Y., Wu B., Su X. Serum vitamin D levels in postmenopausal women with type 2 diabetes mellitus. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2013, 38, 1051–1056. [Google Scholar]
- Ehteram, H. , Raji S., Rahmati M., Teymoori H., Safarpour S., Poursharifi N., Hashem Zadeh M., Pakzad R., Habibi H., Mobarra N. Association between Pro-oxidant-Antioxidant balance and high-sensitivity C-reactive protein in type 2 diabetes mellitus: A Study on Postmenopausal Women. Endocrinol Diabetes Metab. 2023, 6, e400. [Google Scholar] [CrossRef] [PubMed]
- Jafar, T.H. , Levey A.S., White F.M., Gul A., Jessani S., Khan A.Q., Jafary F.H., Schmid C.H., Chaturvedi N. Ethnic differences and determinants of diabetes and central obesity among South Asians of Pakistan. Diabet Med. 2004, 21, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Ghaus, S. , Ahsan T., Sohail E., Erum U., Aijaz W. Burden of Elevated Body Mass Index and Its Association With Non-Communicable Diseases in Patients Presenting to an Endocrinology Clinic. Cureus 2021, 13, e13471. [Google Scholar] [CrossRef]
- Marković-Boras, M. , Čaušević A., Ćurlin M. A relation of serum homocysteine and uric acid in Bosnian diabetic patients with acute myocardial infarction. J Med Biochem. 2021, 40, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Omer Sultan, M. , Farooque U., Javed R., Khan M.I., Karimi S., Abdul Sattar R., Cheema O. Correlation of Homocysteine Level and Age in Patients with Ischemic Stroke. Cureus 2020, 12, e7785. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jianbo, L. , Zhang H., Yan L., Xie M., Mei Y., Jiawei C. Homocysteine, an additional factor, is linked to osteoporosis in postmenopausal women with type 2 diabetes. J Bone Miner Metab. 2014, 32, 718–24. [Google Scholar] [CrossRef]
- Rajabi, A. , Akbar Nezhad Gharehlo A., Madadizadeh E., Basereh A., Khoramipoor K., Pirani H., Khoramipour K., Moser O., Khoramipour K. The effect of 12 weeks of aerobic exercise training with or without saffron supplementation on diabetes-specific markers and inflammation in women with type 2 diabetes: A randomized double-blind placebo-controlled trial. Eur J Sport Sci. 2024, 24, 899–906. [Google Scholar]
- Moreno-Navarrete, J.M. , Moreno M., Puig J., Blasco G., Ortega F., Xifra G., Ricart W., Fernández-Real J.M. Hepatic iron content is independently associated with serum hepcidin levels in subjects with obesity. Clin Nutr. 2017, 36, 1434–1439. [Google Scholar] [CrossRef]
- Imanparast, F. , Mashayekhi F.J., Kamankesh F., Rafiei F., Mohaghegh P., Alimoradian A. Improving the endothelial dysfunction in type 2 diabetes with chromium and vitamin D3 byreducing homocysteine and oxidative stress: A randomized placebo-controlled trial. J Trace Elem Med Biol. 2020, 62, 126639. [Google Scholar] [CrossRef]
- Ma, C. , Zhao Y., Liu Z. Vitamin D Provides Benefit Based on the Proinflammatory Effects of Homocysteine in Elderly Patients With Type 2 Diabetes Mellitus. Clin Ther. 2020, 42, 2010–2020.e1. [Google Scholar] [CrossRef]
- Saberi-Karimian, M. , Norouzy A. The Association between Glycemic Control with Oxidant Status Parameters in Type 2 Diabetic Patients. Acta Biomed. 2021, 92, e2021100. [Google Scholar] [CrossRef]
- Tomić, M. , Vrabec R., Ljubić S., Bulum T., Rahelić D. Plasma homocysteine is associated with nonproliferative retinopathy in patients with type 2 diabetes without renal disease. Diabetes Metab Syndr. 2022, 16, 102355. [Google Scholar] [CrossRef] [PubMed]
- Bonakdaran, S. , Nejad A.F., Abdol-Reza V., Hatefi A., Shakeri M. Impact of oral 1,25-dihydroxy vitamin D (calcitriol) replacement therapy on coronary artery risk factors in type 2 diabetic patients. Endocr Metab Immune Disord Drug Targets 2013, 13, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Thorand, B. , Zierer A., Huth C., Linseisen J., Meisinger C., Roden M., Peters A., Koenig W., Herder C. Effect of serum 25-hydroxyvitamin D on risk for type 2 diabetes may be partially mediated by subclinical inflammation: results from the MONICA/KORA Augsburg study. Diabetes Care 2011, 34, 2320–2322. [Google Scholar] [PubMed]
- Mackawy, A.M. , Badawi M.E. Association of vitamin D and vitamin D receptor gene polymorphisms with chronic inflammation, insulin resistance and metabolic syndrome components in type 2 diabetic Egyptian patients. Meta Gene 2014, 2, 540–556. [Google Scholar] [CrossRef]
- Fenercioglu, A.K. , Gonen M.S., Uzun H., Sipahioglu N.T., Can G., Tas E., Kara Z., Ozkaya H.M., Atukeren P. The Association between Serum 25-Hydroxyvitamin D3 Levels and Pro-Inflammatory Markers in New-Onset Type 2 Diabetes Mellitus and Prediabetes. Biomolecules 2023, 13, 1778. [Google Scholar] [CrossRef]
- Murugiah, V. , Pal P., Sahoo J., Nanda N., Shamanna S.B. Association of Low Vitamin D Status With Adiponectin and Fibroblast Growth Factor-21 in Newly Diagnosed Type 2 Diabetes Mellitus Patients. Cureus 2024, 16, e71448. [Google Scholar] [CrossRef]
- Odetayo, A.F. , Abdulrahim H.A., Yusuf A.M., Aromokhame W.O., Olaitan A.M., Ugoji M.C., Hamed M.A., Olayaki L.A. Combination Therapy with Vitamin D and Metformin: A Potential Approach to Mitigate Testicular Dysfunction in Type 2 Diabetes Mellitus. Reprod Sci. 2024, 31, 3795–3807. [Google Scholar]
- Dhas, Y. , Banerjee J., Damle G., Mishra N. Serum 25(OH)D concentration and its association with inflammation and oxidative stress in the middle-aged Indian healthy and diabetic subjects. Steroids 2020, 154, 108532. [Google Scholar] [CrossRef]
| Variables | Normal weight and overweight postmenopausal women with and without type-2 diabetes mellitus | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| NW-ND vs. NW-DM | OW-ND vs. OW-DM | NW-ND vs. OW-ND | NW-DM vs. OW-DM | |||||||||
| NW-ND | NW-DM | P-value | OW-ND | OW-DM | P-value | NW-ND | OW-ND | P-value | NW-DM | OW-DM | P-value | |
| Number of subjects (n) | 101 | 101 | - | 98 | 96 | - | 101 | 98 | - | 101 | 96 | - |
| Sex (female) | 101 | 101 | - | 98 | 96 | - | 101 | 98 | - | 101 | 96 | - |
| Age (years) | 55.34 ± 2.85 | 55.34 ± 2.74 | 1.00 | 55.34 ± 2.77 | 55.33 ± 2.78 | 0.98 | 55.34 ± 2.85 | 55.34 ± 2.77 | 1.00 | 55.34 ± 2.85 | 55.34 ±2.77 | 1.00 |
| Age range (years) | 51-60 | 51-60 | - | 51-60 | 51-60 | - | 51-60 | 51-60 | - | 51-60 | 51-60 | - |
| BMI (kg/m2) | 21.56±2.05 | 21.58±2.02 | 0.95 | 27.52±1.50 | 27.47±1.50 | 0.81 | 21.56±2.05 | 27.52±1.50 | <0.001 | 21.58±2.02 | 27.47±1.50 | <0.001 |
| BMI range (kg/m2) | 18.5-24.9 | 18.5-24.9 | - | 25.0-29.9 | 25.0-29.9 | - | 18.5-24.9 | 25.0-29.9 | - | 18.5-24.9 | 25.0-29.9 | - |
| 25(OH)D (ng/mL) | 33.83±5.74 | 31.85±7.06 | 0.03 | 30.12±6.62 | 29.02±6.78 | 0.26 | 33.83±5.74 | 30.12±6.62 | <0.001 | 31.85±7.06 | 29.02±6.78 | 0.004 |
| Hcy (µmol/L) | 5.42± 1.50 | 5.44± 1.53 | 0.91 | 5.90± 2.66 | 6.95±3.66 | 0.02 | 5.42± 1.50 | 5.90± 2.66 | 0.12 | 5.44± 1.53 | 6.95± 3.66 | <0.001 |
| HB (g/dL) | 13.72± 1.26 | 13.69± 1.41 | 0.90 | 13.65± 1.47 | 13.62± 1.75 | 0.90 | 13.72± 1.26 | 13.65± 1.47 | 0.75 | 13.69± 1.41 | 13.62±1.75 | 0.77 |
| IL-6 (pg/ml) | 4.74±4.13 | 4.78± 4.12 | 0.95 | 5.42± 4.23 | 6.76± 5.10 | 0.05 | 4.74± 4.13 | 5.42± 4.23 | 0.26 | 4.78± 4.12 | 6.76± 5.10 | 0.003 |
| Hp (ng/mL) | 8.58± 3.95 | 8.37± 4.02 | 0.99 | 8.44± 4.33 | 8.62± 4.57 | 0.77 | 8.58± 3.95 | 8.44± 4.33 | 0.80 | 8.37± 4.02 | 8.62± 4.57 | 0.94 |
| Variables | Normal weight and overweight postmenopausal women with and without type-2 diabetes mellitus | Significance (P-value) |
|||
|---|---|---|---|---|---|
| NW-ND | NW-DM | OW-ND | OW-DM | ||
| Number of subjects (n) | 101 | 101 | 98 | 96 | - |
| Sex (female) | 101 | 101 | 98 | 96 | - |
| Age | 55.34 ± 2.85 | 55.34 ± 2.74 | 55.34 ± 2.77 | 55.33 ± 2.78 | 0.99 |
| BMI (kg/m2) | 21.56±2.05 | 21.58±2.02 | 27.52±1.50 | 27.47±1.50 | <0.001 |
| BMI range (kg/m2) | 18.5-24.9 | 18.5-24.9 | 25.0-29.9 | 25.0-29.9 | - |
| 25(OH)D (ng/mL) | 33.83±5.74 | 31.85±7.06 | 30.11±6.62 | 29.02±6.78 | <0.001 |
| Hcy (µmol/L) | 5.42± 1.50 | 5.44± 1.53 | 5.90± 2.66 | 6.95±3.66 | <0.001 |
| HB (g/dL) | 13.72± 1.26 | 13.69± 1.41 | 13.65± 1.47 | 13.62± 1.75 | 0.974 |
| IL-6 ((pg/ml) | 4.74± 4.13 | 4.78± 4.12 | 5.42± 4.23 | 6.76± 5.10 | 0.004 |
| Hp (ng/mL) | 8.58± 3.95 | 8.37± 4.02 | 8.44± 4.33 | 8.62± 4.57 | 0.99 |
| Variables | Association of BMI with other variables in normal weight and overweight postmenopausal women with and without type-2 diabetes mellitus | ||||
|---|---|---|---|---|---|
| R2 & P | Normal weight | Overweight | |||
| NW-ND | NW-DM | OW-ND | OW-DM | ||
| 25(OH)D (ng/mL) | R2 | 0.02 | 0.02 | 0.40 | 0.41 |
| P | 0.16 | 0.19 | <0.001 | <0.001 | |
| Hcy (µmol/L) | R2 | 0.01 | 0.01 | 0.06 | 0.30 |
| P | 0.26 | 0.24 | 0.01 | <0.001 | |
| HB (g/dL) |
R2 | 0.01 | 0.00 | 0.00 | 0.00 |
| P | 0.31 | 0.85 | 0.96 | 0.58 | |
| IL-6 (pg/ml) | R2 | 0.00 | 0.00 | 0.04 | 0.24 |
| P | 0.57 | 0.53 | 0.05 | <0.001 | |
| Hp (ng/mL) | R2 | 0.01 | 0.01 | 0.01 | 0.02 |
| P | 0.36 | 0.42 | 0.40 | 0.17 | |
| Variables | Association of vitD with other variables in normal weight and overweight postmenopausal women with and without type-2 diabetes mellitus | ||||
|---|---|---|---|---|---|
| R2 & P | Normal weight | Overweight | |||
| NW-ND | NW-DM | OW-ND | OW-DM | ||
| BMI (kg/m2) | R2 | 0.02 | 0.02 | 0.4 | 0.41 |
| P | 0.16 | 0.19 | <0.001 | <0.001 | |
| Hcy (µmol/L) | R2 | 0.01 | 0.04 | 0.00 | 0.11 |
| P | 0.33 | 0.06 | 0.59 | 0.001 | |
| HB (g/dL) |
R2 | 0.01 | 0.00 | 0.01 | 0.01 |
| P | 0.40 | 0.92 | 0.27 | 0.47 | |
| IL-6 (pg/ml) | R2 | 0.04 | 0.17 | 0.00 | 0.22 |
| P | 0.05 | <0.001 | 0.89 | <0.001 | |
| Hp (ng/mL) | R2 | 0.00 | 0.01 | 0.01 | 0.01 |
| P | 0.67 | 0.48 | 0.45 | 0.49 | |
| Variables | Association of homocysteine with other variables in normal weight and overweight postmenopausal women with and without type-2 diabetes mellitus | ||||
|---|---|---|---|---|---|
| R2 & P | Normal weight | Overweight | |||
| NW-ND | NW-DM | OW-ND | OW-DM | ||
| BMI (kg/m2) | R2 | 0.01 | 0.01 | 0.06 | 0.30 |
| P | 0.26 | 1024 | 0.01 | <0.001 | |
| 25(OH)D (ng/mL) | R2 | 0.01 | 0.04 | 0.00 | 0.11 |
| P | 0.33 | 0.06 | 0.59 | 0.001 | |
| HB (g/dL) | R2 | 0.00 | 0.04 | 0.03 | 0.01 |
| P | 0.53 | 0.06 | 0.09 | 0.40 | |
| IL-6 (pg/ml) | R2 | 0.01 | 0.06 | 0.06 | 0.18 |
| P | 0.46 | 0.02 | 0.02 | <0.001 | |
| Hp (ng/mL) | R2 | 0.00 | 0.00 | 0.01 | 0.10 |
| P | 0.76 | 0.77 | 0.44 | 0.002 | |
| Variables | Association of IL-6 with other variables in normal weight and overweight postmenopausal women with and without type-2 diabetes mellitus | ||||
|---|---|---|---|---|---|
| R2 & P | Normal weight | Overweight | |||
| NW-ND | NW-DM | OW-ND | OW-DM | ||
| BMI (kg/m2) | R2 | 0.00 | 0.00 | 0.04 | 0.24 |
| P | 0.57 | 0.53 | 0.05 | <0.001 | |
| 25(OH)D (ng/mL) | R2 | 0.04 | 0.17 | 0.00 | 0.22 |
| P | 0.05 | <0.001 | 0.89 | <0.001 | |
| Hcy (µmol/L) | R2 | 0.01 | 0.06 | 0.06 | 0.18 |
| P | 0.46 | 0.02 | 0.02 | <0.001 | |
| HB (g/dL) | R2 | 0.01 | 0.01 | 0.04 | 0.03 |
| P | 0.32 | 0.48 | 0.06 | 0.09 | |
| Hp (ng/mL) | R2 | 0.00 | 0.00 | 0.00 | 0.00 |
| P | 0.98 | 0.82 | 0.65 | 0.70 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
