Submitted:
07 March 2025
Posted:
10 March 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Contriubutions
- Joint selection of optimum latent factors and sparse basis functions: This eliminates constraints on parametric representation dimensionality, avoids information loss from discretization, and extends naturally to higher dimensions or non-Euclidean spaces through nonparametric kernel expansion. It further enhances interpretability by adaptively choosing model complexity without testing multiple models separately. We achieve these improvements using a Bayesian paradigm that provides robust and accurate posterior estimates while supporting uncertainty quantification [1].
- Scalability across domain dimensionality and data size: The proposed method uses VI for faster computation compared to Markov chain Monte Carlo (MCMC) methods, while still being accurate. BSFDA reduces overall computation by partitioning the parameters into smaller update groups, and introducing a slack variable to further subdivide the weighting matrix (which is part of the kernel structure) into even smaller parts [34], updating fewer blocks at a time and considering all model options. Introducing a slack variable makes the optimization process more efficient by separating different variable groups. This approach scales well with data size and works efficiently even with large, complex datasets. We demonstrate this on the 4D global oceanic temperature data set (ARGO), which consists of 127 million data points spanning across the globe for 27 years with depths up to 200 meters [71].
1.2. Outline
2. Formulation
2.1. Generative model
2.2. Sparse Prior
3. Methods
3.1. Variational Bayesian Inference
3.1.1. Update Steps
3.2. Scalable Update Strategy
3.2.1. Implicit Factorization
3.2.2. Low-Dimensional Lower Bound
3.2.3. Heuristic for Activating Basis Functions
| Algorithm 1 Search for new basis functions to activate |
|
4. Faster Variant
5. Results
5.1. Simulation Results
5.1.1. Mean Squared Error in Covariance Operator
5.1.2. Multidimensional Functional Data Simulation

5.2. Results on Public Data Sets
5.2.1. CD4
5.2.2. Wind Speed
5.2.3. Modeling Large-Scale, Dynamic, Geospatial Data
6. Discussion
7. System of Notation
| Symbol | Meaning |
| The i-th sample function | |
| One M-dimension index | |
| M | Dimension of the index set |
| K | Number of all basis functions |
| J | Number of all components |
| P | Number of sample functions |
| Number of measurements of the i-th sample function | |
| Index set of the i-th sample function | |
| Measurement of the i-th sample function | |
| Component scores of the i-th sample function | |
| Coefficients of basis functions in the mean function | |
| Measurement errors of the i-th sample function | |
| Weighing matrix of basis functions in the eigenfunctions | |
| The j-th row and k-th column of W | |
| The kernel function | |
| The scale parameter of (j-th component) | |
| The scale parameter of (k-th basis function) | |
| The standard deviation of measurement errors | |
| The communal scale parameter of | |
| The union of all the centered kernel functions | |
| Value of centered kernel function at | |
| Coefficients of the i-th sample function | |
| Coefficient noise of the i-th sample function | |
| The scale parameter of k-th coefficient noise |
| Symbol | Meaning |
| All the latent variables. | |
| The surrogate posterior distribution of variable · | |
| The joint surrogate posterior distribution of all variables except · | |
| The mean and covariance of · in , e.g. | |
| The shape and rate parameters of , e.g. | |
| The expectation of variable · over density | |
| The lower bound of surrogate posterior with K basis functions | |
| Gram matrix of the kernel functions for the i-th sample function, | |
| Number of active/effective basis functions | |
| Number of active/effective components | |
| Log likelihood of in multi-sample relevance vector machine | |
| Covariance of in multi-sample relevance vector machine | |
| Posterior covariance of in multi-sample relevance vector machine | |
| Log likelihood of in multi-sample relevance vector machine | |
| The infinitesimal number | |
| Threshold/tolerance of · |
8. Variational Update Formulae
9. Scalable Update for BSFDA
9.1. Implicit Factorization
9.2. Scale Parameters
9.3. Weights and Noise
9.4. Low-Dimensional Lower Bound
| Algorithm 2 Variational inference |
|
10. Scalable Update for BSFDAFast
11. Fast Initialization

11.1. Maximum Likelihood Estimation
| Algorithm 3 Multi-sample relevance vector machine |
|
11.2. Optimization of β,Z ¯
11.3. Optimization of σ
12. Experiments
12.1. Benchmark Simulation

| AIC | BIC | fpca | BSFDA | ||||||||
| 5 | 0.000 | 0.000 | 0.155 | 0.005 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| =2 | 0.008 | 0.405 | 0.335 | 0.565 | 0.215 | 0.000 | 0.000 | 0.000 | 0.000 | 0.985 | |
| =3 | 0.000 | 0.580 | 0.380 | 0.410 | 0.735 | 0.650 | 0.880 | 0.645 | 0.995 | 0.015 | |
| =4 | 0.121 | 0.010 | 0.115 | 0.010 | 0.045 | 0.335 | 0.120 | 0.235 | 0.005 | 0.000 | |
| 0.870 | 0.005 | 0.015 | 0.010 | 0.005 | 0.015 | 0.000 | 0.120 | 0.000 | 0.000 | ||
| 10 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| =2 | 0.000 | 0.005 | 0.040 | 0.040 | 0.005 | 0.000 | 0.000 | 0.000 | 0.000 | 0.075 | |
| =3 | 0.000 | 0.980 | 0.670 | 0.955 | 0.985 | 0.880 | 0.920 | 0.645 | 1.000 | 0.910 | |
| =4 | 0.000 | 0.015 | 0.255 | 0.000 | 0.010 | 0.120 | 0.080 | 0.235 | 0.000 | 0.015 | |
| 1.000 | 0.000 | 0.035 | 0.005 | 0.000 | 0.000 | 0.000 | 0.120 | 0.000 | 0.000 | ||
| 50 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| =2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| =3 | 0.000 | 1.000 | 0.830 | 1.000 | 1.000 | 1.000 | 1.000 | 0.890 | 0.980 | 0.945 | |
| =4 | 0.000 | 0.000 | 0.150 | 0.000 | 0.000 | 0.000 | 0.000 | 0.060 | 0.020 | 0.050 | |
| 1.000 | 0.000 | 0.020 | 0.000 | 0.000 | 0.000 | 0.000 | 0.050 | 0.000 | 0.005 |
| AIC | BIC | fpca | BSFDA | ||||||||
| 5 | 0.000 | 0.000 | 0.230 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| =2 | 0.000 | 0.205 | 0.395 | 0.000 | 0.140 | 0.050 | 0.075 | 0.000 | 0.000 | 0.960 | |
| =3 | 0.005 | 0.630 | 0.245 | 0.375 | 0.605 | 0.570 | 0.620 | 0.475 | 1.000 | 0.040 | |
| =4 | 0.125 | 0.155 | 0.110 | 0.440 | 0.210 | 0.345 | 0.275 | 0.350 | 0.000 | 0.000 | |
| 0.870 | 0.010 | 0.020 | 0.185 | 0.045 | 0.035 | 0.030 | 0.175 | 0.000 | 0.000 | ||
| 10 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| =2 | 0.000 | 0.000 | 0.170 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| =3 | 0.000 | 0.710 | 0.665 | 0.570 | 0.805 | 0.825 | 0.850 | 0.640 | 1.000 | 0.995 | |
| =4 | 0.005 | 0.260 | 0.135 | 0.355 | 0.185 | 0.175 | 0.150 | 0.235 | 0.000 | 0.005 | |
| 0.995 | 0.030 | 0.030 | 0.075 | 0.010 | 0.000 | 0.000 | 0.125 | 0.000 | 0.000 | ||
| 50 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| =2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| =3 | 0.000 | 0.630 | 0.795 | 0.955 | 0.945 | 1.000 | 1.000 | 0.950 | 1.000 | 0.950 | |
| =4 | 0.000 | 0.320 | 0.185 | 0.045 | 0.055 | 0.000 | 0.000 | 0.020 | 0.000 | 0.050 | |
| 1.000 | 0.050 | 0.020 | 0.000 | 0.000 | 0.000 | 0.000 | 0.030 | 0.000 | 0.000 |
| AIC | BIC | fpca | BSFDA | ||||||||
| 5 | 0.000 | 0.000 | 0.335 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| =2 | 0.025 | 0.035 | 0.260 | 0.220 | 0.005 | 0.000 | 0.005 | 0.000 | 0.000 | 0.025 | |
| =3 | 0.005 | 0.720 | 0.325 | 0.640 | 0.590 | 0.320 | 0.400 | 0.450 | 0.995 | 0.945 | |
| =4 | 0.130 | 0.170 | 0.080 | 0.075 | 0.280 | 0.640 | 0.565 | 0.360 | 0.005 | 0.030 | |
| 0.840 | 0.075 | 0.000 | 0.065 | 0.125 | 0.030 | 0.030 | 0.190 | 0.000 | 0.000 | ||
| 10 | 0.000 | 0.000 | 0.005 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| =2 | 0.015 | 0.000 | 0.035 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| =3 | 0.000 | 0.580 | 0.770 | 0.965 | 0.665 | 0.740 | 0.755 | 0.440 | 0.995 | 1.000 | |
| =4 | 0.000 | 0.400 | 0.145 | 0.030 | 0.320 | 0.260 | 0.245 | 0.380 | 0.005 | 0.000 | |
| 0.985 | 0.020 | 0.045 | 0.005 | 0.015 | 0.000 | 0.000 | 0.180 | 0.000 | 0.000 | ||
| 50 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| =2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.015 | 0.000 | |
| =3 | 0.000 | 1.000 | 0.775 | 1.000 | 1.000 | 1.000 | 1.000 | 0.765 | 0.980 | 0.920 | |
| =4 | 0.000 | 0.000 | 0.200 | 0.000 | 0.000 | 0.000 | 0.000 | 0.110 | 0.005 | 0.050 | |
| 1.000 | 0.000 | 0.025 | 0.000 | 0.000 | 0.000 | 0.000 | 0.125 | 0.000 | 0.030 |
| AIC | BIC | fpca | BSFDA | ||||||||
| 5 | 0.000 | 0.000 | 0.315 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| =2 | 0.015 | 0.020 | 0.180 | 0.160 | 0.015 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| =3 | 0.015 | 0.710 | 0.410 | 0.640 | 0.560 | 0.515 | 0.575 | 0.370 | 1.000 | 0.975 | |
| =4 | 0.145 | 0.185 | 0.070 | 0.095 | 0.260 | 0.450 | 0.390 | 0.515 | 0.000 | 0.025 | |
| 0.825 | 0.085 | 0.025 | 0.105 | 0.165 | 0.035 | 0.035 | 0.115 | 0.000 | 0.000 | ||
| 10 | 0.000 | 0.000 | 0.010 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| =2 | 0.000 | 0.000 | 0.005 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| =3 | 0.000 | 0.830 | 0.775 | 0.920 | 0.900 | 0.750 | 0.760 | 0.350 | 0.995 | 0.990 | |
| =4 | 0.000 | 0.150 | 0.190 | 0.045 | 0.085 | 0.250 | 0.240 | 0.380 | 0.005 | 0.010 | |
| 1.000 | 0.020 | 0.020 | 0.035 | 0.015 | 0.000 | 0.000 | 0.270 | 0.000 | 0.000 | ||
| 50 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| =2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.010 | 0.000 | |
| =3 | 0.000 | 0.945 | 0.835 | 1.000 | 1.000 | 1.000 | 1.000 | 0.730 | 0.950 | 0.935 | |
| =4 | 0.000 | 0.055 | 0.140 | 0.000 | 0.000 | 0.000 | 0.000 | 0.160 | 0.040 | 0.055 | |
| 1.000 | 0.000 | 0.025 | 0.000 | 0.000 | 0.000 | 0.000 | 0.110 | 0.000 | 0.010 |
| AIC | BIC | fpca | BSFDA | ||||||||
| 5 | 0.005 | 0.165 | 0.835 | 0.580 | 0.060 | 0.000 | 0.000 | 0.010 | 0.000 | 0.060 | |
| =5 | 0.005 | 0.330 | 0.020 | 0.345 | 0.335 | 0.575 | 0.590 | 0.010 | 0.075 | 0.515 | |
| =6 | 0.705 | 0.470 | 0.090 | 0.070 | 0.545 | 0.425 | 0.410 | 0.855 | 0.925 | 0.160 | |
| =7 | 0.245 | 0.035 | 0.050 | 0.005 | 0.060 | 0.000 | 0.000 | 0.115 | 0.000 | 0.160 | |
| 0.040 | 0.000 | 0.005 | 0.000 | 0.000 | 0.000 | 0.000 | 0.010 | 0.000 | 0.105 | ||
| 10 | 0.005 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| =5 | 0.000 | 0.000 | 0.030 | 0.145 | 0.000 | 0.425 | 0.425 | 0.000 | 0.000 | 0.000 | |
| =6 | 0.065 | 0.570 | 0.525 | 0.775 | 0.705 | 0.575 | 0.575 | 0.500 | 1.000 | 0.930 | |
| =7 | 0.475 | 0.280 | 0.165 | 0.020 | 0.185 | 0.000 | 0.000 | 0.405 | 0.000 | 0.035 | |
| 0.455 | 0.150 | 0.030 | 0.060 | 0.110 | 0.000 | 0.000 | 0.095 | 0.000 | 0.035 | ||
| 50 | 0.000 | 0.000 | 0.005 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| =5 | 0.065 | 0.000 | 0.000 | 0.000 | 0.000 | 0.130 | 0.130 | 0.005 | 0.000 | 0.000 | |
| =6 | 0.000 | 0.260 | 0.590 | 0.980 | 0.965 | 0.870 | 0.770 | 0.695 | 0.995 | 0.925 | |
| =7 | 0.000 | 0.405 | 0.325 | 0.010 | 0.035 | 0.000 | 0.000 | 0.250 | 0.005 | 0.045 | |
| 0.935 | 0.335 | 0.080 | 0.010 | 0.000 | 0.000 | 0.000 | 0.050 | 0.000 | 0.030 |
12.1.1. Performance of LFRM
- Gamma prior for white noise and correlated noise
- Length-scale
- Number of basis functions
- Number of iterations
- Standard LFRM estimated 10–14 components.
- LFRM with 10 length-scales estimated 6–8 components.
- LFRM with a low correlated-noise prior estimated 8–15 components.
- LFRM with a noninformative-like correlated-noise prior estimated 10–14 components.
- Correlated noise interference: The correlated noise can obscure the true signal.
- Prior specification: LFRM’s precision parameter prior are potentially less noninformative and not as sparse as those sparse Bayesian learning priors [52] in BSFDA.
- Element-wise vs. Column-wise Precision: The element-wise precision parameters in LFRM might compensate in a way that reduces overall sparsity.
12.2. Variational Inference v.s. MCMC
- 1.
- When the noise level is close to the signal, neither MCMC or VI found the true dimension in the limited iterations (probably never will), because the data is heavily polluted.
- 2.
- As the noise level decreases toward zero, the number of iterations (and runtime) required for satisfactory estimation increases dramatically; VI begins to fail around a noise level of , and MCMC sampling around , within the set time constraints.
- 3.
- Across the 10 noise levels (about to ) where both successfully identified the correct dimensionality, VI consistently completes much faster than MCMC sampling. VI is approximately 20 times faster. 85.57 ± 50.24 in average, in the range of 32.46 to 189.12.

References
- Wang, J.L.; Chiou, J.M.; Müller, H.G. Functional Data Analysis. Annual Review of Statistics and Its Application 2016, 3, 257–295. [CrossRef]
- Ramsay, J.O.; Silverman, B.W. Applied functional data analysis: methods and case studies; Springer, 2002.
- Rice, J.A.; Silverman, B.W. Estimating the Mean and Covariance Structure Nonparametrically When the Data are Curves. Journal of the Royal Statistical Society Series B: Statistical Methodology 1991, 53, 233–243. [CrossRef]
- Górecki, T.; Krzyśko, M.; Waszak, .; Wołyński, W. Selected statistical methods of data analysis for multivariate functional data. Statistical Papers 2018, 59, 153–182. [CrossRef]
- Aneiros, G.; Cao, R.; Fraiman, R.; Genest, C.; Vieu, P. Recent advances in functional data analysis and high-dimensional statistics. Journal of Multivariate Analysis 2019, 170, 3–9. [CrossRef]
- Li, Y.; Qiu, Y.; Xu, Y. From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas. Journal of Multivariate Analysis 2022, 188, 104806. [CrossRef]
- Happ, C.; Greven, S. Multivariate Functional Principal Component Analysis for Data Observed on Different (Dimensional) Domains. Journal of the American Statistical Association 2018, 113, 649–659. [CrossRef]
- Kowal, D.R.; Canale, A. Semiparametric Functional Factor Models with Bayesian Rank Selection. Bayesian Analysis 2023, 18. [CrossRef]
- Paulon, G.; Müller, P.; Sarkar, A. Bayesian Semiparametric Hidden Markov Tensor Models for Time Varying Random Partitions with Local Variable Selection. Bayesian Analysis 2024, 19. [CrossRef]
- Goldsmith, J.; Zipunnikov, V.; Schrack, J. Generalized Multilevel Function-on-Scalar Regression and Principal Component Analysis. Biometrics 2015, 71, 344–353. [CrossRef]
- Nguyen, X.; Gelfand, A.E. The Dirichlet labeling process for clustering functional data. Statistica Sinica 2011, 21, 1249–1289. [CrossRef]
- Petrone, S.; Guindani, M.; Gelfand, A.E. Hybrid Dirichlet Mixture Models for Functional Data. Journal of the Royal Statistical Society Series B: Statistical Methodology 2009, 71, 755–782. [CrossRef]
- Berrendero, J.; Justel, A.; Svarc, M. Principal components for multivariate functional data. Computational Statistics & Data Analysis 2011, 55, 2619–2634. [CrossRef]
- Suarez, A.J.; Ghosal, S. Bayesian Estimation of Principal Components for Functional Data. Bayesian Analysis 2017, 12. [CrossRef]
- Yang, J.; Zhu, H.; Choi, T.; Cox, D.D. Smoothing and Mean–Covariance Estimation of Functional Data with a Bayesian Hierarchical Model. Bayesian analysis 2016/09, 11, 649–670. [CrossRef]
- Fox, E.B.; Dunson, D.B. Bayesian nonparametric covariance regression. The Journal of Machine Learning Research 2015, 16, 2501–2542.
- Goldsmith, J.; Wand, M.P.; Crainiceanu, C. Functional regression via variational Bayes. Electronic journal of statistics 2011/01/01, 5, 572–602. [CrossRef]
- Sun, T.Y.; Kowal, D.R. Ultra-Efficient MCMC for Bayesian Longitudinal Functional Data Analysis. Journal of Computational and Graphical Statistics 2024, pp. 1–13. [CrossRef]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian processes for machine learning; Adaptive computation and machine learning, MIT Press: Cambridge, Mass, 2006; p. 248.
- Yao, F.; Müller, H.G.; Wang, J.L. Functional Data Analysis for Sparse Longitudinal Data. Journal of the American Statistical Association 2005, 100, 577–590. [CrossRef]
- Di, C.Z.; Crainiceanu, C.M.; Caffo, B.S.; Punjabi, N.M. Multilevel functional principal component analysis. The Annals of Applied Statistics 2009, 3, 458–488. [CrossRef]
- Peng, J.; Paul, D. A geometric approach to maximum likelihood estimation of the functional principal components from sparse longitudinal data. Journal of Computational and Graphical Statistics 2009, 18, 995–1015.
- Goldsmith, J.; Schwartz, J.E. Variable selection in the functional linear concurrent model. Statistics in Medicine 2017/06/30, 36, 2237–2250. [CrossRef]
- Xiao, L.; Li, C.; Checkley, W.; Crainiceanu, C. Fast covariance estimation for sparse functional data. Statistics and Computing 2018, 28, 511–522. [CrossRef]
- Chiou, J.M.; Yang, Y.F.; Chen, Y.T. Multivariate functional principal component analysis: A normalization approach. Statistica Sinica 2014. [CrossRef]
- Jacques, J.; Preda, C. Model-based clustering for multivariate functional data. Computational Statistics & Data Analysis 2014, 71, 92–106. [CrossRef]
- Yang, J.; Cox, D.D.; Lee, J.S.; Ren, P.; Choi, T. Efficient Bayesian Hierarchical Functional Data Analysis with Basis Function Approximations Using Gaussian–Wishart Processes. Biometrics 2017/12/01, 73, 1082–1091. [CrossRef]
- Trefethen, L.N. Approximation theory and approximation practice, extended edition; SIAM, 2019.
- Bungartz, H.J.; Griebel, M. Sparse grids. Acta numerica 2004, 13, 147–269.
- Zipunnikov, V.; Caffo, B.; Yousem, D.M.; Davatzikos, C.; Schwartz, B.S.; Crainiceanu, C. Multilevel functional principal component analysis for high-dimensional data. Journal of Computational and Graphical Statistics 2011, 20, 852–873. [CrossRef]
- Yao, F.; Lei, E.; Wu, Y. Effective dimension reduction for sparse functional data. Biometrika 2015, 102, 421–437. [CrossRef]
- Shi, H.; Yang, Y.; Wang, L.; Ma, D.; Beg, M.F.; Pei, J.; Cao, J. Two-Dimensional Functional Principal Component Analysis for Image Feature Extraction. Journal of Computational and Graphical Statistics 2022, 31, 1127–1140. [CrossRef]
- Van Der Linde, A. Variational Bayesian functional PCA. Computational Statistics & Data Analysis 2008, 53, 517–533. [CrossRef]
- Montagna, S.; Tokdar, S.T.; Neelon, B.; Dunson, D.B. Bayesian Latent Factor Regression for Functional and Longitudinal Data. Biometrics 2012, 68, 1064–1073. [CrossRef]
- Kowal, D.R.; Bourgeois, D.C. Bayesian Function-on-Scalars Regression for High-Dimensional Data. Journal of Computational and Graphical Statistics 2020-7-2, 29, 629–638. [CrossRef]
- Sousa, P.H.T.O.; Souza, C.P.E.d.; Dias, R. Bayesian adaptive selection of basis functions for functional data representation. Journal of Applied Statistics 2024-04-03, 51, 958–992. [CrossRef]
- Li, Y.; Wang, N.; Carroll, R.J. Selecting the Number of Principal Components in Functional Data. Journal of the American Statistical Association 2013, 108, 1284–1294. [CrossRef]
- Huang, L.; Reiss, P.T.; Xiao, L.; Zipunnikov, V.; Lindquist, M.A.; Crainiceanu, C.M. Two-way principal component analysis for matrix-variate data, with an application to functional magnetic resonance imaging data. Biostatistics 2017, 18, 214–229. [CrossRef]
- Lynch, B.; Chen, K. A test of weak separability for multi-way functional data, with application to brain connectivity studies. Biometrika 2018, 105, 815–831. [CrossRef]
- Shamshoian, J.; Şentürk, D.; Jeste, S.; Telesca, D. Bayesian analysis of longitudinal and multidimensional functional data. Biostatistics 2022/04/13, 23, 558–573. [CrossRef]
- Huo, S.; Morris, J.S.; Zhu, H. Ultra-Fast Approximate Inference Using Variational Functional Mixed Models. Journal of Computational and Graphical Statistics 2023-4-3, 32, 353–365. [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2016, 374, 20150202. [CrossRef]
- Tipping, M.E.; Bishop, C.M. Probabilistic principal component analysis. Journal of the Royal Statistical Society Series B: Statistical Methodology 1999, 61, 611–622.
- Ilin, A.; Raiko, T. Practical approaches to principal component analysis in the presence of missing values. The Journal of Machine Learning Research 2010, 11, 1957–2000.
- Bishop, C. Bayesian pca. Advances in neural information processing systems 1998, 11.
- Tipping, M.E.; Bishop, C.M. Mixtures of probabilistic principal component analyzers. Neural computation 1999, 11, 443–482. [CrossRef]
- Minka, T. Automatic choice of dimensionality for PCA. Advances in neural information processing systems 2000, 13.
- Li, J.; Tao, D. On Preserving Original Variables in Bayesian PCA With Application to Image Analysis. IEEE Transactions on Image Processing 2012, 21, 4830–4843. [CrossRef]
- Bouveyron, C.; Latouche, P.; Mattei, P.A. Bayesian variable selection for globally sparse probabilistic PCA. Electronic Journal of Statistics 2018, 12. [CrossRef]
- Ning, Y.C.B.; Ning, N. Spike and slab Bayesian sparse principal component analysis. Statistics and Computing 2024, 34, 118.
- Bhattacharya, A.; Dunson, D.B. Sparse Bayesian infinite factor models. Biometrika 2011, 98, 291–306. [CrossRef]
- Tipping, M.E. Sparse Bayesian learning and the relevance vector machine. Journal of machine learning research 2001, 1, 211–244.
- Tipping, M. The relevance vector machine. Advances in neural information processing systems 1999, 12.
- Faul, A.C.; Tipping, M.E., Analysis of Sparse Bayesian Learning. In Advances in Neural Information Processing Systems 14; The MIT Press, 2002; pp. 383–390.
- MacKay, D.J., Bayesian methods for backpropagation networks. In Models of neural networks III: association, generalization, and representation; Springer, 1996; pp. 211–254.
- Neal, R.M. Bayesian learning for neural networks; Vol. 118, Springer Science & Business Media, 2012.
- Palmer, J.; Rao, B.; Wipf, D. Perspectives on sparse Bayesian learning. Advances in neural information processing systems 2003, 16.
- Wipf, D.; Nagarajan, S. A new view of automatic relevance determination. Advances in neural information processing systems 2007, 20.
- Wipf, D.; Rao, B. ℓ0-norm minimization for basis selection. In Proceedings of the Proceedings of the 17th International Conference on Neural Information Processing Systems, 2004, pp. 1513–1520.
- Wipf, D.P.; Rao, B.D.; Nagarajan, S. Latent Variable Bayesian Models for Promoting Sparsity. IEEE Transactions on Information Theory 2011, 57, 6236–6255. [CrossRef]
- Wipf, D.; Rao, B. Sparse Bayesian Learning for Basis Selection. IEEE Transactions on Signal Processing 2004, 52, 2153–2164. [CrossRef]
- Bishop, C.M. Variational Principal Components. In Proceedings of the Proceedings Ninth International Conference on Artificial Neural Networks, ICANN’99. IEE, 1999, pp. 509–514.
- Nakajima, S.; Sugiyama, M.; Babacan, D. On Bayesian PCA: Automatic dimensionality selection and analytic solution. In Proceedings of the Proceedings of the 28th International Conference on Machine Learning (ICML-11), 2011, pp. 497–504.
- Girolami, M.; Rogers, S. Hierarchic Bayesian models for kernel learning. In Proceedings of the Proceedings of the 22nd international conference on Machine learning, 2005, pp. 241–248.
- Bishop, C.M.; Tipping, M.E. Variational relevance vector machines. In Proceedings of the Proceedings of the Sixteenth conference on Uncertainty in artificial intelligence, 2000, pp. 46–53.
- Cheng, L.; Yin, F.; Theodoridis, S.; Chatzis, S.; Chang, T.H. Rethinking Bayesian Learning for Data Analysis: The Art of Prior and Inference in Sparsity-Aware Modeling. IEEE Signal Processing Magazine 2022, 39, 18–52. [CrossRef]
- Qi, Y.A.; Minka, T.P.; Picard, R.W.; Ghahramani, Z. Predictive automatic relevance determination by expectation propagation. In Proceedings of the Twenty-first international conference, Banff, Alberta, Canada, 2004; p. 85. [CrossRef]
- Babacan, S.D.; Luessi, M.; Molina, R.; Katsaggelos, A.K. Sparse Bayesian Methods for Low-Rank Matrix Estimation. IEEE Transactions on Signal Processing 2012, 60, 3964–3977. [CrossRef]
- Zhao, Q.; Meng, D.; Xu, Z.; Zuo, W.; Yan, Y. L1 -Norm Low-Rank Matrix Factorization by Variational Bayesian Method. IEEE Transactions on Neural Networks and Learning Systems 2015, 26, 825–839. [CrossRef]
- Guan, Y.; Dy, J. Sparse probabilistic principal component analysis. In Proceedings of the Artificial Intelligence and Statistics. PMLR, 2009, pp. 185–192.
- Wong, A.P.S.; Wijffels, S.E.; Riser, S.C.; Pouliquen, S.; Hosoda, S.; Roemmich, D.; Gilson, J.; Johnson, G.C.; Martini, K.; Murphy, D.J.; et al. Argo Data 1999-2019: Two Million Temperature-Salinity Profiles and Subsurface Velocity Observations From a Global Array of Profiling Floats. Frontiers in Marine Science 2020, 7, 700. [CrossRef]
- Blei, D.M.; Kucukelbir, A.; McAuliffe, J.D. Variational Inference: A Review for Statisticians. Journal of the American Statistical Association 2017, 112, 859–877. [CrossRef]
- Tipping, M.E.; Faul, A.C. Fast marginal likelihood maximisation for sparse Bayesian models. In Proceedings of the International workshop on artificial intelligence and statistics. PMLR, 2003, pp. 276–283.
- Park, T.; Lee, S. Improving the Gibbs sampler. Wiley Interdisciplinary Reviews: Computational Statistics 2022, 14, e1546.
- Ledoit, O.; Wolf, M. A well-conditioned estimator for large-dimensional covariance matrices. Journal of Multivariate Analysis 2004, 88, 365–411. [CrossRef]
- Kaslow, R.A.; Ostrow, D.G.; Detels, R.; Phair, J.P.; Polk, B.F.; RINALDO Jr, C.R.; Study, M.A.C. The Multicenter AIDS Cohort Study: rationale, organization, and selected characteristics of the participants. American journal of epidemiology 1987, 126, 310–318. [CrossRef]
- Argo float data and metadata from Global Data Assembly Centre (Argo GDAC) - Snapshot of Argo GDAC of November 09st 2024, 2024. [CrossRef]
- Yarger, D.; Stoev, S.; Hsing, T. A functional-data approach to the Argo data. The Annals of Applied Statistics 2022, 16, 216–246. [CrossRef]
- de Boyer Montégut, C.; Madec, G.; Fischer, A.S.; Lazar, A.; Iudicone, D. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. Journal of Geophysical Research: Oceans 2004, 109.
- Roemmich, D.; Gilson, J. The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Progress in oceanography 2009, 82, 81–100. [CrossRef]
- Kuusela, M.; Stein, M.L. Locally stationary spatio-temporal interpolation of Argo profiling float data. Proceedings of the Royal Society A 2018, 474, 20180400. [CrossRef]









| AIC | BIC | fpca | BSFDA | |||||||
| 5 | 0.000 | 0.580 | 0.380 | 0.410 | 0.735 | 0.650 | 0.880 | 0.645 | 0.995 | 0.015 |
| 10 | 0.000 | 0.980 | 0.670 | 0.955 | 0.985 | 0.880 | 0.920 | 0.645 | 1.000 | 0.910 |
| 50 | 0.000 | 1.000 | 0.830 | 1.000 | 1.000 | 1.000 | 1.000 | 0.890 | 0.980 | 0.945 |
| AIC | BIC | fpca | BSFDA | |||||||
| 5 | 0.005 | 0.630 | 0.245 | 0.375 | 0.605 | 0.570 | 0.620 | 0.475 | 1.000 | 0.040 |
| 10 | 0.000 | 0.710 | 0.665 | 0.570 | 0.805 | 0.825 | 0.850 | 0.640 | 1.000 | 0.995 |
| 50 | 0.000 | 0.630 | 0.795 | 0.955 | 0.945 | 1.000 | 1.000 | 0.950 | 1.000 | 0.950 |
| AIC | BIC | fpca | BSFDA | |||||||
| 5 | 0.005 | 0.720 | 0.325 | 0.640 | 0.590 | 0.320 | 0.400 | 0.450 | 0.995 | 0.945 |
| 10 | 0.000 | 0.580 | 0.770 | 0.965 | 0.665 | 0.740 | 0.755 | 0.440 | 0.995 | 1.000 |
| 50 | 0.000 | 1.000 | 0.775 | 1.000 | 1.000 | 1.000 | 1.000 | 0.765 | 0.980 | 0.920 |
| AIC | BIC | fpca | BSFDA | |||||||
| 5 | 0.015 | 0.710 | 0.410 | 0.640 | 0.560 | 0.515 | 0.575 | 0.370 | 1.000 | 0.975 |
| 10 | 0.000 | 0.830 | 0.775 | 0.920 | 0.900 | 0.750 | 0.760 | 0.350 | 0.995 | 0.990 |
| 50 | 0.000 | 0.945 | 0.835 | 1.000 | 1.000 | 1.000 | 1.000 | 0.730 | 0.950 | 0.935 |
| AIC | BIC | fpca | BSFDA | |||||||
| 5 | 0.705 | 0.470 | 0.090 | 0.070 | 0.545 | 0.425 | 0.410 | 0.855 | 0.925 | 0.160 |
| 10 | 0.065 | 0.570 | 0.525 | 0.775 | 0.705 | 0.575 | 0.575 | 0.500 | 1.000 | 0.930 |
| 50 | 0.000 | 0.260 | 0.590 | 0.980 | 0.965 | 0.870 | 0.770 | 0.695 | 0.995 | 0.925 |
| fpca | refund.sc | BSFDA | ||||
| 5 | 12.373 ± 4.026 | 12.377 ± 4.031 | 5.192 ± 6.166 | 8.833 ± 4.730 | 5.814 ± 3.535 | 10.292±12.717 |
| 10 | 10.391 ± 2.521 | 10.391 ± 2.521 | 2.098 ± 1.425 | 5.314 ± 3.501 | 2.068 ± 1.427 | 2.656±1.712 |
| 50 | 9.054 ± 1.683 | 9.054 ± 1.683 | 1.642 ± 1.240 | N/A | 1.638 ± 1.247 | 1.770±1.275 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
