Submitted:
05 March 2025
Posted:
07 March 2025
You are already at the latest version
Abstract
Protein lipidation, a crucial post-translational modification, plays a fundamental role in regulating protein function, localization, and stability. Among the different lipidation types, S-palmitoylation is one of the most extensively studied due to its dynamic and reversible nature. Hence, this review explores the enzymatic regulation and catalytic mechanisms of S-palmitoylation, with a focus on its physiological functions and pathological implications, particularly in cancer. Dysregulation of S-palmitoylation has been linked to enhanced tumour progression, metabolic adaptation, and immune evasion in various cancers. Conversely, it also exhibits tumor-suppressive effects by promoting the degradation of oncogenic proteins. Despite promising preclinical findings, targeted therapies leveraging S-palmitoylation regulation remain underdeveloped. This review consolidates current knowledge on the role of S-palmitoylation in disease development, highlighting its therapeutic potential and the need for further clinical research.
Keywords:
1.0. Introduction
2.0. S-Palmitoylation: Enzymatic Regulation and Catalytic Mechanisms
2.1. Enzymes Involved and Their Catalytic Function
2.2. Structural and Functional Complexity of DHHC-PATs
2.3. Inhibition of DHHC-PAT Activity
2.4. Depalmitoylation and Its Regulation
3.0. Physiological Function
4.0. Pathological Implications of S-Palmitoylation in Cancer
4.1. Mechanism of Enhanced S-Palmitoylation in Tumor-Associated Proteins
4.2. S-Palmitoylation and Metabolic Adaptation in Cancer Cells
4.3. Tumor Suppression Through S-Palmitoylation
5.0. Therapeutic Targets and Clinical Research Progress
6.0. Conclusion
References
- Agliarulo, I.; Parashuraman, S. Golgi apparatus regulates plasma membrane composition and function. Cells 2022, 11, 368. [Google Scholar] [CrossRef]
- Álvarez-Sánchez, A.; Grinat, J.; Doria-Borrell, P.; Mellado-López, M.; Pedrera-Alcócer, É.; Malenchini, M.; Meseguer, S.; Hemberger, M.; Pérez-García, V. ‘The GPI-anchor biosynthesis pathway is critical for syncytiotrophoblast differentiation and placental development. Cellular and Molecular Life Sciences 2024, 81, 246. [Google Scholar] [PubMed]
- Azizi, S.; Lan, T.; Delalande, C.; Kathayat, R.S.; Mejia, F.B.; Qin, A.; Brookes, N.; Sandoval, P.J.; Dickinson, B.C. Development of an Acrylamide-Based inhibitor of protein S-Acylation. ACS Chemical Biology 2021, 16, 1546–1556. [Google Scholar] [CrossRef] [PubMed]
- Bailey, M.H.; Tokheim, C.; Porta-Pardo, E.; Sengupta, S.; Bertrand, D.; Weerasinghe, A.; Colaprico, A.; Wendl, M.C.; Kim, J.; Reardon, B.; Ng, P.K.S. Comprehensive characterization of cancer driver genes and mutations. Cell 2018, 173, 371–385. [Google Scholar] [PubMed]
- Boyle, P.C.; Schwizer, S.; Hind, S.R.; Kraus, C.M.; De la Torre Diaz, S.; He, B.; Martin, G.B. Detecting N-myristoylation and S-acylation of host and pathogen proteins in plants using click chemistry. Plant Methods 2016, 12, 1–14. [Google Scholar]
- Buffa, V.; Adamo, G.; Picciotto, S.; Bongiovanni, A.; Romancino, D.P. A simple, semi-quantitative acyl biotin exchange-based method to detect protein S-palmitoylation levels. Membranes 2023, 13, 361. [Google Scholar] [CrossRef]
- Buczek, M.; Escudier, B.; Bartnik, E.; Szczylik, C.; Czarnecka, A. Resistance to tyrosine kinase inhibitors in clear cell renal cell carcinoma: from the patient's bed to molecular mechanisms. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 2014, 1845, 31–41. [Google Scholar]
- Buszka, A.; Pytyś, A.; Colvin, D.; Włodarczyk, J.; Wójtowicz, T. S-palmitoylation of synaptic proteins in neuronal plasticity in normal and pathological brains. Cells 2023, 12, 387. [Google Scholar] [CrossRef]
- Cai, J.; Cui, J.; Wang, L. S-palmitoylation regulates innate immune signalling pathways: molecular mechanisms and targeted therapies. European Journal of Immunology 2023, 53, 2350476. [Google Scholar]
- Chaturvedi, S.; Sonawane, A. Recapitulating the potential contribution of protein S-palmitoylation in cancer. Cancer and Metastasis Reviews 2024, 44, 1–26. [Google Scholar] [CrossRef]
- Chen, B.; Zheng, B.; DeRan, M.; Jarugumilli, G.K.; Fu, J.; Brooks, Y.S.; Wu, X. ZDHHC7-mediated S-palmitoylation of Scribble regulates cell polarity. Nature chemical biology 2016, 12, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhu, B.O.; Yin, C.; Liu, W.; Han, C.; Chen, B.; Liu, T.; Li, X.; Chen, X.; Li, C.; Hu, L. Palmitoylation-dependent activation of MC1R prevents melanomagenesis. Nature 2017, 549, 399–403. [Google Scholar] [CrossRef]
- Chen, B.; Sun, Y.; Niu, J.; Jarugumilli, G.K.; Wu, X. Protein lipidation in cell signaling and diseases: function, regulation, and therapeutic opportunities. Cell chemical biology 2018, 25, 817–831. [Google Scholar] [CrossRef]
- Chen, S.; Han, C.; Miao, X.; Li, X.; Yin, C.; Zou, J.; Liu, M.; Li, S.; Stawski, L.; Zhu, B.; Shi, Q. Targeting MC1R depalmitoylation to prevent melanomagenesis in redheads. Nature communications 2019, 10, 877. [Google Scholar] [CrossRef]
- Chen, L.; Tu, L.; Yang, G.; Banfield, D.K. Remodeling-defective GPI-anchored proteins on the plasma membrane activate the spindle assembly checkpoint. Cell Reports, /: https, 3496. [Google Scholar]
- Chen, Q.T.; Zhang, Z.Y.; Huang, Q.L.; Chen, H.Z.; Hong, W.B.; Lin, T.; Zhao, W.X.; Wang, X.M.; Ju, C.Y.; Wu, L.Z.; Huang, Y.Y. HK1 from hepatic stellate cell–derived extracellular vesicles promotes progression of hepatocellular carcinoma. Nature metabolism 2022, 4, 1306–1321. [Google Scholar] [PubMed]
- Chen, Y.; Li, Y.; Wu, L. Protein S-palmitoylation modification: implications in tumor and tumor immune microenvironment. Frontiers in Immunology 2024, 15. [Google Scholar] [CrossRef] [PubMed]
- Cho, E.; Park, M. Palmitoylation in Alzheimer s disease and other neurodegenerative diseases. Pharmacological Research 2016, 111, 133–151. [Google Scholar]
- Crowl, S.; Coleman, M.B.; Chaphiv, A.; Jordan, B.T.; Naegle, K.M. Systematic analysis of the effects of splicing on the diversity of post-translational modifications in protein isoforms using PTM-POSE. bioRxiv 2024, 2024-01. [Google Scholar]
- Cui, Z.; Cong, M.; Yin, S.; Li, Y.; Ye, Y.; Liu, X.; Tang, J. Role of protein degradation systems in colorectal cancer. Cell Death Discovery 2024, 10, 141. [Google Scholar]
- Ernst, A.M.; Syed, S.A.; Zaki, O.; Bottanelli, F.; Zheng, H.; Hacke, M.; Xi, Z.; Rivera-Molina, F.; Graham, M.; Rebane, A.A.; Björkholm, P. S-palmitoylation sorts membrane cargo for anterograde transport in the Golgi. Developmental cell 2018, 47, 479–493. [Google Scholar]
- Ernst, A.M.; Toomre, D.; Bogan, J.S. Acylation–a new means to control traffic through the Golgi. Frontiers in cell and developmental biology 2019, 7, 109. [Google Scholar]
- Erazo-Oliveras, A.; Muñoz-Vega, M.; Salinas, M.L.; Wang, X.; Chapkin, R.S. Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. The FEBS journal 2024, 291, 1299–1352. [Google Scholar]
- Fan, X.; Yang, H.; Zhao, C.; Hu, L.; Wang, D.; Wang, R.; Chen, X. Local anesthetics impair the growth and self-renewal of glioblastoma stem cells by inhibiting ZDHHC15-mediated GP130 palmitoylation’. Stem Cell Research & Therapy 2021, 12, 1–16. [Google Scholar]
- Gao, X.; Hannoush, R.N. A decade of click chemistry in protein palmitoylation: impact on discovery and new biology. Cell chemical biology 2018, 25, 236–246. [Google Scholar]
- Gao, X.; Kuo, C.W.; Main, A.; Brown, E.; Rios, F.J.; Camargo, L.D.L.; Mary, S.; Wypijewski, K.; Gök, C.; Touyz, R.M.; Fuller, W. Palmitoylation regulates cellular distribution of and transmembrane Ca flux through TrpM7. Cell Calcium 2022, 106, 102639. [Google Scholar] [PubMed]
- García-Borrón, J.C.; Abdel-Malek, Z.; Jiménez-Cervantes, C. MC 1R, the c AMP pathway, and the response to solar UV: Extending the horizon beyond pigmentation. Pigment cell & melanoma research 2014, 27, 699–720. [Google Scholar]
- Gendaszewska-Darmach, E.; Garstka, M.A.; Błażewska, K.M. Targeting small GTPases and their prenylation in diabetes mellitus. Journal of medicinal chemistry 2021, 64, 9677–9710. [Google Scholar]
- Gorleku, O.A.; Barns, A.M.; Prescott, G.R.; Greaves, J.; Chamberlain, L.H. Endoplasmic reticulum localization of DHHC palmitoyltransferases mediated by lysine-based sorting signals. Journal of Biological Chemistry 2011, 286, 39573–39584. [Google Scholar] [PubMed]
- Gou, Q.; Dong, C.; Xu, H.; Khan, B.; Jin, J.; Liu, Q.; Shi, J.; Hou, Y. PD-L1 degradation pathway and immunotherapy for cancer. Cell death & disease 2020, 11, 955. [Google Scholar]
- Greaves, J.; Chamberlain, L.H. DHHC palmitoyl transferases: substrate interactions and (patho) physiology. Trends in biochemical sciences 2011, 36, 245–253. [Google Scholar]
- Guo, Z.; Kundu, S. Recent research progress in glycosylphosphatidylinositol-anchored protein biosynthesis, chemical/chemoenzymatic synthesis, and interaction with the cell membrane. Current opinion in chemical biology 2024, 78, 102421. [Google Scholar] [CrossRef]
- Hao, J.W.; Wang, J.; Guo, H.; Zhao, Y.Y.; Sun, H.H.; Li, Y.F.; Lai, X.Y.; Zhao, N.; Wang, X.; Xie, C.; Hong, L. CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocytosis. Nature communications 2020, 11, 4765. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, T. Post-translational palmitoylation of ionotropic glutamate receptors in excitatory synaptic functions. British Journal of Pharmacology 2021, 178, 784–797. [Google Scholar] [PubMed]
- Hernandez, J.L.; Davda, D.; Kit, M.C.S.; Majmudar, J.D.; Won, S.J.; Gang, M.; Pasupuleti, S.C.; Choi, A.I.; Bartkowiak, C.M.; Martin, B.R. APT2 inhibition restores scribble localization and S-palmitoylation in snail-transformed cells. Cell chemical biology 2017, 24, 87–97. [Google Scholar] [CrossRef]
- Hu, D.; Li, Y.; Wang, X.; Zou, H.; Li, Z.; Chen, W.; Meng, Y.; Wang, Y.; Li, Q.; Liao, F.; Wu, K. Palmitoylation of NLRP3 modulates inflammasome activation and inflammatory bowel disease development. The Journal of Immunology 2024, 213, 481–493. [Google Scholar] [CrossRef]
- Huang, J.; Li, J.; Tang, J.; Wu, Y.; Dai, F.; Yi, Z.; Wang, Y.; Li, Y.; Wu, Y.; Ren, G.; Xiang, T. ZDHHC22-mediated mTOR palmitoylation restrains breast cancer growth and endocrine therapy resistance. International journal of biological sciences 2022, 18, 2833. [Google Scholar]
- Jalte, M.; Abbassi, M.; El Mouhi, H.; Belghiti, H.D.; Ahakoud, M.; Bekkari, H.; JALTE, M.; ABBASSI, M.; EL MOUHI, H.I.N.D.E.; AHAKOUD, M.; BEKKARI, H. FLT3 mutations in acute myeloid leukemia: unraveling the molecular mechanisms and implications for targeted therapies. Cureus 2023, 15. https://www.cureus.com/articles/178475-flt3-mutations-in-acute-myeloid-leukemia-unraveling-the-molecular-mechanisms-and-implications-for-targeted-therapies.pdf.
- Jennings, B.C.; Linder, M.E. DHHC protein S-acyltransferases use similar ping-pong kinetic mechanisms but display different acyl-CoA specificities. Journal of Biological Chemistry 2012, 287, 7236–7245. [Google Scholar] [PubMed]
- Jeong, A.; Suazo, K.F.; Wood, W.G.; Distefano, M.D.; Li, L. Isoprenoids and protein prenylation: implications in the pathogenesis and therapeutic intervention of Alzheimer’s disease. Critical reviews in biochemistry and molecular biology 2018, 53, 279–310. [Google Scholar]
- Jeyifous, O.; Lin, E.I.; Chen, X.; Antinone, S.E.; Mastro, R.; Drisdel, R.; Reese, T.S.; Green, W.N. Palmitoylation regulates glutamate receptor distributions in postsynaptic densities through control of PSD95 conformation and orientation. Proceedings of the National Academy of Sciences 2016, 113, E8482–E8491. [Google Scholar]
- Jing, H.; Zhang, X.; Wisner, S.A.; Chen, X.; Spiegelman, N.A.; Linder, M.E.; Lin, H. SIRT2 and lysine fatty acylation regulate the transforming activity of K-Ras4a. Elife 2017, 6, e32436. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, J.B.; Batra, S.K.; Rachagani, S. Hedgehog signaling and its molecular perspective with cholesterol: a comprehensive review. Cellular and Molecular Life Sciences 2022, 79, 266. [Google Scholar]
- Kennedy, V.E.; Smith, C.C. FLT3 mutations in acute myeloid leukemia: key concepts and emerging controversies. Frontiers in oncology 2020, 10, 612880. [Google Scholar]
- Kinoshita, T.; Fujita, M. Thematic Review Series: Glycosylphosphatidylinositol (GPI) Anchors: Biochemistry and Cell Biology Biosynthesis of GPI-anchored proteins: special emphasis on GPI lipid remodeling. Journal of Lipid Research 2016, 57, 6–24 https://wwwsciencedirectcom/science/article/pii/S0022227520313973. [Google Scholar] [PubMed]
- Kiyoi, H.; Kawashima, N.; Ishikawa, Y. FLT3 mutations in acute myeloid leukemia: Therapeutic paradigm beyond inhibitor development. Cancer Science 2020, 111, 312–322. [Google Scholar]
- Ko, P.; Dixon, S.J. Protein palmitoylation and cancer. EMBO Reports 2018, 19. [Google Scholar] [CrossRef]
- Kosciuk, T.; Lin, H. N-Myristoyltransferase as a glycine and lysine myristoyltransferase in cancer, immunity, and infections. ACS Chemical Biology 2020, 15, 1747–1758. [Google Scholar] [PubMed]
- Koster, K.P.; Yoshii, A. Depalmitoylation by Palmitoyl-Protein thioesterase 1 in neuronal health and degeneration. Frontiers in Synaptic Neuroscience 2019, 11. [Google Scholar] [CrossRef]
- Kretova, M.; Selicky, T.; Cipakova, I.; Cipak, L. Regulation of pre-mRNA splicing: indispensable role of post-translational modifications of splicing factors. Life 2023, 13, 604. [Google Scholar] [CrossRef]
- Lan, T.; Delalande, C.; Dickinson, B.C. Inhibitors of DHHC family proteins. Current opinion in chemical biology 2021, 65, 118–125. [Google Scholar] [CrossRef]
- Lee, H.J.; Zheng, J.J. PDZ domains and their binding partners: structure, specificity, and modification. Cell Communication and Signaling 2010, 8, pp.19Koster & Yoshi, 2017l–18 https://linkspringercom/article/101186/1478. [Google Scholar]
- Li, M.; Zhang, L.; Chen, C.W. Diverse roles of protein palmitoylation in cancer progression, immunity, stemness, and beyond. Cells 2023, 12, 2209. [Google Scholar] [CrossRef] [PubMed]
- Lin, H. Protein cysteine palmitoylation in immunity and inflammation. The FEBS journal 2021, 288, 7043–7059. [Google Scholar] [PubMed]
- Li, X.; Mao, W.; Chen, J.; Goding, C.R.; Cui, R.; Xu, Z.X.; Miao, X. The protective role of MC1R in chromosome stability and centromeric integrity in melanocytes. Cell Death Discovery 2021, 7, 111. [Google Scholar]
- Liao, D.; Huang, Y.; Liu, D.; Zhang, H.; Shi, X.; Li, X.; Luo, P. The role of s-palmitoylation in neurological diseases: implication for zDHHC family. Frontiers in Pharmacology 2024, 14, 1342830. [Google Scholar]
- Lin, X.; Shi, Y.; Zhan, Y.; Xing, Y.; Li, Y.; Zhou, Z.; Chen, G. Advances of Protein Palmitoylation in Tumor Cell Deaths. Cancers 2023, 15, 5503. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Xiao, M.; Mo, Y.; Wang, H.; Han, Y.; Zhao, X.; Yang, X.; Liu, Z.; Xu, B. Emerging roles of protein palmitoylation and its modifying enzymes in cancer cell signal transduction and cancer therapy. International journal of biological sciences 2022, 18, 3447. [Google Scholar]
- Lv, K.; Ren, J.G.; Han, X.; Gui, J.; Gong, C.; Tong, W. Depalmitoylation rewires FLT3-ITD signaling and exacerbates leukemia progression Blood. The Journal of the American Society of Hematology 2021, 138, 2244–2255. [Google Scholar]
- Main, A.; Fuller, W. Protein S-Palmitoylation: advances and challenges in studying a therapeutically important lipid modification. FEBS Journal 2021, 289, 861–882. [Google Scholar] [CrossRef]
- Murali, R.; Balasubramaniam, V.; Srinivas, S.; Sundaram, S.; Venkatraman, G.; Warrier, S.; Dharmarajan, A.; Gandhirajan, R.K. Deregulated metabolic pathways in ovarian cancer: cause and consequence. Metabolites 2023, 13, 560. [Google Scholar] [CrossRef]
- Qu, M.; Zhou, X.; Wang, X.; Li, H. Lipid-induced S-palmitoylation as a vital regulator of cell signaling and disease development. International journal of biological sciences 2021, 17, 4223. [Google Scholar]
- Pedro, M.P.; Vilcaes, A.A.; Tomatis, V.M.; Oliveira, R.G.; Gomez, G.A.; Daniotti, J.L. 2-Bromopalmitate reduces protein deacylation by inhibition of Acyl-Protein thioesterase enzymatic activities. PLoS ONE 2013, 8, e75232. [Google Scholar] [CrossRef]
- Peng, J.; Liang, D.; Zhang, Z. Palmitoylation of synaptic proteins: roles in functional regulation and pathogenesis of neurodegenerative diseases. Cellular & Molecular Biology Letters 2024, 29, 108. [Google Scholar]
- Pei, X.; Li, K.Y.; Shen, Y.; Li, J.T.; Lei, M.Z.; Fang, C.Y.; Lu, H.J.; Yang, H.J.; Wen, W.; Yin, M.; Qu, J. Palmitoylation of MDH2 by ZDHHC18 activates mitochondrial respiration and accelerates ovarian cancer growth. Science China Life Sciences 2022, 65, 2017–2030. [Google Scholar] [PubMed]
- Philippe, J.M.; Jenkins, P.M. Spatial organization of palmitoyl acyl transferases governs substrate localization and function. Molecular membrane biology 2019, 35, 60–75. [Google Scholar]
- Qiu, N.; Abegg, D.; Guidi, M.; Gilmore, K.; Seeberger, P.H.; Adibekian, A. Artemisinin inhibits NRas palmitoylation by targeting the protein acyltransferase ZDHHC6. Cell Chemical Biology 2022, 29, 530–537. [Google Scholar] [PubMed]
- Ray, A.; Jatana, N.; Thukral, L. Lipidated proteins: spotlight on protein-membrane binding interfaces. Progress in biophysics and molecular biology 2017, 128, 74–84. [Google Scholar]
- Reikvam, H. Revisiting the prognostic role of FLT3 mutations in acute myelogenous leukemia. Expert Review of Hematology 2023, 16, 317–323. [Google Scholar]
- Sanders, S.S.; Hernandez, L.M.; Soh, H.; Karnam, S.; Walikonis, R.S.; Tzingounis, A.V.; Thomas, G.M. The palmitoyl acyltransferase ZDHHC14 controls Kv1-family potassium channel clustering at the axon initial segment. Elife 2020, 9, e56058 https://elifesciencesorg/articles/56058. [Google Scholar]
- Shang, S.; Hua, F.; Hu, Z.W. The regulation of β-catenin activity and function in cancer: therapeutic opportunities. Oncotarget 2017, 8, 33972. [Google Scholar]
- Sun, Y.; Zhu, L.; Liu, P.; Zhang, H.; Guo, F.; Jin, X. ZDHHC2-Mediated AGK Palmitoylation activates AKT–mTOR signaling to reduce sunitinib sensitivity in renal cell carcinoma. Cancer Research 2023, 83, 2034–2051. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, X.; Yin, C.; Zhang, J.; Liang, E.; Wu, X.; Ni, Y.; Arbesman, J.; Goding, C.R.; Chen, S. AMPK phosphorylates ZDHHC13 to increase MC1R activity and suppress melanogenesis. Cancer Research 2023, 83, 1062–1073. [Google Scholar] [CrossRef] [PubMed]
- Surana, K.R.; Pawar, R.B.; Khairnar, R.A.; Mahajan, S.K. Protein Prenylation and Their Applications. In Modifications in Biomacromolecules; IntechOpen, 2022; Available online: https://www.intechopen.com/chapters/82212.
- Suskiewicz, M.J. The logic of protein post-translational modifications (PTMs): Chemistry, mechanisms and evolution of protein regulation through covalent attachments. BioEssays 2024, 46, 2300178. [Google Scholar] [CrossRef]
- Stix, R.; Lee, C.J.; Faraldo-Gómez, J.D.; Banerjee, A. Structure and mechanism of DHHC protein acyltransferases. Journal of molecular biology 2020, 432, 4983–4998. [Google Scholar] [CrossRef]
- Tabaczar, S.; Czogalla, A.; Podkalicka, J.; Biernatowska, A.; Sikorski, A.F. Protein palmitoylation: Palmitoyltransferases and their specificity. Experimental Biology and Medicine 2017, 242, 1150–1157. [Google Scholar] [CrossRef]
- Thomas, G.M.; Hayashi, T.; Chiu, S.L.; Chen, C.M.; Huganir, R.L. Palmitoylation by DHHC5/8 targets GRIP1 to dendritic endosomes to regulate AMPA-R trafficking. Neuron 2012, 73, 482–496. [Google Scholar] [CrossRef]
- Torres, M.; Parets, S.; Fernández-Díaz, J.; Beteta-Göbel, R.; Rodríguez-Lorca, R.; Román, R.; Lladó, V.; Rosselló, C.A.; Fernández-García, P.; Escribá, P.V. Lipids in pathophysiology and development of the membrane lipid therapy: new bioactive lipids. Membranes 2021, 11, 919. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, C.E.; Hagenbuch, B. Palmitoylation of solute carriers Biochemical pharmacology 2023, 215, 115695. 2023, 215, 115695. Available online: https://www.sciencedirect.com/science/article/pii/S0006295223002861.
- von Knethen, A.; Brüne, B. PD-L1 in the palm of your hand: palmitoylation as a target for immuno-oncology. Signal Transduction and Targeted Therapy 2019, 4, 18. [Google Scholar]
- Wang, L.; Cai, J.; Zhao, X.; Ma, L.; Zeng, P.; Zhou, L.; Liu, Y.; Yang, S.; Cai, Z.; Zhang, S.; Zhou, L. Palmitoylation prevents sustained inflammation by limiting NLRP3 inflammasome activation through chaperone-mediated autophagy. Molecular cell 2023, 83, 281–297. [Google Scholar] [CrossRef]
- Wang, J.; Hao, J.W.; Wang, X.; Guo, H.; Sun, H.H.; Lai, X.Y.; Liu, L.Y.; Zhu, M.; Wang, H.Y.; Li, Y.F.; Yu, L.Y. DHHC4 and DHHC5 facilitate fatty acid uptake by palmitoylating and targeting CD36 to the plasma membrane. Cell reports 2019, 26, 209–221. [Google Scholar] [PubMed]
- Wang, R.; Chen, Y.Q. Protein lipidation types: current strategies for enrichment and characterization. International Journal of Molecular Sciences 2022, 23, 2365. [Google Scholar] [PubMed]
- Woodley, K.T.; Collins, M.O. Regulation and function of the palmitoyl-acyltransferase ZDHHC5. The FEBS Journal 2021, 288, 6623–6634. [Google Scholar] [PubMed]
- Wu, X.; Xu, M.; Geng, M.; Chen, S.; Little, P.J.; Xu, S.; Weng, J. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies. Signal transduction and targeted therapy 2023, 8, 220. [Google Scholar]
- Xiang, Y.; Zheng, G.; Zhong, J.; Sheng, J.; Qin, H. Advances in renal cell carcinoma drug resistance models. Frontiers in Oncology 2022, 12. [Google Scholar] [CrossRef]
- Xu, S.; Tang, C. Cholesterol and hedgehog signaling: mutual regulation and beyond. Frontiers in Cell and Developmental Biology 2022, 10, 774291. [Google Scholar]
- Xu, Y.; Li, T.; Zhou, Z.; Hong, J.; Chao, Y.; Zhu, Z.; Zhang, Y.; Qu, Q.; Li, D. Structures of liganded glycosylphosphatidylinositol transamidase illuminate GPI-AP biogenesis. Nature Communications 2023, 14, 5520. [Google Scholar]
- Yao, H.; Lan, J.; Li, C.; Shi, H.; Brosseau, J.P.; Wang, H.; Lu, H.; Fang, C.; Zhang, Y.; Liang, L.; Zhou, X. Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours. Nature biomedical engineering 2019, 3, 306–317. [Google Scholar]
- Yuan, Y.; Li, P.; Li, J.; Zhao, Q.; Chang, Y.; He, X. Protein lipidation in health and disease: molecular basis, physiological function and pathological implication. Signal Transduction and Targeted Therapy 2024, 9, 60. [Google Scholar]
- Zhang, Q.; Fujita, M. Why nature evolved GPI-anchored proteins: unique structure characteristics enable versatile cell surface functions. Glycobiology 2024, 34, cwae089. https://academic.oup.com/glycob/article–abstract/34/12/cwae089/7895681. [Google Scholar]
- Zhang, Y.; Qin, Z.; Sun, W.; Chu, F.; Zhou, F. Function of protein S-palmitoylation in immunity and immune-related diseases. Frontiers in Immunology 2021, 12, 661202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, X.; Yang, F.; Chen, C.; Liu, P.; Ren, Y.; Sun, P.; Wang, Z.; You, Y.; Zeng, Y.X.; Li, X. DHHC9-mediated GLUT1 S-palmitoylation promotes glioblastoma glycolysis and tumorigenesis. Nature communications 2021, 12, 5872. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yang, X.; Wu, J.; Ye, S.; Gong, J.; Cheng, W.M.; Luo, Z.; Yu, J.; Liu, Y.; Zeng, W.; Liu, C. Reprogramming of palmitic acid induced by dephosphorylation of ACOX1 promotes β-catenin palmitoylation to drive colorectal cancer progression. Cell Discovery 2023, 9, 26. Available online: https://www.nature.com/articles/s41421-022-00515-x. [CrossRef] [PubMed]
- Zhong, Q.; Xiao, X.; Qiu, Y.; Xu, Z.; Chen, C.; Chong, B.; Zhao, X.; Hai, S.; Li, S.; An, Z.; Dai, L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm 2023, 4, e261. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, Y.; Zhang, L.; Shi, X.; Kong, H.; Zhang, M.; Kong, E. The palmitoylation of AEG-1 dynamically modulates the progression of hepatocellular carcinoma. Theranostics 2022, 12, 6898. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).