Submitted:
04 March 2025
Posted:
04 March 2025
You are already at the latest version
Abstract
Accurate near-surface wind speed and direction measurements are crucial for validating atmospheric models, especially for the purpose adequately assessing the interactions between the surface and wind, which in turn results in characteristic vertical profiles. Coastal regions pose unique challenges due to the discontinuity between land and sea and the complex interplay of atmospheric stability, topography, and boundary-layer dynamics. This study focuses on a unique database of wind profiles collected over several years at a World Meteorological Organization – Global Atmosphere Watch (WMO/GAW) coastal site in the southern Italian region of Calabria (Lamezia Terme, code: LMT). By leveraging remote sensing technologies, including wind lidar combined with in situ measurements, this work comprehensively analyses wind circulation at low altitudes in the narrowest point of the entire Italian peninsula. Seasonal, daily, and hourly wind profiles at multiple heights are analyzed, highlighting the patterns and variations induced by land-sea interactions. A case study integrating Synthetic Aperture Radar (SAR) satellite images and in situ observations demonstrates the importance of multi-sensor approaches in capturing wind dynamics and validating model simulations. Data analyses demonstrate the occurrence of extreme events during the winter and spring seasons, linked to synoptic flows; fall seasons have variable patterns, while during the summer, low speed winds and breeze regimes tend to prevail. Prevailing circulation is of westerly nature, in accordance with other studies on large scale flows.
Keywords:
1. Introduction
2. Characteristics of the LMT Site
3. Instruments and Methodologies
| Stats | Years | Wind Speeds (m/s) | ||
|---|---|---|---|---|
| Total | Eastern | Western | ||
| Mean | 2015 | 3.15 | 2.63 | 4.13 |
| 2016 | 3.76 | 3.41 | 4.63 | |
| 2017 | 3.32 | 2.91 | 4.28 | |
| 2018 | 3.73 | 3.51 | 4.68 | |
| 2019 | 3.46 | 2.96 | 4.47 | |
| 2020 | 3.39 | 2.67 | 4.49 | |
| 2021 | 3.33 | 2.82 | 4.38 | |
| 2022 | 3.01 | 2.74 | 3.85 | |
| 2023 | 3.25 | 2.85 | 4.17 | |
| SD | 2015 | 1.77 | 1.54 | 1.75 |
| 2016 | 2.19 | 1.98 | 2.20 | |
| 2017 | 1.98 | 1.67 | 2.00 | |
| 2018 | 2.34 | 2.02 | 2.47 | |
| 2019 | 2.08 | 1.81 | 2.13 | |
| 2020 | 2.03 | 1.60 | 2.01 | |
| 2021 | 1.99 | 1.53 | 2.07 | |
| 2022 | 1.97 | 1.90 | 1.87 | |
| 2023 | 1.88 | 1.78 | 1.76 | |
| Min | 2015 | 0.41 | 0.51 | 0.63 |
| 2016 | 0.34 | 0.39 | 0.52 | |
| 2017 | 0.39 | 0.47 | 0.44 | |
| 2018 | 0.38 | 0.52 | 0.50 | |
| 2019 | 0.39 | 0.55 | 0.65 | |
| 2020 | 0.37 | 0.37 | 0.47 | |
| 2021 | 0.43 | 0.46 | 0.60 | |
| 2022 | 0.40 | 0.40 | 0.43 | |
| 2023 | 0.49 | 0.49 | 0.57 | |
| Max | 2015 | 12.3 | 10.1 | 12.3 |
| 2016 | 13.8 | 12.4 | 13.8 | |
| 2017 | 14.3 | 10.6 | 14.3 | |
| 2018 | 14.6 | 11.3 | 14.6 | |
| 2019 | 16.9 | 12.1 | 16.9 | |
| 2020 | 14.6 | 12.5 | 14.6 | |
| 2021 | 14.8 | 10.9 | 14.8 | |
| 2022 | 11.6 | 10.3 | 11.6 | |
| 2023 | 11.6 | 9.90 | 11.6 | |
| Stats | Years | Altitudes (Total) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 300m | 250m | 200m | 150m | 120m | 100m | 80m | 60m | 20m | 10m | ||
| Mean | 2013 | 5.17 | 5.17 | 5.19 | 5.21 | 5.20 | 5.16 | 5.09 | 4.94 | 3.93 | 3.11 |
| 2014 | 5.49 | 5.46 | 5.46 | 5.47 | 5.47 | 5.45 | 5.39 | 5.28 | 4.32 | 3.44 | |
| 2015 | 5.62 | 5.58 | 5.54 | 5.50 | 5.46 | 5.42 | 5.34 | 5.22 | 4.33 | 3.48 | |
| 2016 | 6.00 | 6.00 | 6.01 | 6.02 | 5.99 | 5.93 | 5.83 | 5.66 | 4.60 | 3.80 | |
| 2018 | 6.19 | 6.15 | 6.12 | 6.09 | 6.04 | 5.98 | 5.89 | 5.73 | 4.61 | 3.73 | |
| 2021 | 5.62 | 5.63 | 5.65 | 5.66 | 5.64 | 5.60 | 5.54 | 5.41 | 4.44 | 3.59 | |
| 2023 | 5.56 | 5.50 | 5.45 | 5.41 | 5.35 | 5.30 | 5.23 | 5.12 | 4.28 | 3.53 | |
| 2024 | 5.58 | 5.56 | 5.55 | 5.52 | 5.48 | 5.43 | 5.37 | 5.25 | 4.37 | 3.61 | |
| SD | 2013 | 3.05 | 3.03 | 2.98 | 2.91 | 2.84 | 2.77 | 2.66 | 2.48 | 1.77 | 1.49 |
| 2014 | 3.33 | 3.35 | 3.36 | 3.32 | 3.26 | 3.18 | 3.05 | 2.85 | 2.13 | 1.75 | |
| 2015 | 3.46 | 3.45 | 3.42 | 3.34 | 3.27 | 3.19 | 3.07 | 2.89 | 2.17 | 1.80 | |
| 2016 | 3.69 | 3.72 | 3.72 | 3.68 | 3.61 | 3.52 | 3.39 | 3.19 | 2.40 | 2.07 | |
| 2018 | 3.85 | 3.85 | 3.84 | 3.80 | 3.74 | 3.65 | 3.53 | 3.34 | 2.56 | 2.19 | |
| 2021 | 3.86 | 3.78 | 3.70 | 3.59 | 3.50 | 3.43 | 3.32 | 3.16 | 2.52 | 2.18 | |
| 2023 | 3.86 | 3.78 | 3.70 | 3.59 | 3.50 | 3.43 | 3.32 | 3.16 | 2.52 | 2.18 | |
| 2024 | 3.63 | 3.61 | 3.59 | 3.55 | 3.48 | 3.39 | 3.26 | 3.07 | 2.36 | 2.04 | |
| Min | 2013 | 0.84 | 0.79 | 0.82 | 0.81 | 0.82 | 0.84 | 0.86 | 0.86 | 0.68 | 0.70 |
| 2014 | 0.68 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.71 | |
| 2015 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.69 | 0.71 | |
| 2016 | 0.68 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.68 | 0.67 | |
| 2018 | 0.67 | 0.67 | 0.68 | 0.67 | 0.67 | 0.67 | 0.68 | 0.67 | 0.71 | 0.70 | |
| 2021 | 0.55 | 0.50 | 0.47 | 0.50 | 0.48 | 0.42 | 0.46 | 0.47 | 0.55 | 0.64 | |
| 2023 | 0.40 | 0.42 | 0.46 | 0.48 | 0.39 | 0.47 | 0.40 | 0.49 | 062 | 0.63 | |
| 2024 | 0.41 | 0.46 | 0.44 | 0.52 | 0.44 | 0.54 | 0.41 | 0.51 | 0.62 | 0.65 | |
| Max | 2013 | 18.9 | 19.6 | 19.6 | 18.3 | 18.0 | 17.8 | 17.5 | 17.0 | 13.9 | 11.5 |
| 2014 | 26.0 | 25.6 | 25.2 | 25.2 | 24.6 | 23.8 | 22.4 | 20.7 | 15.6 | 13.1 | |
| 2015 | 22.5 | 21.9 | 21.3 | 20.3 | 19.7 | 19.0 | 18.2 | 17.7 | 14.8 | 12.5 | |
| 2016 | 22.7 | 22.2 | 21.4 | 21.2 | 20.7 | 20.3 | 19.7 | 19.3 | 16.1 | 13.9 | |
| 2018 | 25.4 | 24.2 | 23.7 | 23.0 | 22.4 | 21.9 | 21.3 | 20.7 | 17.3 | 14.7 | |
| 2021 | 21.8 | 21.6 | 21.3 | 21.0 | 20.7 | 20.4 | 20.2 | 19.7 | 16.3 | 14.4 | |
| 2023 | 25.2 | 24.2 | 22.7 | 21.1 | 20.8 | 20.7 | 20.5 | 20.1 | 30.3 | 29.7 | |
| 2024 | 25.3 | 24.8 | 24.6 | 24.1 | 24.0 | 23.5 | 23.1 | 22.8 | 19.3 | 17.2 | |
| Stats | Years | Altitudes (Eastern: 45–120 °N) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 300m | 250m | 200m | 150m | 120m | 100m | 80m | 60m | 20m | 10m | ||
| Mean | 2013 | 4.72 | 4.81 | 4.92 | 5.01 | 5.01 | 4.95 | 4.86 | 4.72 | 3.55 | 2.67 |
| 2014 | 5.24 | 5.24 | 5.29 | 5.35 | 5.34 | 5.31 | 5.24 | 5.09 | 3.95 | 2.93 | |
| 2015 | 6.05 | 6.06 | 6.05 | 6.02 | 5.93 | 5.82 | 5.64 | 5.39 | 4.18 | 3.08 | |
| 2016 | 5.95 | 6.12 | 6.28 | 6.39 | 6.36 | 6.26 | 6.11 | 5.85 | 4.44 | 3.60 | |
| 2018 | 6.59 | 6.66 | 6.74 | 6.76 | 6.69 | 6.56 | 6.37 | 6.06 | 4.49 | 3.67 | |
| 2021 | 4.90 | 4.86 | 4.82 | 4.83 | 4.85 | 4.87 | 4.93 | 4.94 | 4.16 | 3.31 | |
| 2023 | 3.78 | 3.80 | 3.84 | 3.91 | 3.97 | 4.06 | 4.14 | 3.41 | 2.60 | 4.14 | |
| 2024 | 5.68 | 5.79 | 5.83 | 5.79 | 5.69 | 5.58 | 5.39 | 4.16 | 3.28 | 4.99 | |
| SD | 2013 | 3.08 | 3.13 | 3.18 | 3.20 | 3.16 | 3.06 | 2.86 | 2.54 | 1.43 | 1.11 |
| 2014 | 4.24 | 4.27 | 4.27 | 4.19 | 4.07 | 3.93 | 3.71 | 3.36 | 2.20 | 1.68 | |
| 2015 | 4.61 | 4.63 | 4.60 | 4.49 | 4.36 | 4.23 | 4.01 | 3.66 | 2.46 | 1.83 | |
| 2016 | 4.31 | 4.42 | 4.47 | 4.43 | 4.32 | 4.16 | 3.91 | 3.53 | 2.28 | 1.96 | |
| 2018 | 4.50 | 4.56 | 4.59 | 4.56 | 4.45 | 4.28 | 4.04 | 3.65 | 2.44 | 2.10 | |
| 2021 | 4.01 | 3.95 | 3.86 | 3.78 | 3.70 | 3.61 | 3.51 | 3.33 | 2.59 | 2.18 | |
| 2023 | 3.26 | 3.18 | 3.04 | 2.90 | 2.76 | 2.56 | 2.30 | 1.44 | 1.09 | 1.92 | |
| 2024 | 4.79 | 4.81 | 4.80 | 4.71 | 4.55 | 4.30 | 3.89 | 2.55 | 2.09 | 3.20 | |
| Min | 2013 | 0.67 | 0.67 | 0.67 | 0.68 | 0.68 | 0.68 | 0.68 | 0.74 | 0.84 | 0.83 |
| 2014 | 0.68 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.68 | 0.68 | 0.67 | 0.72 | |
| 2015 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.83 | 0.81 | |
| 2016 | 0.68 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.84 | 0.79 | |
| 2018 | 0.67 | 0.67 | 0.69 | 0.69 | 0.67 | 0.67 | 0.69 | 0.67 | 0.77 | 0.70 | |
| 2021 | 0.55 | 0.54 | 0.52 | 0.59 | 0.51 | 0.56 | 0.46 | 0.69 | 0.84 | 0.75 | |
| 2023 | 0.69 | 0.63 | 0.66 | 0.58 | 0.63 | 0.69 | 0.97 | 0.94 | 0.75 | 0.76 | |
| 2024 | 0.50 | 0.44 | 0.54 | 0.44 | 0.54 | 0.48 | 0.52 | 0.70 | 0.65 | 0.45 | |
| Max | 2013 | 15.4 | 15.3 | 14.9 | 14.4 | 13.8 | 13.5 | 13.0 | 12.4 | 9.42 | 6.37 |
| 2014 | 26.0 | 25.6 | 25.2 | 25.2 | 24.6 | 23.8 | 22.4 | 20.7 | 15.6 | 11.6 | |
| 2015 | 22.5 | 21.9 | 21.3 | 20.3 | 19.7 | 19.0 | 18.2 | 17.4 | 14.3 | 10.9 | |
| 2016 | 21.6 | 21.6 | 21.4 | 21.2 | 20.7 | 20.3 | 19.7 | 18.9 | 15.3 | 12.5 | |
| 2018 | 25.4 | 23.8 | 22.5 | 21.4 | 20.7 | 20.2 | 19.7 | 18.7 | 13.8 | 11.5 | |
| 2021 | 16.4 | 16.1 | 15.8 | 15.5 | 15.3 | 15.1 | 15.0 | 14.6 | 12.5 | 10.6 | |
| 2023 | 16.5 | 16.1 | 14.9 | 13.9 | 13.1 | 12.4 | 11.5 | 8.74 | 6.62 | 10.3 | |
| 2024 | 23.1 | 23.1 | 23.0 | 22.5 | 22.0 | 21.1 | 19.8 | 14.6 | 12.1 | 17.9 | |
| Stats | Years | Altitudes (Western: 220–330 °N) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 300m | 250m | 200m | 150m | 120m | 100m | 80m | 60m | 20m | 10m | ||
| Mean | 2013 | 5.35 | 5.32 | 5.33 | 5.33 | 5.30 | 5.26 | 5.19 | 5.10 | 4.29 | 3.53 |
| 2014 | 5.86 | 5.83 | 5.82 | 5.82 | 5.81 | 5.79 | 5.75 | 5.66 | 4.76 | 3.90 | |
| 2015 | 5.75 | 5.70 | 5.65 | 5.61 | 5.59 | 5.57 | 5.54 | 5.49 | 4.74 | 3.97 | |
| 2016 | 6.44 | 6.34 | 6.27 | 6.21 | 6.18 | 6.15 | 6.10 | 6.00 | 5.19 | 4.42 | |
| 2018 | 6.45 | 6.36 | 6.29 | 6.23 | 6.20 | 6.16 | 6.12 | 6.03 | 5.10 | 4.21 | |
| 2021 | 5.81 | 5.78 | 5.73 | 5.67 | 5.62 | 5.59 | 5.57 | 5.51 | 4.82 | 4.12 | |
| 2023 | 7.22 | 7.13 | 7.02 | 6.92 | 6.85 | 6.78 | 6.65 | 5.70 | 4.80 | 6.31 | |
| 2024 | 5.96 | 5.89 | 5.82 | 5.78 | 5.74 | 5.70 | 5.64 | 5.02 | 4.34 | 5.46 | |
| SD | 2013 | 2.99 | 2.93 | 2.86 | 2.76 | 2.70 | 2.66 | 2.61 | 2.50 | 1.93 | 1.64 |
| 2014 | 3.11 | 3.12 | 3.12 | 3.10 | 3.06 | 2.99 | 2.90 | 2.75 | 2.14 | 1.79 | |
| 2015 | 3.11 | 3.08 | 3.03 | 2.97 | 2.92 | 2.87 | 2.80 | 2.70 | 2.14 | 1.84 | |
| 2016 | 3.33 | 3.31 | 3.27 | 3.22 | 3.18 | 3.15 | 3.11 | 3.05 | 2.51 | 2.11 | |
| 2018 | 3.74 | 3.70 | 3.65 | 3.60 | 3.55 | 3.51 | 3.44 | 3.34 | 2.69 | 2.23 | |
| 2021 | 2.79 | 2.74 | 2.66 | 2.58 | 2.55 | 2.52 | 2.47 | 2.40 | 1.96 | 1.71 | |
| 2023 | 3.71 | 3.68 | 3.63 | 3.60 | 3.58 | 3.57 | 3.53 | 2.97 | 2.54 | 3.35 | |
| 2024 | 3.04 | 2.98 | 2.91 | 2.85 | 2.81 | 2.77 | 2.71 | 2.30 | 1.97 | 2.58 | |
| Min | 2013 | 0.76 | 0.77 | 0.77 | 0.69 | 0.68 | 0.69 | 0.69 | 0.71 | 0.70 | 0.71 |
| 2014 | 0.68 | 0.68 | 0.68 | 0.68 | 0.68 | 0.68 | 0.67 | 0.67 | 0.74 | 0.77 | |
| 2015 | 0.68 | 0.69 | 0.68 | 0.69 | 0.67 | 0.68 | 0.67 | 0.68 | 0.77 | 0.71 | |
| 2016 | 0.71 | 0.70 | 0.68 | 0.67 | 0.67 | 0.68 | 0.68 | 0.69 | 0.72 | 0.75 | |
| 2018 | 0.70 | 0.71 | 0.68 | 0.67 | 0.67 | 0.67 | 0.69 | 0.67 | 0.71 | 0.70 | |
| 2021 | 0.57 | 0.50 | 0.47 | 0.53 | 0.54 | 0.61 | 0.57 | 0.58 | 0.66 | 0.65 | |
| 2023 | 0.62 | 0.59 | 0.62 | 0.64 | 0.65 | 0.67 | 0.64 | 0.66 | 0.77 | 0.73 | |
| 2024 | 0.68 | 0.58 | 0.56 | 0.54 | 0.55 | 0.49 | 0.51 | 0.64 | 0.65 | 0.69 | |
| Max | 2013 | 18.9 | 18.8 | 18.6 | 18.3 | 18.0 | 17.8 | 17.5 | 17.0 | 13.9 | 11.5 |
| 2014 | 19.3 | 19.4 | 19.3 | 19.1 | 18.8 | 18.7 | 18.6 | 18.3 | 15.6 | 13.1 | |
| 2015 | 21.1 | 19.8 | 19.2 | 18.8 | 18.5 | 18.4 | 18.1 | 17.7 | 14.8 | 12.5 | |
| 2016 | 22.7 | 22.2 | 21.3 | 20.6 | 20.1 | 19.8 | 19.6 | 19.3 | 16.1 | 13.9 | |
| 2018 | 24.6 | 24.2 | 23.7 | 23.0 | 22.4 | 21.9 | 21.3 | 20.7 | 17.3 | 14.7 | |
| 2021 | 21.4 | 20.9 | 20.3 | 19.7 | 19.5 | 19.2 | 18.8 | 18.2 | 13.3 | 10.4 | |
| 2023 | 19.8 | 19.5 | 19.3 | 19.2 | 19.0 | 18.8 | 18.4 | 15.6 | 13.5 | 17.6 | |
| 2024 | 24.8 | 24.6 | 24.1 | 24.0 | 23.5 | 23.1 | 22.8 | 19.3 | 17.2 | 21.7 | |
4. Results
4.1. Wind Rose of WXT520 Data
4.2. Vertical Wind Profiles of ZephIR 300 Data
4.3. Wind Profiles Differentiated by Category
4.4. Comparison Between Near-Surface Vaisala and ZephIR Measurements
4.5. Case Study: January 7th, 2024
5. Discussion
5.1. Data Variability Through Select Altitude Thresholds
5.2. Seasonal Variability
5.3. Comparisons Between Employed Instruments and Future Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cormier, R. The behavior of vertically integrated boundary-layer winds. Bound.-Lay. Meteorol. 1975, 9, 315–324. [Google Scholar] [CrossRef]
- Delage, Y. The position of the lowest levels in the boundary layer of atmospheric circulation models. Atmos.-Ocean 1988, 26, 329–340. [Google Scholar] [CrossRef]
- Rigby, M.; Toumi, R. London air pollution climatology: Indirect evidence for urban boundary layer height and wind speed enhancement. Atmos. Environ. 2008, 42, 4932–4947. [Google Scholar] [CrossRef]
- Fitch, A.C.; Lundquist, J.K.; Olson, J.B. Mesoscale influences of wind farms throughout a diurnal cycle. Mon. Weather Rev. 2013, 141, 2173–2198. [Google Scholar] [CrossRef]
- Federico, S.; Pasqualoni, L.; Sempreviva, A.M.; De Leo, L.; Avolio, E.; Calidonna, C.R.; Bellecci, C. The seasonal characteristics of the breeze circulation at a coastal Mediterranean site in South Italy. Adv. Sci. Res. 2010, 4, 47–56. [Google Scholar] [CrossRef]
- Sørensen, S.T.; Warden, M.; Macarthur, J.; Silver, M.; Holtom, T.C.; McDonald, C.; Clive, P.; Bookey, H.T. Advances in Doppler Lidar for accurate 3D wind measurements. Imaging and Applied Optics. [CrossRef]
- Hieronimus, J. Wind speed measurements in an offshore wind farm by remote sensing: A comparison of radar satellite TerraSAR-X and ground-based LiDAR systems. University of Oldenburg, 2015.
- Gullì, D.; Avolio, E.; Calidonna, C.R.; Lo Feudo, T.; Torcasio, R.C.; Sempreviva, A.M. Two years of wind-lidar measurements at an Italian Mediterranean Coastal Site. Energy Procedia 2017, 125, 214–220. [Google Scholar] [CrossRef]
- Li, N.; Dyer-Hawes, Q.; Romanic, D.; Burlando, M. Investigation of coastal winds and turbulence characteristics using Doppler lidar. J. Geophys. Res. - Atmos, 2024. [Google Scholar] [CrossRef]
- Suo, C.; Sun, A.; Yan, C.; Cao, X.; Peng, K.; Tan, Y.; Yang, S.; Wei, Y.; Wang, G. Quality Assessment of ERA5 Wind Speed and Its Impact on Atmosphere Environment Using Radar Profiles along the Bohai Bay Coastline. Atmosphere 2024, 15, 1153. [Google Scholar] [CrossRef]
- Menezes, I.C.; Lopes, D.; Fernandes, A.P.; Borrego, C.; Viegas, D.X.; Miranda, A.I. Atmospheric dynamics and fire-induced phenomena: Insights from a comprehensive analysis of the Sertã wildfire event. Atmos. Res. 2024, 310, 107649. [Google Scholar] [CrossRef]
- Novitskii, M.A.; Gaitandzhiev, D.E.; Mazurin, N.F.; Matskevich, M.K. Turbulence characteristics in the coastal zone with breeze circulation. Russ. Meteorol. Hydrol. 2011, 36, 580–589. [Google Scholar] [CrossRef]
- Liu, J.; Song, X.; Long, W.; Fu, Y.; Yun, L.; Zhang, M. Structure analysis of the sea breeze based on Doppler Lidar and its impact on pollutants. Remote Sens. 2022, 14, 324. [Google Scholar] [CrossRef]
- Puygrenier, V.; Lohou, F.; Campistron, B.; Saïd, F.; Pigeon, G.; Bénech, B.; Serça, D. Investigation on the fine structure of sea-breeze during ESCOMPTE experiment. Atmos. Res. [CrossRef]
- Song, X.; Zhou, T.; Wang, Y.; Li, X.; Wu, D.; Gu, Y.; Lin, Z.; Abdullaev, S.F.; Amonov, M.O. Spatiotemporal evolution of dust over Tarim Basin under continuous clear-sky. Atmos. Res. 2024, 312, 107764. [Google Scholar] [CrossRef]
- Shu, H.; Zhang, F.; Du, Y.; Wang, Y.; Guo, H.; Song, Z.; Zhang, Q. Characteristics and Formation Mechanisms of Low-Level Jets in Northeastern China. Adv. Atmos. Sci. 2024, 41, 2432–2445. [Google Scholar] [CrossRef]
- Wei, L.; Zhao, L.; Li, Z.; Li, Y.; Wen, Q.; Ma, Y. Numerical simulation of circulation characteristics of orographic precipitation in Qilian Mountains, Northeastern Tibetan Plateau. Atmos. Res. 2024, 312, 107762. [Google Scholar] [CrossRef]
- Madonna, F.; De Rosa, B.; Gagliardi, S.; Gandolfi, I.; Essa, Y.H.; Madonna, D.; Marra, F.; Menniti, M.A.; Summa, D.; Tramutola, E.; Karimian Saracks, F.; Romano, F.; Rosoldi, M. Water vapour fluxes at a Mediterranean coastal site during the summer of 2021: observations, comparison with atmospheric reanalysis, and implications for extreme events. Earth Syst. Dyn. Discuss. [CrossRef]
- Davolio, S.; Della Fera, S.; Laviola, S.; Miglietta, M.M.; Levizzani, V. Heavy precipitation over Italy from the Mediterranean storm “Vaia” in October 2018: Assessing the role of an atmospheric river. Mon. Weather Rev. 2020, 148, 3571–3588. [Google Scholar] [CrossRef]
- Martinez, J.A.; Junquas, C.; Bozkurt, D.; Viale, M.; Fita, L.; Trachte, K.; Campozano, L.; Arias, P.A.; Boisier, J.P.; Condom, T.; Goubanova, K.; Pabón-Caicedo, J.D.; Poveda, G.; Solman, S.A.; Sörensson, A.A.; Espinoza, J.C. Recent progress in atmospheric modeling over the Andes–Part I: Review of atmospheric processes. Front. Earth Sci. 2024, 12. [Google Scholar] [CrossRef]
- Hagay, O.; Brenner, S. Sensitivity of Simulations of Extreme Mediterranean Storms to the Specification of Sea Surface Temperature: Comparison of Cases of a Tropical-Like Cyclone and Explosive Cyclogenesis. Atmosphere 2021, 12, 921. [Google Scholar] [CrossRef]
- Chronis, T.; Case, J.L.; Papadopoulos, A.; Anagnostou, E.N.; Mecikalski, J.R.; Haines, S.L. Towards improved forecasts of atmospheric and oceanic circulations over the complex terrain of the Eastern Mediterranean. Hellenic Center for Marine Research, /: https, 0135. [Google Scholar]
- Herbaut, C.; Martel, F.; Crépon, M. A sensitivity study of the general circulation of the Western Mediterranean Sea. Part II: The response to atmospheric forcing. J. Phys. Oceanogr. 1997, 27, 2126–2145. [Google Scholar] [CrossRef]
- Meroni, A.N.; Giurato, M.; Ragone, F.; Pasquero, C. Observational evidence of the preferential occurrence of wind convergence over sea surface temperature fronts in the Mediterranean. Q. J. R. Meteorol. Soc. 2020, 146, 1443–1458. [Google Scholar] [CrossRef]
- Stathopoulos, C.; Patlakas, P.; Tsalis, C.; Kallos, G. The role of sea surface temperature forcing in the life-cycle of Mediterranean cyclones. Remote Sens. 2020, 12, 825. [Google Scholar] [CrossRef]
- Ehmele, F.; Barthlott, C.; Corsmeier, U. The influence of Sardinia on Corsican rainfall in the western Mediterranean Sea: A numerical sensitivity study. Atmos. Res. 2015, 153, 451–464. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, K.; Beljaars, A.; Li, H.; Lin, C.; Huang, B.; Wang, Y. Dynamical impact of parameterized turbulent orographic form drag on the simulation of winter precipitation over the western Tibetan Plateau. Clim. Dyn. [CrossRef]
- Cristofanelli, P.; Busetto, M.; Calzolari, F.; Ammoscato, I.; Gullì, D.; Dinoi, A.; Calidonna, C.R.; Contini, D.; Sferlazzo, D.; Di Iorio, T.; Piacentino, S.; Marinoni, A.; Maione, M.; Bonasoni, P. Investigation of reactive gases and methane variability in the coastal boundary layer of the central Mediterranean basin. Elem. Sci. Anth. 2017, 5, 12. [Google Scholar] [CrossRef]
- D’Amico, F.; Ammoscato, I.; Gullì, D.; Avolio, E.; Lo Feudo, T.; De Pino, M.; Cristofanelli, P.; Malacaria, L.; Parise, D.; Sinopoli, S.; De Benedetto, G.; Calidonna, C.R. Anthropic-induced variability of greenhouse gases and aerosols at the WMO/GAW coastal site of Lamezia Terme (Calabria, Southern Italy): towards a new method to assess the weekly distribution of gathered data. Sustainability 2024, 16, 8175. [Google Scholar] [CrossRef]
- D’Amico, F.; Gullì, D.; Lo Feudo, T.; Ammoscato, I.; Avolio, E.; De Pino, M.; Cristofanelli, P.; Busetto, M.; Malacaria, L.; Parise, D.; Sinopoli, S.; De Benedetto, G.; Calidonna, C.R. Cyclic and multi-year characterization of surface ozone at the WMO/GAW coastal station of Lamezia Terme (Calabria, Southern Italy): implications for local environment, cultural heritage, and human health. Environments 2024, 11, 227. [Google Scholar] [CrossRef]
- D’Amico, F.; Lo Feudo, T.; Gullì, D.; Ammoscato, I.; De Pino, M.; Malacaria, L.; Sinopoli, S.; De Benedetto, G.; Calidonna, C.R. Investigation of carbon monoxide, carbon dioxide, and methane source variability at the WMO/GAW station of Lamezia Terme (Calabria, Southern Italy) using the ratio of ozone to nitrogen oxides as a proximity indicator. Atmosphere 2025, 16, 251. [Google Scholar] [CrossRef]
- Avolio, E.; Federico, S.; Miglietta, M.M.; Lo Feudo, T.; Calidonna, C.R.; Sempreviva, A.M. Sensitivity analysis of WRF model PBL schemes in simulating boundary-layer variables in southern Italy: An experimental campaign. Atmos. Res. 2017, 192, 58–71. [Google Scholar] [CrossRef]
- Lo Feudo, T.; Calidonna, C.R.; Avolio, E.; Sempreviva, A.M. Study of the Vertical Structure of the Coastal Boundary Layer Integrating Surface Measurements and Ground-Based Remote Sensing. Sensors 2020, 20, 6516. [Google Scholar] [CrossRef]
- D’Amico, F.; Calidonna, C.R.; Ammoscato, I.; Gullì, D.; Malacaria, L.; Sinopoli, S.; De Benedetto, G.; Lo Feudo, T. Peplospheric influences on local greenhouse gas and aerosol variability at the Lamezia Terme WMO/GAW regional station in Calabria, Southern Italy: a multiparameter investigation. Sustainability 2024, 16, 10175. [Google Scholar] [CrossRef]
- Federico, S.; Pasqualoni, L.; De Leo, L.; Bellecci, C. A study of the breeze circulation during summer and fall 2008 in Calabria, Italy. Atmos. Res. 2010, 97, 1–13. [Google Scholar] [CrossRef]
- European Commission. European Marine Observation and Data Network (EMODnet). https://emodnet.ec.europa.eu/en/bathymetry. (accessed on 15 January 2025).
- Longhitano, S.G. The record of tidal cycles in mixed silici–bioclastic deposits: examples from small Plio–Pleistocene peripheral basins of the microtidal Central Mediterranean Sea. Sedimentology 2010, 58, 691–719. [Google Scholar] [CrossRef]
- Chiarella, D.; Longhitano, S.G.; Muto, F. Sedimentary features of the lower Pleistocene mixed siliciclastic-bioclastic tidal deposits of the Catanzaro Strait (Calabrian Arc, south Italy). Rendiconti Online della Società Geologica Italiana 2012, 21, 919–920. [Google Scholar]
- Longhitano, S.G.; Chiarella, D.; Muto, F. Three-dimensional to two-dimensional cross-strata transition in the lower Pleistocene Catanzaro tidal strait transgressive succession (southern Italy). Sedimentology 2014, 61, 2136–2171. [Google Scholar] [CrossRef]
- Brogan, G.E.; Cluff, L.S.; Taylor, C.L. Seismicity and uplift of southern Italy. Tectonophysics. [CrossRef]
- Miyauchi, T.; Dai Pra, G.; Sylos Labini, S. Geochronology of Pleistocene marine terraces and regional tectonics in Tyrrhenian coast of South Calabria, Italy. Il Quaternario 1994, 7, 17–34. [Google Scholar]
- Monaco, C.; Bianca, M.; Catalano, S.; De Guidi, G.; Gresta, S.; Langher, H.; Tortorici, L. The geological map of the urban area of Catania (Sicily): morphotectonic and seismotectonic implications. Mem. Soc. Geol. Ital. 2001, 5, 425–438. [Google Scholar]
- Lambeck, K.; Antonioli, F.; Purcell, A.; Silenzi, S. Sea-level change along the Italian coast for the past 10,000 yr. Quat. Sci. Rev. 1567. [Google Scholar] [CrossRef]
- Pirazzoli, P.A.; Mastronuzzi, G.; Saliège, J.F.; Sansò, P. Late Holocene emergence in Calabria, Italy. Mar. Geol.
- Amodio-Morelli, L.; Bonardi, G.; Colonna, V.; Dietrich, D.; Giunta, G.; Ippolito, F.; Liguori, V.; Lorenzoni, P.; Paglionico, A.; Perrone, V.; Piccarreta, G.; Russo, M.; Scandone, P.; Zanettin-Lorenzoni, E.; Zuppetta, A. L’Arco Calabro-Peloritano nell’orogene Appenninico-Maghrebide. Mem. Soc. Geol. Ital. 1976, 17, 1–60. [Google Scholar]
- Bonardi, G.; De Capoa, P.; Fioretti, B.; Perrone, V. Some remarks on the Calabria-Peloritani arc and its relationship with the southern Apennines. Boll. Geofis. Teor. Appl. 1994, 36, 483–490. [Google Scholar]
- Scandone, P. Structure and evolution of the Calabrian Arc. Earth Evol. Sci. 1982, 3, 172–180. [Google Scholar]
- Alvarez, W. A former continuation of the Alps. Geol. Soc. Am. Bull. 1976, 87, 891–896. [Google Scholar] [CrossRef]
- Malinverno, A.; Ryan, W.B.F. Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics 1986, 5, 227–245. [Google Scholar] [CrossRef]
- Critelli, S.; Muto, F.; Tripodi, V.; Perri, F. Relationships between Lithospheric Flexure, Thrust Tectonics and Stratigraphic Sequences in Foreland Setting: the Southern Apennines Foreland Basin System, Italy. Tectonics, 2011. [Google Scholar] [CrossRef]
- Nicolosi, I.; Speranza, F.; Chiappini, M. Ultrafast oceanic spreading of the Marsili Basin, southern Tyrrhenian Sea: Evidence from magnetic anomaly analysis. Geology 2006, 34, 717–720. [Google Scholar] [CrossRef]
- Rosenbaum, G.; Gasparon, M.; Lucente, F.P.; Peccerillo, A.; Miller, M.S. Kinematics of slab tear faults during subduction segmentation and implications for Italian magmatism. Tectonics. [CrossRef]
- Cocchi, L.; Caratori Tontini, F.; Muccini, F.; Marani, M.P.; Bortoluzzi, G.; Carmisciano, C. Chronology of the transition from a spreading ridge to an accretional seamount in the Marsili backarc basin (Tyrrhenian Sea). Terra Nova 2009, 21, 369–374. [Google Scholar] [CrossRef]
- Ventura, G.; Milano, G.; Passaro, S.; Sprovieri, M. The Marsili Ridge (Southern Tyrrhenian Sea, Italy): An island-arc volcanic complex emplaced on a ‘relict’ back-arc basin. Earth Sci. Rev. 2013, 116, 85–94. [Google Scholar] [CrossRef]
- Palmiotto, C.; Braga, R.; Corda, L.; Di Bella, L.; Ferrante, V.; Loreto, M.F.; Muccini, F. New insights on the fossil arc of the Tyrrhenian Back-Arc Basin (Mediterranean Sea). Tectonophysics 2022, 845, 229640. [Google Scholar] [CrossRef]
- D’Amico, F.; Lo Feudo, T.; Gullì, D.; Ammoscato, I.; De Pino, M.; Malacaria, L.; Sinopoli, S.; De Benedetto, G.; Calidonna, C.R. Integrated Surface and Tropospheric Column Analysis of Sulfur Dioxide Variability at the Lamezia Terme WMO/GAW Regional Station in Calabria, Southern Italy. Environments 2025, 12, 27. [Google Scholar] [CrossRef]
- van Dijk, J.P.; Scheepers, P.J.J. Neotectonic rotations in the Calabrian Arc; implications for a Pliocene-Recent geodynamic scenario for the Central Mediterranean. Earth Sci. Rev. [CrossRef]
- Martini, I.P.; Sagri, M.; Colella, A. Neogene—Quaternary basins of the inner Apennines and Calabrian arc. In: Anatomy of an Orogen. The Apennines and Adjacent Mediterranean Basins (Eds G.B. Vai and I.P. Martini), 2001, 375–400. Kluwer Academic Publishers, Dordrecht, the Netherlands. [CrossRef]
- Cifelli, F.; Mattei, M.; Rossetti, F. Tectonic evolution of arcuate mountain belts on top of a retreating subduction slab: The example of the Calabrian Arc. J. Geophys. Res. - Solid Earth 2007, 112(B9), 101. [CrossRef]
- Galli, P.; Bosi, V. Paleoseismology along the Cittanova fault: Implications for seismotectonics and earthquake recurrence in Calabria (southern Italy). J. Geophys. Res. - Solid Earth 2002, 107(B3), 2044. [CrossRef]
- Tansi, C.; Folino Gallo, M.; Muto, F.; Perrotta, P.; Russo, L.; Critelli, S. Seismotectonics and landslides of the Crati Graben (Calabrian Arc, Southern Italy). J. Maps 2016, 12(sup. 1), 363–372. [Google Scholar] [CrossRef]
- Monaco, C.; Tortorici, L. Active faulting in the Calabrian arc and eastern Sicily. J. Geodyn. 2000, 29(3-5), 407-424. [CrossRef]
- Ghisetti, F. Evoluzione neotettonica dei principali sistemi di faglie della Calabria centrale. Boll. Soc. Geol. Ital. 1979, 98, 387–430. [Google Scholar]
- Langone, A.; Gueguen, E.; Prosser, G.; Caggianelli, A.; Rottura, A. The Curinga-Girifalco fault zone (northern Serre, Calabria) and its significance within the Alpine tectonic evolution of the western Mediterranean. J. Geodyn. 2006, 42(4-5), 140-158. [CrossRef]
- Rovida, A.; Locati, M.; Camassi, R.; Lolli, B.; Gasperini, P. The Italian earthquake catalogue CPTI15. Bull. Earthq. Eng. 2020, 18, 2953–2984. [Google Scholar] [CrossRef]
- Rovida, A.; Locati, M.; Camassi, R.; Lolli, B.; Gasperini, P.; Antonucci, A. Catalogo Parametrico dei Terremoti Italiani (CPTI15), versione 4.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV). [CrossRef]
- Marino, C.; Misiani, P.; Nucara, A.; Pietrafesa, M. The effect of the climatic condition on the radiant asymmetry. Int. J. Heat Technol. 2017, 35, S419–S426. [Google Scholar] [CrossRef]
- Wouters, D.A.J.; Wagenaar, J.W. Verification of the ZephIR 300 LiDAR at the ECN LiDAR Calibration Facility for the offshore Europlatform measurement campaign, ECN-M-16-029. https://resolver.tno.nl/uuid:0e900067-df59-4c76-8f4a-469754ab4d3d (accessed on 20 January 2025).
- Calidonna, C.R.; Gullì, D.; Avolio, E.; Federico, S.; Lo Feudo, T.; Sempreviva, A. One year of vertical wind profiles measurements at a Mediterranean coastal site of South Italy. Energy Procedia 2015, 76, 121–127. [Google Scholar] [CrossRef]
- Knoop, S.; Bosveld, F.C.; de Haij, M.J.; Apituley, A. A 2-year intercomparison of continuous-wave focusing wind lidar and tall mast wind measurements at Cabauw. Atmos. Meas. Tech. 2021, 14, 2219–2235. [Google Scholar] [CrossRef]
- Weitkamp, C. LIDAR: range-resolved optical remote sensing of the atmosphere. New York: Springer-Verlag, 2006. [CrossRef]
- Peña Diaz, A.; Hasager, C.B.; Gryning, S.; Courtney, M.; Antoniou, I.; Mikkelsen, T. Offshore wind profiling using light detection and ranging measurements. Wind Energy 2009, 12, 105–124. [Google Scholar] [CrossRef]
- Li, J.; Yu, X.B. LIDAR technology for wind energy potential assessment: demonstration and validation at a site around lake Erie. Energy Convers. Manag. 2017, 144, 252–261. [Google Scholar] [CrossRef]
- Pitter, M.; Slinger, C.; Harris, M. Introduction of continuous-wave doppler LIDAR. In DTU Wind Energy, Remote sensing for wind energy (DTU Wind Energy-E-Report-0029(EN), pp. 72–103), 2015. Roskilde, Denmark: DTU Wind Energy. https://orbit.dtu.dk/en/publications/remote-sensing-for-wind-energy-4 (accessed on 15 January 2025).
- Smith, D.A.; Harris, M.; Coffey, A.S.; Mikkelsen, T.; Jørgensen, H.E.; Mann, J.; Danielian, R. Wind lidar evaluation at the Danish wind test site in Høvsøre. Wind Energy 2006, 9, 87–93. [Google Scholar] [CrossRef]
- Kindler, D.; Oldroyd, A.; MacAskill, A.; Finch, D. An eight month test campaign of the Qinetiq ZephIR system: Preliminary results. Meteorol. Z. 2007, 16, 479–489. [Google Scholar] [CrossRef]
- Courtney, M.S.; Wagner, R.; Lindelöw, P. Testing and comparison of lidars for profile and turbulence measurements in wind energy, IOP Conf. Series: Earth and Environmental Science 2008, 1, 012021. [Google Scholar] [CrossRef]
- Shemdin, O.H.; King, D.B. Measurement of hurricane winds and waves with a synthetic aperture radar. NASA. Goddard Space Flight Center 4th NASA Weather and Climate Program Sci. Rev., 1979.
- Shemdin, O.H. Overview of SAR Chesapeake tower experiment. Eos 1992, 73, 53–54. [Google Scholar] [CrossRef]
- Satyabala, S.P.; Bilham, R. Surface deformation and subsurface slip of the 28 March 1999 Mw = 6.4 west Himalayan Chamoli earthquake from InSAR analysis. Geophys. Res. Lett. 2006, 33, L23305. [Google Scholar] [CrossRef]
- Colesanti, C.; Wasowski, J. Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Eng. Geol. 2006, 88(3-4), 173-199. [CrossRef]
- Perrone, A.; Zeni, G.; Piscitelli, S.; Pepe, A.; Loperte, A.; Lapenna, V.; Lanari, R. Joint analysis of SAR interferometry and electrical sensitivity tomography surveys for investigating ground deformation: the case study of Satriano di Lucania (Potenza, Italy). Eng. Geol. 2006, 88(3-4), 260-273. [CrossRef]
- Hasager, C.B.; Nielsen, M.; Barthelmie, A.R.; Dellwik, E.; Jensen, N.O.; Jørgensen, B.H.; Pryor, S.C.; Rathmann, O.; Furevik, B.R. Offshore wind resource estimation from satellite SAR wind field maps. Wind Energy 2005, 8, 403–419. [Google Scholar] [CrossRef]
- Hasager, C.B.; Astrup, P.; Nielsen, N.M.; Christiansen, M.B.; Badger, J.; Nielsen, P.; Sørensen, P.B.; Barthelmie, R.J.; Pryor, S.; Bergström, H. SAT-WIND project. Final report. Risø National Laboratory. Denmark. Forskningscenter Risoe. Risoe-R No. 1586, 2007. https://backend.orbit.dtu.dk/ws/portalfiles/portal/7703216/ris_r_1586.pdf (accessed on 1 January 2025).
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Myers, J.L.; Well, A.D.; Lorch, R.F., Jr. Research Design and Statistical Analysis, 3rd ed.; Routledge: New York, NY, USA, 2010; p. 832. [Google Scholar] [CrossRef]
- Lelieveld, J.; Berresheim, H.; Borrmann, S.; Crutzen, P.J. Global Air Pollution Crossroads over the Mediterranean. Science 2002, 298, 794. [Google Scholar] [CrossRef]
- Duncan, B.N.; West, J.J.; Yoshida, Y.; Fiore, A.M.; Ziemke, J.R. The influence of European pollution on ozone in the Near East and northern Africa. Atmos. Chem. Phys. 2008, 8, 2267–2283. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Monks, P.S.; Granier, C.; Fuzzi, S.; Stohl, A.; Williams, M.L.; Akimoto, H.; Amann, M.; Baklanov, A.; Baltensperger, U.; Bey, I.; Blake, N.; Blake, R.S.; Carslaw, K.; Cooper, O.R.; Dentener, F.; Fowler, D.; Fragkou, E.; Frost, G.J.; Generoso, S.; Ginoux, P.; Grewe, V.; Guenther, A.; Hansson, H.C.; Henne, S.; Hjorth, J.; Hofzumahaus, A.; Huntrieser, H.; Isaksen, I.S.A.; Jenkin, M.E.; Kaiser, J.; Kanakidou, M.; Klimont, Z.; Kulmala, M.; Laj, P.; Lawrence, M.G.; Lee, J.D.; Liousse, C.; Maione, M.; McFiggans, G.; Metzger, A.; Mieville, A.; Moussiopoulos, N.; Orlando, J.J.; O’Dowd, C.D.; Palmer, P.I.; Parrish, D.D.; Petzold, A.; Platt, U.; Pöschl, U.; Prévôt, A.S.H.; Reever, C.E.; Reimann, S.; Rudich, Y.; Sellegri, K.; Steinbrecher, R.; Simpson, D.; ten Brink, H.; Theloke, J.; van der Werf, G.R.; Vautard, R.; Vestreng, V.; Vlachokostas, Ch.; van Glasow, R. Atmospheric composition change – global and regional air quality. Atmos. Environ. 2009, 43, 5268–5350. [Google Scholar] [CrossRef]
- Ricaud, P.; Sič, B.; El Amraoui, L.; Attié, J.-L.; Zbinden, R.; Huszar, P.; Szopa, S.; Parmentier, J.; Jaidan, N.; Michou, M.; et al. Impact of the Asian monsoon anticyclone on the variability of mid-to- upper tropospheric methane above the Mediterranean Basin. Atmos. Chem. Phys. 2014, 14, 11427–11446. [Google Scholar] [CrossRef]
- Soukissian, T.; Sotiriou, M.-A. Long-Term Variability of Wind Speed and Direction in the Mediterranean Basin. Wind 2022, 2, 513–534. [Google Scholar] [CrossRef]
- Marullo, S.; Minnett, P.J.; Santoleri, R.; Tonani, M. The diurnal cycle of sea-surface temperature and estimation of the heat budget of the Mediterranean Sea. J. Geophys. Res. - Oceans 2016, 121, 8351–8367. [Google Scholar] [CrossRef]
- Climate Reanalyzer. Climate Change Institute, University of Maine. https://climatereanalyzer.org/research_tools/monthly_maps. (accessed on 20 January 2025).
- Lapenna, E.; Buono, A.; Mauceri, A.; Zaccardo, I.; Cardellicchio, F.; D’Amico, F.; Laurita, T.; Amodio, D.; Colangelo, C.; Di Fiore, G.; Gorga, A.; Ripepi, E.; De Benedictis, F.; Pirelli, S.; Capozzo, L.; Lapenna, V.; Pappalardo, G.; Trippetta, S.; Mona, L. ICOS Potenza (Italy) atmospheric station: a new spot for the observation of greenhouse gases in the Mediterranean basin. Atmosphere 2025, 16, 57. [Google Scholar] [CrossRef]
- Laurita, T.; Mauceri, A.; Cardellicchio, F.; Lapenna, E.; De Rosa, B.; Trippetta, S.; Mytilinaios, M.; Amodio, D.; Giunta, A.; Ripepi, E.; Colangelo, C.; Papagiannopoulos, N.; Morrongiello, F.; Dema, C.; Gagliardi, S.; Cornacchia, C.; Petracca Altieri, R.M.; Amodeo, A.; Rosoldi, M.; Summa, D.; Pappalardo, G.; Mona, L. CIAO observatory main upgrade: building up an ACTRIS compliant aerosol in-situ laboratory. Atmos. Meas. Tech. Discuss. 2024, 57. [Google Scholar] [CrossRef]
- Chen, Z. Wind Power: An Important Source in Energy Systems. Wind 2021, 1, 90–91. [Google Scholar] [CrossRef]
- Araveti, S.; Quintana, C.A.; Kairisa, E.; Mutule, A.; Adriazola, J.P.S.; Sweeney, C.; Carroll, P. Wind Energy Assessment for Renewable Energy Communities. Wind 2022, 2, 325–347. [Google Scholar] [CrossRef]
- Institute of Methodologies for Environmental Analysis. Wind Lidar data gathered at Lamezia Terme (Calabria, Southern Italy) between July 2013 and December 2024 [Data set]. Version 1. ITINERIS HUB.
- D’Amico, F.; Ammoscato, I.; Gullì, D.; Avolio, E.; Lo Feudo, T.; De Pino, M.; Cristofanelli, P.; Malacaria, L.; Parise, D.; Sinopoli, S.; De Benedetto, G.; Calidonna, C.R. Integrated analysis of methane cycles and trends at the WMO/GAW station of Lamezia Terme (Calabria, Southern Italy). Atmosphere 2024, 15, 946. [Google Scholar] [CrossRef]
- D’Amico, F.; Ammoscato, I.; Gullì, D.; Avolio, E.; Lo Feudo, T.; De Pino, M.; Cristofanelli, P.; Malacaria, L.; Parise, D.; Sinopoli, S.; De Benedetto, G.; Calidonna, C.R. Trends in CO, CO2, CH4, BC, and NOx during the first 2020 COVID-19 lockdown: source insights from the WMO/GAW station of Lamezia Terme (Calabria, Southern Italy). Sustainability 2024, 16, 8229. [Google Scholar] [CrossRef]
- Barrese, E.; Valentini, M.; Scarpelli, M.; Samele, P.; Malacaria, L.; D’Amico, F.; Lo Feudo, T. Assessment of formaldehyde’s impact on indoor environments and human health via the integration of satellite tropospheric total columns and outdoor ground sensors. Sustainability 2024, 16, 9669. [Google Scholar] [CrossRef]
- D’Amico, F.; De Benedetto, G.; Malacaria, L.; Sinopoli, S.; Calidonna, C.R.; Gullì, D.; Ammoscato, I.; Lo Feudo, T. Tropospheric and surface measurements of combustion tracers during the 2021 Mediterranean wildfire crisis: insights from the WMO/GAW site of Lamezia Terme in Calabria, Southern Italy. Gases 2025, 5, 5. [Google Scholar] [CrossRef]
- Malacaria, L.; Sinopoli, S.; Lo Feudo, T.; De Benedetto, G.; D’Amico, F.; Ammoscato, I.; Cristofanelli, P.; De Pino, M.; Gullì, D.; Calidonna, C.R. Methodology for selecting near-surface CH4, CO, and CO2 observations reflecting atmospheric background conditions at the WMO/GAW station in Lamezia Terme, Italy. Under review. [CrossRef]









| Year | Hours | WXT520 | ZephIR |
|---|---|---|---|
| 2013 | 8760 | - | 39.95% |
| 2014 | 8760 | - | 95.38% |
| 2015 | 8760 | 95.9% | 67.13% |
| 2016 | 8784 | 96.34% | 92.14% |
| 2017 | 8760 | 93.8% | - |
| 2018 | 8760 | 77.05% | 92.22% |
| 2019 | 8760 | 98.59% | - |
| 2020 | 8784 | 99.98% | - |
| 2021 | 8760 | 99.74% | 15.97% |
| 2022 | 8760 | 90.11% | - |
| 2023 | 8760 | 96.3% | 0.07% |
| 2024 | 8784 | - | 0.65% |
| 1051921 | 94.20%2 | 59.39%3 |
| RSE | Bias | PCC | Interc. | SI |
|---|---|---|---|---|
| 2.846 | 0.264 | 0.003 | 3.502 | 0.826 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
