Submitted:
28 February 2025
Posted:
03 March 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. MBI’s Neurophysiological Correlations
1.2. Executive Function and Clinical Relevance Associations with MBI
2. Methodology
2.1. Search Strategy
2.2. Search string, Selection Process and Data Analysis
2.3. Qualitative Synthesis
2.4. Major Outcomes
2.4.1. Bandwidth and Region of Interest
2.4.2. Mean Power Spectral Densities (/Hz)
2.4.3. Alpha Asymmetry
2.4.4. ERP N200 and P300
2.4.5. Inhibitory Control, Emotional Regulation
2.4.6. Planning
2.4.7. Memory
2.4.8. Attention, Awareness
2.5. Minor Outcomes
2.5.1. Mood
2.6. Condition of the Studies
2.6.1. Participants
2.6.2. Intervention
2.6.3. Comparator
2.7. Quantitative Analysis and Risk of Bias
2.8. Protocol Registration
3. Results
3.1. Qualitative Synthesis
| EEG outcome | Measure condition | Brain Region | Neuropsychological outcome | n | Design | Intervention types | Sample condition | Ref. |
|---|---|---|---|---|---|---|---|---|
| Bandwidth and Region of Interest. Treatment dependent reduction in beta power | Resting state, eyes-closed | Left and right frontal and central | Unclear outcome | 57 | Clinical trial | Cognitive therapy, mindfulness-meditation, mindfulness-based cognitive therapy | Chronic low back pain | [51] |
| Alpha asymmetry. Treatment dependent leftward shifting | Visual emotional stimuli reaction pre-post training | Dorsolateral frontal (F7, F8) | Emotional regulation | 67 | Randomized Clinical trials | Focused attention, open monitoring, mindfulness-based cognitive therapy | Emotionally evocative visual stimuli | [62] |
| FFT. No differences in alpha, and higher theta power between intervention types | During 30 minutes of intervention | Frontal | Emotional regulation to negative state | 35 | within-subjects crossover | mindfulness induction, relaxation induction | State anxiety and negative affect | [60] |
| Average of alpha power densities. Stable left frontal alpha | Resting state, counterbalanced closed-open eyes | Frontal (F3, F4) | Increased functional attention and awareness in tests of planning performance, improvement of attention and executive control | 110 | Randomized controlled trial | Mindfulness-based stress reduction, and waiting list control | Perceived stress and depressive symptoms | [63] |
| Conflict monitoring N200 and P300 | Conflict monitoring Go/No-go | Frontal central (FCz | Improvements in dynamically deployed cognitive control in processing and responding to facial expressions of emotion | 66 | Randomized controlled study | Brief mindfulness training intervention and Book learning, control | Intervention credibility and expectancy | [66] |
| FFT. Enhanced beta coherence between right frontal and right temporo-parietal | Focusing on past and future thoughts, during auditory paced walking | Frontal dorsolateral (AF7, AF8) and temporo-parietal (TP9, TP10) | Attention, focal awareness | 24 | Clinical trial | Mindfulness-mindlessness meditation and control condition | Physical task | [58] |
| FFT. Cortical alpha activity | Calm condition | Prefrontal (AF3) | Improvement in emotional regulation and concentration | 25 | Longitudinal | Mindfulness-based stress reduction training course | Depression, anxiety, stress state, electrodermal activity | [64] |
| Relative power. Alpha increase | Biofeedback during mindful meditation | Not reported | Problem solving skills improvement, unclear outcome | 40 | Controlled trial | Mindful meditation, biofeedback | Adolescence, Stress management, Culture (urban-rural) | [65] |
| Power spectra. Individual alpha frequency. Beta band reduction, training related reduction of individual alpha frequency | Mindfulness of breathing meditation | Anterior, and posterior central | Focused attention | 60 | Controlled trial | Meditation techniques, wait-list | Time of meditation practice | [53] |
| Individual bandwidth. Reduction in the theta/beta ratio | Working memory automated operation span task | Frontal, parietal, occipital, and central | Working memory, metacognition, social skills | 24 | Randomized controlled trial | Mindfulness training | Academic achievement | [55] |
| EEG outcome | Measure condition | Brain Region | Neuropsychological outcome | n | Design | Intervention types | Sample condition | Ref. |
|---|---|---|---|---|---|---|---|---|
| Intervention group showed no change in alpha and theta absolute power, compared to control group showing a significant decrease | Rest with eyes-open condition | AF7, AF8, TP9, and TP10 | Inhibition and flexibility improvement, decrease in reaction times | 22 | Exploratory pilot study, randomized controlled trial | Mindfulness training, EEG-feedback | Healthy children | [61] |
| Individual alpha frequency. Alpha 2 increase, alpha 1 decrease | Resting state | Not reported | Improvement in verbal memory, attention switching and executive functions, interoceptive awareness, and rumination | 50 | Clinical trial | Web-based MBI | Older adults, COVID-19 | [54] |
| Individual alpha-theta amplitudes. Short-time FFT. Mind wandering is associated with an increase in the amplitude and a decrease in theta frequency. Alpha showed a decrease in amplitude and increase in frequency during mind wandering relative to breathing focus | Condition-related | Several scalp areas | Awareness | 28 | Experimental | Focus on the sensation of breathing, Mind wandering | Novice meditation practitioners | [56] |
| Alpha bandwidth power asymmetry scores. Greater left, relative to right, asymmetry than low mindfulness trait during emotion regulation | Emotional stimuli reaction | Left and right frontal | Cognitive affective arousal earlier recognition of emotional stimuli | 92 | Experimental | High and low Mindfulness trait | Adolescence | [52] |
| Individual bandwidth. Change in band powers while handling cognitive load difference utilizing cognitive ability modulation index (CAMI) feature | Pre and post MBI | FP1, FP2, AF3, Aand AF4 | CAMI improvement after MBI | 40 | Clinical trial | MBI, and control group | Healthy young adults | [57] |
| FFT. MBI-induced changes in alpha reactivity during response-monitoring | Error detection task | F3, Fz,F4, C3, Cz, C4, P3, Pz, P4 | No treatment condition effects on attentional control, accuracy, and reaction time for conflict detection | 44 | Clinical trial | Mindfulness and control condition exercise | Healthy young adults | [59] |
3.2. Quantitative Analysis
3.3. Risk of Bias Assessment of the Included Articles
4. Discussion
5. Limitations and Future Directions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MBI | Mindfulness-Based Intervention |
| EEG | Electroencephalography |
| ERP | Event Related Potentials |
| DMN | Default Mode Neural Network |
| ROI | Regions of Interest |
References
- Naser, A.Y.; Alwafi, H.; Amara, N.A.; Alhamad, H.; Almadani, M.A.; Alsairafi, Z.K.; Salawati, E.M. Epidemiology of depression and anxiety among undergraduate students. International journal of clinical practice 2021, 75, e14414. [Google Scholar] [CrossRef] [PubMed]
- Haller, H.; Breilmann, P.; Schröter, M.; Dobos, G.; Cramer, H. A systematic review and meta-analysis of acceptance- and mindfulness-based interventions for DSM-5 anxiety disorders. Scientific Reports 2021, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, H.; Kazemi, A. Reconciling and Thematizing Definitions of Mindfulness: The Big Five of Mindfulness. Review of General Psychology 2016, 20, 183–193. [Google Scholar] [CrossRef]
- Phan-Le, N.T.; Brennan, L.; Parker, L. The search for scientific meaning in mindfulness research: Insights from a scoping review. PLoS ONE 2022, 17, 1–30. [Google Scholar] [CrossRef]
- Kruse, J.A.; Seng, E.K. Changes in cognitive appraisal in a randomized controlled trial of mindfulness-based cognitive therapy for patients with migraine. Headache 2023, 63, 1403–1411. [Google Scholar] [CrossRef]
- Yusuf, A.; Nurhasan, N.; Rahmatika, Q.T.; Kinanti, R.G.; Aditya, R.S.; Sulistyana, C.S.; Fauzi, A.; Almutairi, R.I.; Kotijah, S. Integrating mindfulness and physical activity for diabetes prevention and management: systematic review. Retos: Nuevas Perspectivas de Educación Física, Deporte y Recreación 2024, 59, 767–775. [Google Scholar] [CrossRef]
- Garland, E.L.; Roberts-Lewis, A.; Kelley, K.; Tronnier, C.; Hanley, A. Cognitive and Affective Mechanisms Linking Trait Mindfulness to Craving Among Individuals in Addiction Recovery. Substance Use and Misuse 2014, 49, 525–535. [Google Scholar] [CrossRef]
- Jerath, R.; Barnes, V.A.; Dillard-Wright, D.; Jerath, S.; Hamilton, B. Dynamic Change of Awareness during Meditation Techniques: Neural and Physiological Correlates. Frontiers in human neuroscience 2012, 6, 131. [Google Scholar] [CrossRef]
- Aguerre, N.V.; Gómez-Ariza, C.J.; Ibáñez-Molina, A.J.; Bajo, M.T. Electrophysiological correlates of dispositional mindfulness: A quantitative and complexity EEG study. British Journal of Psychology 2023, 114, 566–579. [Google Scholar] [CrossRef]
- Husain, A.M.; Sinha, S.R. Continuous EEG monitoring: Principles and practice. Springer, 2017. [Google Scholar]
- Chowdhury, A.; van Lutterveld, R.; Laukkonen, R.E.; Slagter, H.A.; Ingram, D.M.; Sacchet, M.D. Investigation of advanced mindfulness meditation "cessation" experiences using EEG spectral analysis in an intensively sampled case study. Neuropsychologia 2023, 190, 108694. [Google Scholar] [CrossRef]
- Bing-Canar, H.; Pizzuto, J.; Compton, R.J. Mindfulness-of-breathing exercise modulates EEG alpha activity during cognitive performance. Psychophysiology 2016, 53, 1366–1376. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, S.; Huang, S.L.; Juan, C.H.; Huang, N.E.; Liang, W.K. Resting State Dynamics in People with Varying Degrees of Anxiety and Mindfulness: A Nonlinear and Nonstationary Perspective. Neuroscience 2023, 519, 177–197. [Google Scholar] [CrossRef]
- Szumska, I.; Gola, M.; Rusanowska, M.; Krajewska, M.; Żygierewicz, J.; Krejtz, I.; Nezlek, J.B.; Holas, P. Mindfulness-based cognitive therapy reduces clinical symptoms, but do not change frontal alpha asymmetry in people with major depression disorder. International Journal of Neuroscience 2021, 131, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Vignaud, P.; Donde, C.; Sadki, T.; Poulet, E.; Brunelin, J. Neural effects of mindfulness-based interventions on patients with major depressive disorder: A systematic review. Neuroscience and Biobehavioral Reviews 2018, 88, 98–105. [Google Scholar] [CrossRef]
- Keune, P.M.; Bostanov, V.; Hautzinger, M.; Kotchoubey, B. Mindfulness-based cognitive therapy (MBCT), cognitive style, and the temporal dynamics of frontal EEG alpha asymmetry in recurrently depressed patients. Biological Psychology 2011, 88, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Hudak, J.; Hanley, A.W.; Marchand, W.R.; Nakamura, Y.; Yabko, B.; Garland, E.L. Correction: Endogenous theta stimulation during meditation predicts reduced opioid dosing following treatment with Mindfulness Oriented Recovery Enhancement. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 2021, 46, 1544. [Google Scholar] [CrossRef]
- Brandmeyer, T.; Delorme, A. Reduced mind wandering in experienced meditators and associated EEG correlates. Experimental brain research 2018, 236, 2519–2528. [Google Scholar] [CrossRef]
- Tang, Y.; Yang, L.; Leve, L.D.; Harold, G.T. Improving Executive Function and Its Neurobiological Mechanisms Through a Mindfulness-Based Intervention: Advances Within the Field of Developmental Neuroscience. Child Development Perspectives 2012, 6, 361–366. [Google Scholar] [CrossRef]
- Khatri, R.A.; Baumgartner, N.W.; Noh, K.; Ullrich-French, S.; Schmitt, S.; Wang, C.H.; Kao, S.C. Mindfulness induction and executive function after high-intensity interval training with and without mindful recovery intervals. Scandinavian journal of medicine and science in sports 2024, 34, e14558. [Google Scholar] [CrossRef]
- Abbasi, M.; Ghorbani, N.; Imani, A.H.; Tahbaz Hoseinzadeh, S. Exploring the mediating role of integrative self-knowledge in the relationship between mindfulness and well-being in the context of a mindfulness-based stress reduction program. International Journal of Psychology 2021, 56, 249–256. [Google Scholar] [CrossRef]
- Greif, T.R.; Kaufman, D.A.S. Immediate effects of meditation in college students: A pilot study examining the role of baseline attention performance and trait mindfulness. Journal of American College Health 2021, 69, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Bolzer, M.; Strijbos, J.; Fischer, F. Inferring mindful cognitive-processing of peer-feedback via eye-tracking: role of feedback-characteristics, fixation-durations and transitions. Journal of Computer Assisted Learning 2015, 31, 422–434. [Google Scholar] [CrossRef]
- Campos, D.; Modrego-Alarcón, M.; López-Del-Hoyo, Y.; González-Panzano, M.; Van Gordon, W.; Shonin, E.; Navarro-Gil, M.; García-Campayo, J. Exploring the Role of Meditation and Dispositional Mindfulness on Social Cognition Domains: A Controlled Study. Frontiers in psychology 2019, 10, 809. [Google Scholar] [CrossRef]
- Mediavilla, R.; Muñoz-Sanjose, A.; Rodriguez-Vega, B.; Bayon, C.; Lahera, G.; Palao, A.; Bravo-Ortiz, M.F. Mindfulness-Based Social Cognition Training (SocialMind) for People With Psychosis: A Feasibility Trial. Frontiers in psychiatry 2019, 10, 299. [Google Scholar] [CrossRef]
- López-del Hoyo, Y.; Panzano, M.G.; Lahera, G.; Herrera-Mercadal, P.; Navarro-Gil, M.; Campos, D.; Borao, L.; Morillo, H.; García-Campayo, J. Differences between individuals with schizophrenia or obsessive-compulsive disorder and healthy controls in social cognition and mindfulness skills: A controlled study. PLoS ONE 2019, 14, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Simione, L.; Frolli, A.; Sciattella, F.; Chiarella, S.G. Mindfulness-Based Interventions for People with Autism Spectrum Disorder: A Systematic Literature Review. Brain Sciences 2024, 14. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.y.; Shek, D.T.L. A randomized controlled trial of mindfulness-based intervention on individuals with physical disabilities in China. Applied Research Quality Life 2024, 19, 1735–1761. [Google Scholar] [CrossRef]
- Ede, D.E.; Walter, F.A.; Hughes, J.W. Exploring How Trait Mindfulness Relates to Perceived Stress and Cardiovascular Reactivity. International Journal of Behavioral Medicine 2020, 27, 415–425. [Google Scholar] [CrossRef]
- Mediavilla, R.; Muñoz-Sanjose, A.; Rodriguez-Vega, B.; Lahera, G.; Palao, A.; Bayon, C.; Vidal-Villegas, M.P.; Chadwick, P.; Bravo-Ortiz, M.F. People With Psychosis Improve Affective Social Cognition and Self-Care After a Mindfulness-Based Social Cognition Training Program (SocialMIND). Psychiatric Rehabilitation Journal 2021, 44, 391–395. [Google Scholar] [CrossRef]
- Vidal-Villegas, M.P.; Pinto García, A.; Mediavilla, R.; Muñoz-Sanjose, A.; Millán, I.; González-Bocelo, I.; Sánchez, P.; Cebolla, S.; Pastor Haro, J.; Rodríguez-Vega, B. People with schizophrenia spectrum disorders improve attributional bias after a mindfulness-based social cognition training (socialMIND®). European Psychiatry 2020, 63, S255–S256. [Google Scholar]
- González-Panzano, M.; Borao, L.; Herrera-Mercadal, P.; Campos, D.; López-del Hoyo, Y.; Morillo, H.; García-Campayo, J. Habilidades de mindfulness y cognición social en la predicción de la sintomatología afectiva en la esquizofrenia, el trastorno obsesivo-compulsivo y participantes no clínicos. Revista de Psicopatologia y Psicologia Clinica 2019, 24, 9–17. [Google Scholar] [CrossRef]
- Andreu, C.I.; García-Rubio, C.; Melcón, M.; Schonert-Reichl, K.A.; Albert, J. The effectiveness of a school mindfulness-based intervention on the neural correlates of inhibitory control in children at risk: A randomized control trial. Developmental Science 2023, 26, null. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, S.; Tsai, S.Y.; Juan, C.H.; Muggleton, N.G.; Liang, W.K. Low delta and high alpha power are associated with better conflict control and working memory in high mindfulness, low anxiety individuals. Social Cognitive and amp; Affective Neuroscience 2019, 14, 645–655. [Google Scholar] [CrossRef]
- MARLENY GALVÁN-SOTO, A.; FUENTES-OCAMPO, L.; ÁLVAREZ-AGUIRRE, A.; SÁNCHEZ-GÓMEZ, M.; PAULINA NAVARRO-OLIVA, E.I. Mindfulness e Inteligencia Emocional en adolescentes: Revisión sistemática. Salud Uninorte 2024, 40, 178–199. [Google Scholar] [CrossRef]
- Sylvia, A.M.; Jastrowski Mano, K.; Birkley, E.L.; Mano, Q.R. Systematic Review of Dispositional Mindfulness and Posttraumatic Stress Disorder Symptomology: A Targeted Examination of Avoidance. Trauma, violence and abuse 2024, 25, 2622–2637. [Google Scholar] [CrossRef] [PubMed]
- Joseph, A.; Jose, T.P. Coping with Distress and Building Resilience among Emergency Nurses: A Systematic Review of Mindfulness-based Interventions. Indian journal of critical care medicine : peer-reviewed, official publication of Indian Society of Critical Care Medicine 2024, 28, 785–791. [Google Scholar] [CrossRef]
- Shoker, D.; Desmet, L.; Ledoux, N.; Héron, A. Effects of standardized mindfulness programs on burnout: a systematic review and original analysis from randomized controlled trials. Frontiers in public health 2024, 12, 1381373. [Google Scholar] [CrossRef]
- Hmwe, N.T.T.; Chan, C.M.; Shayamalie, T.G.N. Older people’s experiences of participation in mindfulness-based intervention programmes: A qualitative systematic review. International journal of mental health nursing 2024. [Google Scholar] [CrossRef]
- Banbury, S.; Chandler, C.; Lusher, J. A Systematic Review Exploring the Effectiveness of Mindfulness for Sexual Functioning in Women with Cancer. Psych 2023, 5, 194–208. [Google Scholar] [CrossRef]
- Hughes, O.; Shelton, K.H.; Penny, H.; Thompson, A.R. Living With Physical Health Conditions: A Systematic Review of Mindfulness-Based Interventions for Children, Adolescents, and Their Parents. Journal of pediatric psychology 2023, 48, 396–413. [Google Scholar] [CrossRef]
- Pinto, B.M.; Tavares, I.; Pozza, D.H. Enhancing Chronic Non-Cancer Pain Management: A Systematic Review of Mindfulness Therapies and Guided Imagery Interventions. Medicina (Kaunas, Lithuania) 2024, 60. [Google Scholar] [CrossRef] [PubMed]
- Bartholomew, E.; Chung, M.; Yeroushalmi, S.; Hakimi, M.; Bhutani, T.; Liao, W. Mindfulness and Meditation for Psoriasis: A Systematic Review. Dermatology and Therapy 2022, 12, 2273–2283. [Google Scholar] [CrossRef]
- Trousselard, M.; Ramdani, C.; Charles, V.; François, V. Towards a refined model of mindfulness related to consciousness: A systematic review of ERPs findings. Clinical Neurophysiology / Neurophysiologie Clinique 2019, 49, 345–346. [Google Scholar] [CrossRef]
- Treves, I.N.; Greene, K.D.; Bajwa, Z.; Wool, E.; Kim, N.; Bauer, C.C.C.; Bloom, P.A.; Pagliaccio, D.; Zhang, J.; Whitfield-Gabrieli, S.; et al. Mindfulness-based Neurofeedback: A Systematic Review of EEG and fMRI studies. BioRxiv 2024. [Google Scholar] [CrossRef]
- Lomas, T.; Ivtzan, I.; Fu, C.H. A systematic review of the neurophysiology of mindfulness on EEG oscillations. Neuroscience and Biobehavioral Reviews 2015, 57, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Mak, C.; Whittingham, K.; Cunnington, R.; Boyd, R. Efficacy of Mindfulness-Based Interventions for Attention and Executive Function in Children and Adolescents—a Systematic Review. Mindfulness 2018, 9, 59–78. [Google Scholar] [CrossRef]
- Sánchez-Soto, L.; Sánchez-Suricalday, A. The impact of mindfulness therapy in individuals with Attention Deficit Hyperactivity Disorder (ADHD): a systematic review (El impacto de la terapia mindfulness en personas con Trastorno por Déficit de Atención/Hiperactividad (TDAH): una revisión sistemática). Infancia y Aprendizaje 2023, 46, 529–556. [Google Scholar] [CrossRef]
- Poissant, H.; Mendrek, A.; Talbot, N.; Khoury, B.; Nolan, J. Behavioral and Cognitive Impacts of Mindfulness-Based Interventions on Adults with Attention-Deficit Hyperactivity Disorder: A Systematic Review. Behavioural Neurology 2019, 1–16. [Google Scholar] [CrossRef]
- Lee, C.S.C.; Ma, M.T.; Ho, H.Y.; Tsang, K.K.; Zheng, Y.Y.; Wu, Z.Y. The Effectiveness of Mindfulness-Based Intervention in Attention on Individuals with ADHD: A Systematic Review. Hong Kong journal of occupational therapy : HKJOT 2017, 30, 33–41. [Google Scholar] [CrossRef]
- Day, M.A.; Matthews, N.; Mattingley, J.B.; Ehde, D.M.; Turner, A.P.; Williams, R.M.; Jensen, M.P. Change in Brain Oscillations as a Mechanism of Mindfulness-Meditation, Cognitive Therapy, and Mindfulness-Based Cognitive Therapy for Chronic Low Back Pain. Pain medicine (Malden, Mass.) 2021, 22, 1804–1813. [Google Scholar] [CrossRef]
- Deng, X.; Yang, M.; An, S. Differences in frontal EEG asymmetry during emotion regulation between high and low mindfulness adolescents. Biological psychology 2021, 158, 107990. [Google Scholar] [CrossRef] [PubMed]
- Saggar, M.; King, B.G.; Zanesco, A.P.; Maclean, K.A.; Aichele, S.R.; Jacobs, T.L.; Bridwell, D.A.; Shaver, P.R.; Rosenberg, E.L.; Sahdra, B.K.; et al. Intensive training induces longitudinal changes in meditation state-related EEG oscillatory activity. Frontiers in human neuroscience 2012, 6, 256. [Google Scholar] [CrossRef]
- Galluzzi, S.; Lanfredi, M.; Moretti, D.V.; Rossi, R.; Meloni, S.; Tomasoni, E.; Frisoni, G.B.; Chiesa, A.; Pievani, M. Cognitive, psychological, and physiological effects of a web-based mindfulness intervention in older adults during the COVID-19 pandemic: an open study. BMC geriatrics 2024, 24, 151. [Google Scholar] [CrossRef] [PubMed]
- Bajestani, G.S.; Ghanizadeh, A.; Makhloughi, F.; Hosseinpour Kharrazi, F.; Hosseini, A.; Toosi, M.B. The Impact of Blended Mindfulness Intervention (BMI) on University Students’ Sustained Attention, Working Memory, Academic Achievement, and Electroencephalogram (EEG) Asymmetry. Mindfulness 2024, 15, 675–688. [Google Scholar] [CrossRef]
- Rodriguez-Larios, J.; Alaerts, K. EEG alpha–theta dynamics during mind wandering in the context of breath focus meditation: An experience sampling approach with novice meditation practitioners. European Journal of Neuroscience 2021, 53, 1855–1868. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.S.; Manthalkar, R.R.; Gajre, S.S. Mindfulness intervention for improving cognitive abilities using EEG signal. Biomedical Signal Processing and Control 2021, 70. [Google Scholar] [CrossRef]
- Bigliassi, M.; Galano, B.M.; Lima-Silva, A.E.; Bertuzzi, R. Effects of mindfulness on psychological and psychophysiological responses during self-paced walking. Psychophysiology 2020, 57, 1–17. [Google Scholar] [CrossRef]
- Bing-Canar, H.; Pizzuto, J.; Compton, R.J. Mindfulness-of-breathing exercise modulates EEG alpha activity during cognitive performance. Psychophysiology 2016, 53, 1366–1376. [Google Scholar] [CrossRef]
- Nien, J.T.; Gill, D.L.; Chou, T.Y.; Liu, C.S.; Geng, X.; Hung, T.M.; Chang, Y.K. Effect of brief mindfulness and relaxation inductions on anxiety, affect and brain activation in athletes. Psychology of sport and exercise 2023, 67, 102422. [Google Scholar] [CrossRef]
- Vekety, B.; Logemann, A.; Takacs, Z.K. Mindfulness Practice with a Brain-Sensing Device Improved Cognitive Functioning of Elementary School Children: An Exploratory Pilot Study. Brain sciences 2022, 12, null. [Google Scholar] [CrossRef]
- Brown, K.W.; Berry, D.; Eichel, K.; Beloborodova, P.; Rahrig, H.; Britton, W.B. Comparing impacts of meditation training in focused attention, open monitoring, and mindfulness-based cognitive therapy on emotion reactivity and regulation: Neural and subjective evidence from a dismantling study. Psychophysiology 2022, 59, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Moynihan, J.A.; Chapman, B.P.; Klorman, R.; Krasner, M.S.; Duberstein, P.R.; Brown, K.W.; Talbot, N.L. Mindfulness-based stress reduction for older adults: effects on executive function, frontal alpha asymmetry and immune function. Neuropsychobiology 2013, 68, 34–43. [Google Scholar] [CrossRef]
- Morais, P.; Quaresma, C.; Vigário, R.; Quintão, C. Electrophysiological effects of mindfulness meditation in a concentration test. Medical and biological engineering and computing 2021, 59, 759–773. [Google Scholar] [CrossRef]
- Rastogi, R.; Arora, N.; Satya, S.; Tawar, P.S.; Chaturvedi, D.K. Study on the Efficacy of Electroencephalography Biofeedback with Mindful Meditation on Mental Health of Youths. International Journal of System and Software Engineering 2017, 5, 1–13. [Google Scholar]
- Quaglia, J.T.; Zeidan, F.; Grossenbacher, P.G.; Freeman, S.P.; Braun, S.E.; Martelli, A.; Goodman, R.J.; Brown, K.W. Brief mindfulness training enhances cognitive control in socioemotional contexts: Behavioral and neural evidence. PLoS ONE 2019, 14, 1–21. [Google Scholar] [CrossRef]
- Bradley, M.M.; Lang, P.J. Measuring emotion: The self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry 1994, 25, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Brugnolo, A.; De Carli, F.; Accardo, J.; Amore, M.; Bosia, L.E.; Bruzzaniti, C.; Cappa, S.F.; Cocito, L.; Colazzo, G.; Ferrara, M.; et al. An updated Italian normative dataset for the Stroop color word test (SCWT). Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology 2016, 37, 365–372. [Google Scholar] [CrossRef]
- Giovagnoli, A.R.; Del Pesce, M.; Mascheroni, S.; Simoncelli, M.; Laiacona, M.; Capitani, E. Trail making test: normative values from 287 normal adult controls. Italian journal of neurological sciences 1996, 17, 305–309. [Google Scholar] [CrossRef]
- Shipstead, Z.; Redick, T.S.; Engle, R.W. Is Working Memory Training Effective? Psychological Bulletin 2012, 138, 628–654. [Google Scholar] [CrossRef]
- Unsworth, N.; Heitz, R.P.; Schrock, J.C.; Engle, R.W. An automated version of the operation span task. Behavior Research Methods 2005, 37, 498–505. [Google Scholar] [CrossRef]
- Argento, O.; Pisani, V.; Incerti, C.C.; Magistrale, G.; Caltagirone, C.; Nocentini, U. The California Verbal Learning Test-II: normative data for two Italian alternative forms. The Clinical neuropsychologist 2015, 28 Suppl 1, S42–S54. [Google Scholar] [CrossRef]
- Gupta, S.S.; Manthalkar, R.R. Classification of visual cognitive workload using analytic wavelet transform. Biomedical Signal Processing and Control 2020, 61. [Google Scholar] [CrossRef]
- MacLean, K.A.; Ferrer, E.; Aichele, S.R.; Bridwell, D.A.; Zanesco, A.P.; Jacobs, T.L.; King, B.G.; Rosenberg, E.L.; Sahdra, B.K.; Shaver, P.R.; et al. Intensive Meditation Training Improves Perceptual Discrimination and Sustained Attention. Psychological Science (0956-7976) 2010, 21, 829–839. [Google Scholar] [CrossRef]
- Wei, F.Y.; Wang, Y.; Klausner, M. Rethinking College Students’ Self-Regulation and Sustained Attention:Does Text Messaging During Class Influence Cognitive Learning? Communication Education 2012, 61, 185–204. [Google Scholar] [CrossRef]
- Della Sala, S.; Laiacona, M.; Spinnler, H.; Ubezio, C. A cancellation test: its reliability in assessing attentional deficits in Alzheimer’s disease. Psychological medicine 1992, 22, 885–901. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Hui, M.; Yu-Xia, H. The Development of Native Chinese Affective Picture System–A pretest in 46 College Students. Chinese Mental Health Journal 2005, 19, 719–722. [Google Scholar]
- Lewinsohn, P.M.; Seeley, J.R.; Roberts, R.E.; Allen, N.B. Center for Epidemiologic Studies Depression Scale (CES-D) as a screening instrument for depression among community-residing older adults. Psychology and aging 1997, 12, 277–287. [Google Scholar] [CrossRef]
- Hardy, C.J.; Rejeski, W.J. Not What, But How One Feels: The Measurement of Affect During Exercise. Journal of Sport and amp; Exercise Psychology 1989, 11, 304–317. [Google Scholar] [CrossRef]
- Svebak, S.; Murgatroyd, S. Metamotivational dominance: A multimethod validation of reversal theory constructs. Journal of Personality and Social Psychology 1985, 48, 107–116. [Google Scholar] [CrossRef]
- Antony, M.M.; Bieling, P.J.; Cox, B.J.; Enns, M.W.; Swinson, R.P. Psychometric properties of the 42-item and 21-item versions of the Depression Anxiety Stress Scales in clinical groups and a community sample. Psychological Assessment 1998, 10, 176–181. [Google Scholar] [CrossRef]
- Baer, R.A.; Smith, G.T.; Lykins, E.; Button, D.; Krietemeyer, J.; Sauer, S.; Walsh, E.; Duggan, D.; Williams, J.M.G. Construct validity of the five facet mindfulness questionnaire in meditating and nonmeditating samples. Assessment 2008, 15, 329–342. [Google Scholar] [CrossRef]
- Meyer, T.J.; Miller, M.L.; Metzger, R.L.; Borkovec, T.D. Development and validation of the Penn State Worry Questionnaire. Behaviour research and therapy 1990, 28, 487–495. [Google Scholar] [CrossRef]
- Williams, M.; Honan, C.; Skromanis, S.; Sanderson, B.; Matthews, A.J. Psychological Outcomes and Mechanisms of Mindfulness-Based Training for Generalised Anxiety Disorder: A Systematic Review and Meta-Analysis. Current psychology (New Brunswick, N.J.) 2023, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.; Honan, C.; Skromanis, S.; Sanderson, B.; Matthews, A.J. Psychological and attentional outcomes following acute mindfulness induction among high anxiety individuals: A systematic review and meta-analysis. Journal of psychiatric research 2024, 170, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Kirk, M.A.; Pirbaglou, M.; Weerasekera, R.; Ritvo, P. Effectiveness of online cognitive behavioral interventions that include mindfulness for clinically-diagnosed anxiety and depressive disorders: A systematic review and meta-analysis. International Journal of Mental Health 2022, 51, 235–266. [Google Scholar] [CrossRef]
- Adolphs, R. What does the amygdala contribute to social cognition? Annals of the New York Academy of Sciences 2010, 1191, 42–61. [Google Scholar] [CrossRef] [PubMed]
- Hölzel, B.K.; Hoge, E.A.; Greve, D.N.; Gard, T.; Creswell, J.D.; Brown, K.W.; Barrett, L.F.; Schwartz, C.; Vaitl, D.; Lazar, S.W. Neural mechanisms of symptom improvements in generalized anxiety disorder following mindfulness training. NeuroImage. Clinical 2013, 2, 448–458. [Google Scholar] [CrossRef]
- Nakamura, H.; Tawatsuji, Y.; Fang, S.; Matsui, T. Explanation of emotion regulation mechanism of mindfulness using a brain function model. Neural networks : the official journal of the International Neural Network Society 2021, 138, 198–214. [Google Scholar] [CrossRef]
- Viechtbauer, W. Conducting Meta-Analyses in R with the metafor Package. Journal of Statistical Software 2010, 36, 1–48. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Altman, D.G.; Gtzsche, P.C.; Jni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ: British Medical Journal (Overseas and Retired Doctors Edition) 2011, 343, 889–893. [Google Scholar] [CrossRef]
- Sorjonen, K.; Melin, B. Prospective effects of mindfulness on anxiety and depressive symptoms may be spurious: Simulated reanalysis of a meta-analytic cross-lagged panel analysis. PLoS ONE 2024, 19, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Brandmeyer, T.; Delorme, A. Reduced mind wandering in experienced meditators and associated EEG correlates. Experimental brain research 2018, 236, 2519–2528. [Google Scholar] [CrossRef] [PubMed]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
