Submitted:
26 February 2025
Posted:
27 February 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Inoculum Preparation, Soy Molasses Clarification, and Rice Bran Extraction
2.2. Submerged Fermentation for the Co-Production of Mycelial Biomass and Lasiodiplodan
2.3. Analytical Methods
2.4. Characterization of Mycelial Biomass and Lasiodiplodan
2.4.1. Proximal Composition
2.4.2. Assessment of Total Phenolics, Antioxidant Activity, and Bioactive Compounds
2.4.3. Characterization of Mycelial Biomass and Lasiodiplodan by Scanning Electron Microscopy, Thermal Analysis, X-Ray Diffraction, and FT-IR Spectroscopy
3. Results and Discussions
3.1. Co-Production of Mycelial Biomass and Exocellular Lasiodiplodan by Lasiodiplodia theobromae MMPI
3.2. Validation of Predictive Models and Kinetic Study of the Cultivation of Lasiodiplodia theobromae MMPI in Media Based on Soybean Molasses and Sucrose
3.3. Proximal Composition and Profiles of Amino and Fatty Acids of the Mycelial Biomass from Lasiodiplodia theobromae MMPI
3.4. Profile of Phenolic Compounds in Extracts of Mycelial Biomass from Lasiodiplodia theobromae MMPI
3.5. Antioxidant Potential of Lasiodiplodia theobromae MMPI Biomass Extracts
3.6. Morphological Aspects of Mycelial Biomass and Lasiodiplodan
3.7. Thermal Profiles of Mycelial Biomass and Lasiodiplodan Samples
3.8. Infra-Red Spectroscopy
3.9. Diffractometric Profile of Mycelial Biomass and Lasiodiplodan Samples
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
| SMM | Soybean Molasses Medium |
| SBM | Sucrose Based Medium |
| RBE | Rice Bran Extract |
References
- Pexas, G.; Doherty, B.; Kyriazakis, I. The Future of Protein Sources in Livestock Feeds: Implications for Sustainability and Food Safety. Frontiers in Sustainable Food Systems 2023, 7. [CrossRef]
- Gil, M.; Rudy, M.; Duma-Kocan, P.; Stanisławczyk, R.; Krajewska, A.; Dziki, D.; Hassoon, W.H. Sustainability of Alternatives to Animal Protein Sources, a Comprehensive Review. Sustainability 2024, 16, 7701. [CrossRef]
- United Nations World Population Projected to Reach 9.8 Billion in 2050, and 11.2 Billion in 2100 Available online: https://www.un.org/en/desa/world-population-projected-reach-98-billion-2050-and-112-billion-2100#:~:text=Calendar-,World population projected to reach 9.8 billion in 2050%2C and,Nations report being launched today.
- Kumar, R.; Raj, T.; Næss, G.; Sørensen, M.; Dhawan, V. Opportunities and Challenges in Single-cell Protein Production Using Lignocellulosic Material. Biofuels, Bioproducts and Biorefining 2024, 18, 310–321. [CrossRef]
- USDA Livestock and Products Annual; 2022.
- USDA Poultry and Products Semi-Annual; 2024.
- Foreign Agricultural Service Production - Pork Available online: https://fas.usda.gov/data/production/commodity/0113000.
- Bahar, N.H.A.; Lo, M.; Sanjaya, M.; Van Vianen, J.; Alexander, P.; Ickowitz, A.; Sunderland, T. Meeting the Food Security Challenge for Nine Billion People in 2050: What Impact on Forests? Global Environmental Change 2020, 62, 102056. [CrossRef]
- FAO (Food and Agriculture Organization) The Future of Food and Agriculture: Trends and Challenges; Rome, 2017; Vol. 4.
- Kumar, L.; Chhogyel, N.; Gopalakrishnan, T.; Hasan, M.K.; Jayasinghe, S.L.; Kariyawasam, C.S.; Kogo, B.K.; Ratnayake, S. Climate Change and Future of Agri-Food Production. In Future Foods; Elsevier, 2022; pp. 49–79.
- Stoffel, F.; Santana, W. de O.; Gregolon, J.G.N.; Kist, T.B.L.; Fontana, R.C.; Camassola, M. Production of Edible Mycoprotein Using Agroindustrial Wastes: Influence on Nutritional, Chemical and Biological Properties. Innovative Food Science & Emerging Technologies 2019, 58, 102227. [CrossRef]
- Calegari, G.C.; Santos, V.A.Q.; Barbosa-Dekker, A.M.; Busso, C.; Dekker, R.F.H.; Alves da Cunha, M.A. Sulfonated (1→6)-β-D-Glucan (Lasiodiplodan): Preparation, Characterization and Bioactive Properties. Food technology and biotechnology 2019, 57, 490–502. [CrossRef]
- Heringer, H.C.E.; Kuhn Marchioro, M.L.; Meneguzzi, D.; Barbosa-Dekker, A.M.; Dekker, R.F.H.; Alves da Cunha, M.A. Valorization of Spent Brewers Yeast in the Integrated Production of the Fungal Exopolysaccharide (1→6)-β-D-Glucan (Lasiodiplodan) and Single-Cell Protein. Biocatalysis and Agricultural Biotechnology 2023, 54, 102971. [CrossRef]
- Sivieri, K.; de Oliveira, S.M.; Marquez, A. de S.; Pérez-Jiménez, J.; Diniz, S.N. Insights on β-Glucan as a Prebiotic Coadjuvant in the Treatment of Diabetes Mellitus: A Review. Food Hydrocolloids for Health 2022, 2, 100056. [CrossRef]
- Carlson, J.; Erickson, J.; Hess, J.; Gould, T.; Slavin, J. Prebiotic Dietary Fiber and Gut Health: Comparing the in Vitro Fermentations of Beta-Glucan, Inulin and Xylooligosaccharide. Nutrients 2017, 9, 1361. [CrossRef]
- Cunha, M.A.A.; Santos, V.A.Q.; Calegari, G.C.; Sánchez Luna, W.N.; Marin, S.L.A.; Dekker, R.F.H.; Barbosa-Dekker, A.M. Structure and Biological Properties of Lasiodiplodan: An Uncommon Fungal Exopolysaccharide of the (1→6)-β-D-Glucan Type. In Extracellular Sugar-Based Biopolymers Matrices. Biologically-Inspired Systems; Springer International Publishing, 2019; pp. 409–432 ISBN 978-3-030-12918-7.
- Ruiz-Herrera, J.; Ortiz-Castellanos, L. Cell Wall Glucans of Fungi. A Review. The Cell Surface 2019, 5, 100022. [CrossRef]
- Vogel, H.J. A Convenient Growth Medium for Neurospora (Medium And). Microbial Genetic Bulletin 1956, 13, 42–47.
- Acosta, S.B.P.; Marchioro, M.L.K.; Santos, V.A.Q.; Calegari, G.C.; Lafay, C.B.B.; Barbosa-Dekker, A.M.; Dekker, R.F.H.; da Cunha, M.A.A. Valorization of Soybean Molasses as Fermentation Substrate for the Production of Microbial Exocellular β-Glucan. Journal of Polymers and the Environment 2020, 28, 2149–2160. [CrossRef]
- Silva, D.D.V. da; Cândido, E.D.J.; Arruda, P.V. de; Silva, S.S. da; Felipe, M. das G. de A. New Cultive Medium for Bioconversion of C5 Fraction from Sugarcane Bagasse Using Rice Bran Extract. Brazilian Journal of Microbiology 2014, 45, 1469–1475. [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry 1956, 28, 350–356. [CrossRef]
- AOAC International Official Methods of Analysis; Latimer Jr, G., Ed.; 20th ed.; AOAC INTERNATIONAL: Rockville, MD, 2016; Vol. 52; ISBN 0935584870.
- Park, Y.K.; Koo, M.H.; Ikegaki, M.; Contado, J. Comparison of the Flavonoid Aglycone Contents of Apis mellifera Propolis from Various Regions of Brazil. Arq. Biol. Tecnol 1997, 97–106.
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Journal of Food, Agriculture and Environment; Academic Press, 1999; Vol. 5, pp. 152–178 ISBN 9780121822002.
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radical Biology and Medicine 1999, 26, 1231–1237. [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT - Food Science and Technology 1995, 28, 25–30. [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry 1996, 239, 70–76. [CrossRef]
- Liu, W.; Wang, H.; Pang, X.; Yao, W.; Gao, X. Characterization and Antioxidant Activity of Two Low-Molecular-Weight Polysaccharides Purified from the Fruiting Bodies of Ganoderma lucidum. International Journal of Biological Macromolecules 2010, 46, 451–457. [CrossRef]
- Sun, L.; Zhang, J.; Lu, X.; Zhang, L.; Zhang, Y. Evaluation to the Antioxidant Activity of Total Flavonoids Extract from Persimmon (Diospyros kaki L.) Leaves. Food and Chemical Toxicology 2011, 49, 2689–2696. [CrossRef]
- Singh, U.; Gautam, A.; Singha, T.K.; Tiwari, A.; Tiwari, P.; Sahai, V.; Sharma, S. Mass Production of Pleurotus eryngii Mycelia under Submerged Culture Conditions with Improved Minerals and Vitamin D2. LWT 2020, 131, 109665. [CrossRef]
- Nyyssölä, A.; Suhonen, A.; Ritala, A.; Oksman-Caldentey, K.M. The Role of Single Cell Protein in Cellular Agriculture. Current Opinion in Biotechnology 2022, 75, 102686. [CrossRef]
- Carranza-Méndez, R.C.; Chávez-González, M.L.; Sepúlveda-Torre, L.; Aguilar, C.N.; Govea-Salas, M.; Ramos-González, R. Production of Single Cell Protein from Orange Peel Residues by Candida utilis. Biocatalysis and Agricultural Biotechnology 2022, 40, 102298. [CrossRef]
- Karimi, S.; Mahboobi Soofiani, N.; Lundh, T.; Mahboubi, A.; Kiessling, A.; Taherzadeh, M.J. Evaluation of Filamentous Fungal Biomass Cultivated on Vinasse as an Alternative Nutrient Source of Fish Feed: Protein, Lipid, and Mineral Composition. Fermentation 2019, 5, 99. [CrossRef]
- Bardhan, P.; Gohain, M.; Daimary, N.; Kishor, S.; Chattopadhyay, P.; Gupta, K.; Chaliha, C.; Kalita, E.; Deka, D.; Mandal, M. Microbial Lipids from Cellulolytic Oleaginous Fungus Penicillium citrinum PKB20 as a Potential Feedstock for Biodiesel Production. Annals of Microbiology 2019, 69, 1135–1146. [CrossRef]
- Altun, R.; Esim, N.; Aykutoglu, G.; Baltaci, M.O.; Adiguzel, A.; Taskin, M. Production of Linoleic Acid-Rich Lipids in Molasses-Based Medium by Oleaginous Fungus Galactomyces geotrichum TS61. Journal of Food Processing and Preservation 2020, 44, e14518. [CrossRef]
- Athenaki, M.; Gardeli, C.; Diamantopoulou, P.; Tchakouteu, S.S.; Sarris, D.; Philippoussis, A.; Papanikolaou, S. Lipids from Yeasts and Fungi: Physiology, Production and Analytical Considerations. Journal of Applied Microbiology 2018, 124, 336–367. [CrossRef]
- Ali, T.H.; El-Gamal, M.S.; El-Ghonemy, D.H.; Awad, G.E.; Tantawy, A.E. Improvement of Lipid Production from an Oil-Producing Filamentous Fungus, Penicillium brevicompactum NRC 829, through Central Composite Statistical Design. Annals of Microbiology 2017, 67, 601–613. [CrossRef]
- Carta, G.; Murru, E.; Banni, S.; Manca, C. Palmitic Acid: Physiological Role, Metabolism and Nutritional Implications. Frontiers in Physiology 2017, 8. [CrossRef]
- Zhu, S.; Jiao, W.; Xu, Y.; Hou, L.; Li, H.; Shao, J.; Zhang, X.; Wang, R.; Kong, D. Palmitic Acid Inhibits Prostate Cancer Cell Proliferation and Metastasis by Suppressing the PI3K/Akt Pathway. Life Sciences 2021, 286, 120046. [CrossRef]
- van Rooijen, M.; Mensink, R. Palmitic Acid Versus Stearic Acid: Effects of Interesterification and Intakes on Cardiometabolic Risk Markers—A Systematic Review. Nutrients 2020, 12, 615. [CrossRef]
- Inocêncio, E.S.; Buarque, F.S.; Ferreira, L.F.R.; Soares, C.M.F.; Lima, Á.S.; Souza, R.L. de Exploring the Potential of Licuri (Syagrus coronata) Using Sustainable Techniques and Solvents for Extracting Bioactive Compounds. Sustainability 2025, 17, 1507. [CrossRef]
- Vamanu, E. Antioxidant Properties of Mushroom Mycelia Obtained by Batch Cultivation and Tocopherol Content Affected by Extraction Procedures. BioMed Research International 2014, 2014, 1–8. [CrossRef]
- Valu, M.-V.; Soare, L.C.; Sutan, N.A.; Ducu, C.; Moga, S.; Hritcu, L.; Boiangiu, R.S.; Carradori, S. Optimization of Ultrasonic Extraction to Obtain Erinacine A and Polyphenols with Antioxidant Activity from the Fungal Biomass of Hericium erinaceus. Foods 2020, 9, 1889. [CrossRef]
- González-Palma, I.; Escalona-Buendía, H.B.; Ponce-Alquicira, E.; Téllez-Téllez, M.; Gupta, V.K.; Díaz-Godínez, G.; Soriano-Santos, J. Evaluation of the Antioxidant Activity of Aqueous and Methanol Extracts of Pleurotus ostreatus in Different Growth Stages. Frontiers in Microbiology 2016, 7, 1099. [CrossRef]
- Fijałkowska, A.; Muszyńska, B.; Sułkowska-Ziaja, K.; Kała, K.; Pawlik, A.; Stefaniuk, D.; Matuszewska, A.; Piska, K.; Pękala, E.; Kaczmarczyk, P.; et al. Medicinal Potential of Mycelium and Fruiting Bodies of an Arboreal Mushroom Fomitopsis Officinalis in Therapy of Lifestyle Diseases. Scientific Reports 2020, 10, 20081. [CrossRef]
- Zhao, Y.; Fang, C.; Jin, C.; Bao, Z.; Yang, G.; Jin, Y. Catechin from Green Tea Had the Potential to Decrease the Chlorpyrifos Induced Oxidative Stress in Larval Zebrafish (Danio Rerio). Pesticide Biochemistry and Physiology 2022, 182, 105028. [CrossRef]
- Kahkeshani, N.; Farzaei, F.; Fotouhi, M.; Alavi, S.S.; Bahramsoltani, R.; Naseri, R.; Momtaz, S.; Abbasabadi, Z.; Rahimi, R.; Farzaei, M.H.; et al. Pharmacological Effects of Gallic Acid in Health and Disease: A Mechanistic Review. Iranian Journal of Basic Medical Sciences 2019, 22, 225–237. [CrossRef]
- Xu, H.J.; Zhang, Q.Y.; Wang, L.H.; Zhang, C.R.; Li, Y.; Zhang, Y.G. Growth Performance, Digestibility, Blood Metabolites, Ruminal Fermentation, and Bacterial Communities in Response to the Inclusion of Gallic Acid in the Starter Feed of Preweaning Dairy Calves. Journal of Dairy Science 2022, 105, 3078–3089. [CrossRef]
- Hameed, A.; Hussain, S.A.; Yang, J.; Ijaz, M.U.; Liu, Q.; Suleria, H.A.R.; Song, Y. Antioxidants Potential of the Filamentous Fungi (Mucor circinelloides). Nutrients 2017, 9, 1101. [CrossRef]
- Couttolenc, A.; Medina, M.E.; Trigos, Á.; Espinoza, C. Antioxidant Capacity of Fungi Associated with Corals and Sponges of the Reef System of Veracruz, Mexico. Electronic Journal of Biotechnology 2022, 55, 40–46. [CrossRef]
- Pasieczna-Patkowska, S.; Cichy, M.; Flieger, J. Application of Fourier Transform Infrared (FTIR) Spectroscopy in Characterization of Green Synthesized Nanoparticles. Molecules 2025, 30, 684. [CrossRef]
- Nissola, C.; Marchioro, M.L.K.; de Souza Leite Mello, E.V.; Guidi, A.C.; de Medeiros, D.C.; da Silva, C.G.; de Mello, J.C.P.; Pereira, E.A.; Barbosa-Dekker, A.M.; Dekker, R.F.H.; et al. Hydrogel Containing (1→6)-β-D-Glucan (Lasiodiplodan) Effectively Promotes Dermal Wound Healing. International Journal of Biological Macromolecules 2021, 183, 316–330. [CrossRef]
- Hong, T.; Yin, J.Y.; Nie, S.P.; Xie, M.Y. Applications of Infrared Spectroscopy in Polysaccharide Structural Analysis: Progress, Challenge and Perspective. Food Chemistry: X 2021, 12, 100168. [CrossRef]
- Alaguprathana, M.; Poonkothai, M.; Ameen, F.; Ahmad Bhat, S.; Mythili, R.; Sudhakar, C. Sodium Hydroxide Pre-Treated Aspergillus flavus Biomass for the Removal of Reactive Black 5 and Its Toxicity Evaluation. Environmental Research 2022, 214, 113859. [CrossRef]
- Popa, R.M.; Fetea, F.; Socaciu, C. ATR-FTIR-MIR Spectrometry and Pattern Recognition of Bioactive Volatiles in Oily versus Microencapsulated Food Supplements: Authenticity, Quality, and Stability. Molecules 2021, 26, 4837. [CrossRef]
- Wang, Y.; Xu, K.; Li, Y.; Feng, Q. Fourier Transform Infrared Spectroscopy Analysis of the Active Components in Serum of Rats Treated with Zuogui Pill. Journal of Traditional Chinese Medical Sciences 2015, 2, 264–269. [CrossRef]
- Tan, C.S.; Leow, S.Y.; Ying, C.; Tan, C.J.; Yoon, T.L.; Jingying, C.; Yam, M.F. Comparison of FTIR Spectrum with Chemometric and Machine Learning Classifying Analysis for Differentiating Guan-Mutong a Nephrotoxic and Carcinogenic Traditional Chinese Medicine with Chuan-Mutong. Microchemical Journal 2021, 163, 105835. [CrossRef]
- Olugbemide, A.D.; Oberlintner, A.; Novak, U.; Likozar, B. Lignocellulosic Corn Stover Biomass Pre-Treatment by Deep Eutectic Solvents (DES) for Biomethane Production Process by Bioresource Anaerobic Digestion. Sustainability 2021, 13, 10504. [CrossRef]
- William N. Sanchez Luna; Vidiany A. Q. Santos; Sirlei D. Teixeira; Aneli M. Barbosa-Dekker; Robert F. H. Dekker; Mário A. A. da Cunha O-Acetylated (1→6)-β-D-Glucan (Lasiodiplodan): Chemical Derivatization, Characterization and Antioxidant Activity. Journal of Pharmacy and Pharmacology 2018, 6, 320–332. [CrossRef]
- Arunprasath, T.; Sudalai, S.; Meenatchi, R.; Jeyavishnu, K.; Arumugam, A. Biodegradation of Triphenylmethane Dye Malachite Green by a Newly Isolated Fungus Strain. Biocatalysis and Agricultural Biotechnology 2019, 17, 672–679. [CrossRef]








| Runs | Variable levels | Values obtained | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Soy molasses medium * | Sucrose-based medium ** | |||||||||||||
| X1 | X2 | X3 | PX (g L-1) |
PLas (g L-1) |
YP/S (g g-1) |
YX/S (g g-1) |
PX (g L-1) |
PLas (g L-1) |
YP/S (g g-1) |
YX/S (g g-1) |
||||
| 1 | -1 | -1 | -1 | 3.450 | 2.640 | 0.154 | 0.202 | 3.160 | 2.267 | 0.290 | 0.404 | |||
| 2 | -1 | -1 | 1 | 10.627 | 1.520 | 0.095 | 0.667 | 4.633 | 0.827 | 0.062 | 0.348 | |||
| 3 | -1 | 1 | -1 | 6.580 | 1.120 | 0.060 | 0.353 | 8.360 | 3.333 | 0.287 | 0.721 | |||
| 4 | -1 | 1 | 1 | 9.783 | 1.840 | 0.099 | 0.527 | 6.073 | 1.627 | 0.104 | 0.387 | |||
| 5 | 1 | -1 | -1 | 10.077 | 3.487 | 0.069 | 0.199 | 6.493 | 5.700 | 0.178 | 0.203 | |||
| 6 | 1 | -1 | 1 | 10.583 | 1.893 | 0.037 | 0.205 | 11.400 | 1.813 | 0.056 | 0.354 | |||
| 7 | 1 | 1 | -1 | 12.637 | 0.667 | 0.013 | 0.241 | 6.207 | 1.653 | 0.036 | 0.136 | |||
| 8 | 1 | 1 | 1 | 10.837 | 2.267 | 0.044 | 0.211 | 14.860 | 0.400 | 0.009 | 0.334 | |||
| 9 | -1.68 | 0 | 0 | 2.443 | 0.427 | 0.074 | 0.426 | 3.183 | 0.240 | 0.049 | 0.653 | |||
| 10 | 1.68 | 0 | 0 | 16.627 | 0.533 | 0.009 | 0.282 | 11.103 | 1.013 | 0.024 | 0.262 | |||
| 11 | 0 | -1.68 | 0 | 10.223 | 1.120 | 0.030 | 0.272 | 6.497 | 0.720 | 0.047 | 0.426 | |||
| 12 | 0 | 1.68 | 0 | 8.157 | 0.800 | 0.021 | 0.215 | 8.823 | 1.013 | 0.034 | 0.292 | |||
| 13 | 0 | 0 | -1.68 | 8.927 | 1.093 | 0.029 | 0.236 | 5.937 | 0.800 | 0.025 | 0.184 | |||
| 14 | 0 | 0 | 1.68 | 18.490 | 2.320 | 0.067 | 0.538 | 5.997 | 1.493 | 0.056 | 0.227 | |||
| 15 (C) | 0 | 0 | 0 | 8.110 | 0.560 | 0.016 | 0.230 | 11.205 | 0.760 | 0.029 | 0.423 | |||
| 16 (C) | 0 | 0 | 0 | 9.315 | 0.800 | 0.022 | 0.259 | 10.930 | 1.560 | 0.060 | 0.424 | |||
| 17 (C) | 0 | 0 | 0 | 9.475 | 0.520 | 0.014 | 0.251 | 9.425 | 1.000 | 0.037 | 0.351 | |||
| 18 (C) | 0 | 0 | 0 | 8.785 | 0.280 | 0.007 | 0.230 | 8.985 | 0.720 | 0.027 | 0.335 | |||
| Variables | Levels (real values) | |||||||||||||
| -1.68 | -1 | 0 | 1 | 1.68 | ||||||||||
| X1 substrate (g L-1) | 6.4 | 20 | 40 | 60 | 73.6 | |||||||||
| X2 RBE (%) | 1.6 | 5 | 10 | 15 | 18.4 | |||||||||
| X3 agitation (rpm) | 99.6 | 120 | 150 | 180 | 200.4 | |||||||||
| Soy molasses medium (SMM) |
Sucrose (SBM) |
|||||
|---|---|---|---|---|---|---|
| Variables | Critical value | Experimental value | Recovery (%) | Critical value | Experimental value | Recovery (%) |
| Substrate (g L-1) | 64.43 | 64.43 | - | 40.68 | 40.68 | |
| RBE (%) | 8.81 | 8.81 | - | 3.44 | 3.44 | |
| Agitation (rpm) | 152.83 | 152.83 | - | 161.22 | 161.22 | |
| PX (g L-1) | 12.13 | 12.44 | 102.6 | 7.90 | 10.09 | 127.7 |
| YX/S (g g-1) | 0.196 | 0.214 | 109.2 | 0.378 | 0.328 | 86.8 |
| Fermentation parameters | Cultivation Medium | |
|---|---|---|
| SMM * | SBM ** | |
| PX (g L-1) | 12.440a | 10.087a |
| PF (g L-1) | 0.573a | 0.547a |
| TRS (g L-1) | 6.275b | 9.964a |
| YP/S (g g-1) | 0.010a | 0.018a |
| YX/S (g g-1) | 0.214a | 0.328a |
| Ye (g g-1) | 0.046a | 0.054a |
| YC (%) | 90.261a | 75.507b |
| QX (g L-1 h-1) | 0.130a | 0.105a |
| QP (g L-1 h-1) | 0.006a | 0.006a |
| QS (g L-1 h-1) | 0.606a | 0.320b |
| Proximal Composition# | |||||
| SMM* | SBM** | SMM* | SBM** | ||
| Moisture (% at 105 °C) | 9.5 | 9.7 | Dietary fiber | 7.5 | 17.0 |
| Crude Protein | 16.27 | 19.88 | Total carbohydrates | 24.67 | 50.96 |
| Total fat | 43.77 | 7,56 | Mineral residue (ash) | 5.79 | 12.57 |
| Caloric value (Kcal 100 g-1) | 557.69 | 351,4 | |||
| Essential Amino Acids ## | |||||
| SMM* | SBM** | SMM* | SBM** | ||
| Histidine | 20.28 | 0.00 | Phenylalanine | 38.11 | 7.04 |
| Isoleucine | 49.17 | 16.10 | Threonine | 43.64 | 7.04 |
| Leucine | 97.11 | 39.24 | Tryptophan | 8.60 | 6.04 |
| Lysine | 91.58 | 19.11 | Valine | 61.46 | 18.61 |
| Methionine | 25.20 | 7.04 | |||
| Non-essential amino acids ## | |||||
| SMM* | SBM** | SMM* | SBM** | ||
| Aspartic Acid | 119.85 | 30.18 | Tyrosine | 29.50 | 2.01 |
| Glutamic Acid | 159.19 | 37.22 | Glycine | 51.63 | 8.05 |
| Alanine | 76.83 | 15.59 | Proline | 1.23 | 0.00 |
| Arginine | 86.05 | 11.07 | Serine | 71.30 | 11.57 |
| Cystine | 15.98 | 0 | |||
| Monounsaturated fatty acids (MUFA)# | |||||
| SMM* | SBM** | SMM* | SBM** | ||
| Elaidic Acid (C18:1n9t) | 0.01 | - | Palmitoleic Acid (C16:1n7) (ω -7) | 0.08 | 0.05 |
| Oleic Acid (C18:1n9c) (ω-9) | 5.12 | 1.85 | cis-11-Eicosenoic acid (C20:1n9) | 0.04 | 0.01 |
| Polyunsaturated fatty acids (PUFA)# | |||||
| SMM* | SBM** | SMM* | SBM** | ||
| Linoleic Acid (C18:2n6c) (ω-6) | 24.38 | 2.24 | Linoleic Acid (C18:2n6t) | 0.02 | - |
| α-Linolenic acid (C18:3n3) (ω-3) | 2.99 | 0.16 | cis-11,14-Eicosadienoic acid (C20:2) | 0.04 | - |
| Saturated fatty acids (SFA)# | |||||
| SMM* | SBM** | SMM* | SBM** | ||
| Mystic acid (C14:0) | 0.04 | 0.03 | Caprylic acid (C8:0) | 0.12 | 0.00 |
| Pentadecanoic acid (C15:0) | 0.04 | 0.01 | Arachidic acid (C20:0) | 0.06 | 0.05 |
| Palmitic acid (C16:0) | 8.81 | 2.05 | Heneicosanoic acid (C21:0) | 0.02 | 0.00 |
| Margaric acid (C17:0) | 0.07 | 0.01 | Behenic acid (C22:0) | 0.14 | 0.03 |
| Stearic acid (C18:0) | 1.60 | 1.03 | Tricosanoic acid (C23:0) | 0.05 | 0.01 |
| Lignoceric acid (C24:0) | 0.14 | 0.03 | |||
| Total lipids# | |||||
| SMM* | SBM** | SMM* | SBM** | ||
| Monounsaturated | 5.25 | 1,91 | Saturated | 11.09 | 3.25 |
| Polyunsaturated | 27.43 | 2.40 | trans lipids | 0.03 | 0.00 |
| Unsaturated | 32.68 | 4,31 | Total Lipids | 43.77 | 7,56 |
| Antioxidant assay | Antioxidant capacity | |
|---|---|---|
| SMM | SBM | |
| ABTS (mmol TEq g-1) | 713.90a | 741.89a |
| DPPH (mmol TEq g-1) | 180.72b | 187.95a |
| OH (% reduction) | 84.56a | 92.10a |
| FRAP (mmol ferrous sulfate g-1) | 244.74a | 230.81a |
| TAC (mmol AAE g-1) | 147.72a | 84.81b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
