Submitted:
25 February 2025
Posted:
26 February 2025
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Area Characterization
2.2. Ancient viticulture regions in Western Crimea
2.3. Field stage of soil study
2.4. Physical indicators of soils
2.5. Specific magnetic susceptibility of soils
2.6. Agrochemical indicators of soils
2.7. Geochemical composition and indicators of soils
3. Results and Discussion
3.1. Climatotops of two regions of Western Crimea
| Climate parameters | Regions | |||
|---|---|---|---|---|
| North-West | South-West | East | South Coast of Crimea |
|
| Average t (I), °C | +0.3 ÷ -1.8 | +1.6 | +0.3 ÷ -1.5 | +1.8 ÷ +4.0 |
| Frosts (last of spring) | 15-20.04 | 25.03 | 10.04 | 15-25.03 |
| Frost-free period, days | 186-223 | 240 | 214-220 | 237-259 |
| Precipitation for the period from t > 10 °C, mm | 190-216 | 177 | 195-220 | 195-260 |
| Huglin index [47] | 2403 | 2502 | 2571 | 2546 |
| Q, MJ m-2 yr-1 | 900-1000 | 900-1100 | 900 | 1200-1400 |
3.2. The role of selection for climate adaptation in the formation of wine terroir
3.3. Anthrosols of ancient viticulture.
3.4. Agrophysical characteristics of wine soils
|
No. section |
Coordinates | Location | Agricultural land | Phytocenosisa |
GPCb % |
Soilc | |
| latitude | longitude | ||||||
| Tarkhankut Peninsula | |||||||
| 29 | 45.529166 | 32.715770 | Rural area of ancient Kalos Limen | Post-antique fallow land (vineyard, plantation ploughing) | H+F | 80 | LPk |
| 30 | 45.529300 | 32.715475 | Coastal area near the section No. 29 | Virgin land (steppe) | H+Sc | 95 | CHk |
| 31 | 45.246011 | 33.467303 | Antique land plot у пoс. Мамай-Тюп | Post-antique fallow land (vineyard, plantation ploughing) | H+Sc | 80 | LPk |
| 32 | 45.322236 | 32.668159 | Antique land plot у пoс. Ойрат | Post-antique fallow land (vineyard, plantation ploughing) | Sc+H | 90 | LPk |
| 33 | 45.388269 | 32.695604 | Nature reserve “Krasnoselskaya steppe” | Virgin land (steppe) | Sc+H | 90 | CHk |
| 34 | 45.350074 | 32.703932 | 2.5 km east of section No. 32 | Abandoned cropland since 1980s. (vineyard) | H+(Sc+Sl) | 80 | CHk |
| Herakleian Peninsula | |||||||
| 35 | 44.485509 | 33.625644 | 2.5 km east of Balaklava Bay | Sub-Mediterranean forest | PJ+H | 40 | CMu |
| 36 | 44.572428 | 33.476739 | Antique land plot No. 153 | Post-antique fallow land (vineyard, plantation ploughing) | H+Sc | 80 | CMc |
| 37 | 44.534027 | 33.542985 | Antique land plot No. 378 | Modern fallow land (vineyard, antique plantation ploughing) | H | 60 | CMc |
| 43 | 44.493874 | 33.608177 | 0.9 km east of Balaklava Bay | Virgin land (steppe) | Sl+F | 90 | CMc |
| No. section |
BD (g cm-3) | Water resistance (%) of soil aggregates with diameter, mm | Average (%) | ||
|---|---|---|---|---|---|
| 1-2 | 2-3.15 | 3.15-5 | |||
| 29 | 0.96 | 84.5 | 92.1 | 94.7 | 90.4 |
| 30 | 0.98 | 71.8 | 74.3 | 87.2 | 77.7 |
| 31 | 0.89 | 84.6 | 87.3 | 91.7 | 87.8 |
| 32 | 0.95 | 83.2 | 87.2 | 88.1 | 86.2 |
| 33 | 0.97 | 75.1 | 77.2 | 80.4 | 77.5 |
| 34 | 0.92 | 69.0 | 70.1 | 79.0 | 72.7 |
| 35 | 1.24 | 91.2 | 94.8 | 96.4 | 94.1 |
| 36 | 0.99 | 61.9 | 67.0 | 67.5 | 65.4 |
| 37 | 1.08 | 85.9 | 90.1 | 92.4 | 89.4 |
| No. section |
GPCa (stones) % |
MS (1-50)b % |
MS (>50) b % |
Horizon Аd mm |
Detritus mass (horizon Аd) % |
Depth of selection from horizon A cm |
Munsell colour (horizon А) moist dry |
SOM % |
TN % |
Labile humus % |
С/N ratio |
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 29 | 2.0 | 22 | 28 | 30 | 1.31 | 3-16.5 | 10YR 4/3 | 10YR 5/4 | 3.27 | 0.24 | 0.01 | 7.9 |
| 30 | 0 | 1 | 0 | 45 | 8.90 | 4.5-16.5 | 10YR 4/4 | 10YR 5/5 | 3.63 | 0.28 | 0.05 | 7.5 |
| 31 | 1.9 | 31 | 47 | 25 | 6.62 | 2.5-27 | 10YR 4/3 | 10YR 5/4 | 3.51 | 0.23 | 0.05 | 8.9 |
| 32 | 2.7 | 21 | 32 | 37 | 0.75 | 3.7-16 | 10YR 4/3 | 10YR 5/4 | 4.18 | 0.27 | 0.06 | 9.0 |
| 33 | 0.1 | 4 | 0 | 47 | 0.25 | 4.7-17 | 7.5YR 3/3 | 7.5YR 3/4 | 3.64 | 0.25 | 0.04 | 8.4 |
| 34 | 1.3 | 25 | 0 | 40 | 0.26 | 4-33 | 10YR 4/4 | 10YR 5/4 | 2.20 | 0.16 | 0.04 | 8.0 |
| 35 | 9.7 | 6 | 0 | 36 | 44.85 | 3.6-19.5 | 10YR 4/3.5 | 10YR 6/4 | 4.91 | 0.27 | 0.05 | 10.5 |
| 36 | 4.8 | 31 | 26 | 35 | 1.46 | 3.5-20.5 | 7.5YR 3/4 | 7.5YR 4/4 | 4.41 | 0.32 | 0.05 | 8.0 |
| 37 | 3.5 | 55 | 17 | 40 | 0.84 | 4-21 | 7.5YR 3/4 | 7.5YR 4/6 | 4.20 | 0.24 | 0.06 | 10.2 |
| 43 | 0 | - | - | 15 | 2.99 | 1.5-17 | 7.5YR 3/4 | 10YR 5/5 | 3.02 | 0.22 | 0.05 | 8.0 |
3.5. Magnetic susceptibility of soils
3.6. Agrochemical indicators of postagrogenic and virgin soils
3.7. Biogeochemical features of postagrogenic soils and their virgin analogues
3.7.1. Biogeochemical features of soils of the North-Western Crimea
3.7.2. Biogeochemical features of soils of the South-Western Crimea
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| BD Corg GPC HMM LOD MPC PLFL PR RGB SOM TN |
Bulk density Organic carbon General projective cover Heavy metals and metalloids Limit of detection Maximum permissible concentration Post-antique long-term fallow land Parent rock Regional geochemical background Soil organic matter Total nitrogen |
Appendix A
| No field |
Object type | Munsell color | СаО | Rb | Fe | Ni | Co | ∑ (Fe, Ni, Co) | χ | |
|---|---|---|---|---|---|---|---|---|---|---|
| moist | dry | % | mg/kg | 10-8 m3/kg | ||||||
| 29 | PLFL, Kalos Limen | 10YR 4/3 | 10YR 5/4 | 23.53 | 45.52 | 1.85 | 27.37 | LOD | 29.22 | 47.46 |
| 30 | virgin steppe, Kalos Limen | 10YR 4/4 | 10YR 5/5 | 21.83 | 48.71 | 1.98 | 30.14 | LOD | 32.12 | 53.79 |
| 33 | virgin steppe, NW | 7.5YR 3/3 | 7.5YR 3/4 | 36.34 | 27.38 | 1.22 | 15.02 | LOD | 16.24 | 30.10 |
| 34 | fallow land in the modern era, NW | 10YR 4/4 | 10YR 5/4 | 15.07 | 68.82 | 2.52 | 38.63 | 5.33 | 46.48 | 48.06 |
| 36 | PLFL, land plot No. 153 | 7.5YR 3/4 | 7.5YR 4/4 | 12.59 | 102.58 | 3.42 | 58.54 | 6.22 | 68.18 | 51.46 |
| 37 | PLFL, land plot No. 34 | 7.5YR 3/4 | 7.5YR 4/6 | 15.41 | 71.90 | 2.99 | 43.77 | 2.81 | 49.57 | 68.59 |
| 43 | virgin steppe, SW | 7.5YR 3/4 | 7.5YR 5/4 | 0.60 | 40.60 | 2.45 | 28.33 | 28.93 | 59.71 | 32.10 |
| 49 | Modern vineyard, SW | 7. YR 4/2 | 7.5YR 4/4 | 5.05 | 93.57 | 3.77 | 51.78 | 10.96 | 66.51 | 224.53 |
| 40 | fallow land in the modern era, SW | 10YR 3/2.5 | 10YR 4/3 | 8.04 | 81.39 | 3.00 | 47.01 | 10.13 | 60.14 | 67.24 |
| 42 | PLFL, land plot No. 131 | 7.5 R 4/2 | 7.5YR 5/4 | 27.04 | 58.71 | 2.07 | 34.38 | LOD | 36.45 | 44.00 |
| 44 | PLFL, land plot No. 360 | 7.5YR 4/4 | 7.5YR 5/4 | 19.62 | 69.06 | 2.89 | 42.83 | LOD | 45.72 | 51.17 |
| 2 | PR, eluvium limestone | 10YR 8/3 | 10YR 8/3 | 38.99 | 18.25 | 0.89 | 10.98 | LOD | 11.87 | 8.84 |
| 4 | PR, loess-like loam ЛС | 10YR 5/4 | 10YR 7/4 | 13.68 | 75.42 | 2.79 | 39.91 | LOD | 42.70 | 35.06 |
| No field |
Al2O3 | TiO2 | Na2O | V | Cr | As | Rb | Sr | Zr | Ba | Pb |
|---|---|---|---|---|---|---|---|---|---|---|---|
| % | mg/kg | ||||||||||
| Temperate climate | |||||||||||
| 29 | 8.7 | 0.5 | 3.0 | 51.5 | 55.8 | 7.0 | 45.5 | 239.8 | 187.3 | 374.5 | 16.8 |
| 30 | 9.1 | 0.5 | 2.7 | 53.8 | 59.1 | 7.5 | 48.7 | 248.0 | 198.2 | 384.3 | 19.6 |
| 31 | 13.1 | 0.7 | 1.5 | 84.9 | 87.6 | 9.5 | 82.5 | 139.5 | 205.9 | 418.2 | 17.6 |
| 32 | 8.6 | 0.5 | 2.1 | 52.0 | 60.1 | 4.5 | 46.0 | 191.5 | 169.0 | 322.0 | 17.5 |
| 33 | 6.3 | 0.3 | 2.8 | 33.6 | 44.7 | 4.7 | 27.4 | 281.5 | 74.8 | 226.4 | 14.6 |
| 34 | 10.9 | 0.7 | 2.5 | 74.0 | 73.0 | 7.9 | 68.8 | 189.2 | 258.5 | 437.9 | 22.9 |
| 39 | 11.7 | 0.7 | 2.2 | 79.4 | 76.7 | 8.0 | 75.2 | 173.1 | 274.6 | 433.8 | 20.6 |
| 40 | 12.3 | 0.8 | 1.7 | 85.0 | 80.0 | 11.7 | 81.4 | 108.1 | 272.6 | 476.5 | 18.9 |
| Average | 10.1 | 0.6 | 2.3 | 64.3 | 67.1 | 7.6 | 59.4 | 196.3 | 205.1 | 384.2 | 18.6 |
| PR | 4.9 | 0.2 | 4.1 | 43.1 | 26.2 | 5.5 | 18.2 | 549.5 | 94.0 | 318.4 | 13.0 |
| Sub-Mediterranean | |||||||||||
| 35 | 18.8 | 0.7 | 2.2 | 111.6 | 95.8 | 13.4 | 131.3 | 227.1 | 159.6 | 328.7 | 29.3 |
| 36 | 14.8 | 0.6 | 2.1 | 79.6 | 86.3 | 9.6 | 102.6 | 149.9 | 150.2 | 401.1 | 23.8 |
| 37 | 13.4 | 0.6 | 2.7 | 79.2 | 76.8 | 9.0 | 71.9 | 77.6 | 132.7 | 301.5 | 24.6 |
| 41 | 12.5 | 0.5 | 2.6 | 65.5 | 71.1 | 7.4 | 75.8 | 176.4 | 113.2 | 358.5 | 20.1 |
| 42 | 10.0 | 0.4 | 2.8 | 48.4 | 56.8 | 6.2 | 58.7 | 156.9 | 86.7 | 307.1 | 19.2 |
| 43 | 8.3 | 0.4 | 1.9 | 49.1 | 32.8 | 9.7 | 40.6 | 47.6 | 116.7 | 180.5 | 75.8 |
| 44 | 13.1 | 0.5 | 2.7 | 75.3 | 71.9 | 5.1 | 69.1 | 97.5 | 96.0 | 258.9 | 22.7 |
| 45 | 11.6 | 0.5 | 2.3 | 74.7 | 66.0 | 8.4 | 70.0 | 103.7 | 96.1 | 284.6 | 17.2 |
| 46 | 15.6 | 0.7 | 2.0 | 104.9 | 81.9 | 10.6 | 103.7 | 78.5 | 181.7 | 460.7 | 26.9 |
| 47 | 14.2 | 0.7 | 2.0 | 90.5 | 81.0 | 10.4 | 85.8 | 68.8 | 216.2 | 386.6 | 22.0 |
| 48 | 15.2 | 0.8 | 1.9 | 91.5 | 82.7 | 9.5 | 105.7 | 63.3 | 213.0 | 393.8 | 26.7 |
| 49 | 15.2 | 0.8 | 2.0 | 103.9 | 84.2 | 9.2 | 93.6 | 88.5 | 233.2 | 451.7 | 22.3 |
| 50 | 11.4 | 0.5 | 2.2 | 66.2 | 38.9 | 3.0 | 45.3 | 186.8 | 112.6 | 534.3 | 14.5 |
| 51 | 14.3 | 0.6 | 2.4 | 99.0 | 20.4 | 3.6 | 43.3 | 479.5 | 124.7 | 561.3 | 14.6 |
| 52 | 13.3 | 0.7 | 1.8 | 89.3 | 86.7 | 11.8 | 86.3 | 112.8 | 200.8 | 402.6 | 30.8 |
| Average | 13.4 | 0.6 | 2.2 | 81.9 | 68.9 | 8.5 | 78.9 | 141.0 | 148.9 | 374.1 | 26.0 |
| PR | 8.9 | 3.0 | 2.4 | 62.7 | 71.3 | 6.5 | 56.3 | 161.0 | 119.4 | 318.0 | 19.5 |
| Parameters | Plowland in the ancient period and under vineyard since 1945 (in fallow for 20 years) |
Post-antique fallow land (vineyard ploughing plantation) |
|---|---|---|
| No. land plot [59] | 378 | 153 |
| Layer, cm | 0-18 | 0-12 |
| Munsell colour (dry) | 10YR 5/4 | 7.5YR 4/4 |
| Corg, % | 4.72 | 3.95 |
| рН (Н2О) | 7.97 | 7.93 |
| СаСО3, % | 24.40 | 20.49 |
| Р2О5 tot., % | 0.24 | 0.16 |
| K2О tot., % | 1.60 | 2.13 |
| Zn, mg/kg | 146 | 102 |
| Co, mg/kg | 15 | 10 |
| Cu tot., mg/kg | 306.4 | 13.2 |
| Cu mov., mg/kg | 2.24 | 0.12 |
| Р2О5 mov., mg/kg | 21 | 10 |
| K2О mov., mg/kg | 550 | 491 |
References
- Cataldo, E.; Fucile, M.; Mattii, G.B. A review: Soil management, sustainable strategies and approaches to improve the quality of modern viticulture. Agronomy 2021, 11, 2359. [CrossRef]
- Brito, C.; Pereira, S.; Martins, S.; Monteiro, A.; Moutinho-Pereira, J.M.; Dinis, L. Strategies for achieving the sustainable development goals across the wine chain: A review. Front. Sustain. Food Syst. 2024, 8, 1437872. [CrossRef]
- Masson, J.E.; Soustre-Gacougnolle, I.; Perrin, M.; Schmitt, C.; Henaux, M.; Jaugey, C.; Teillet, E.; Lollier, M.; Lallemand, J.F.; Schermesser, F. Transdisciplinary participatory-action-research from questions to actionable knowledge for sustainable viticulture development. Humanit. Soc. Sci. Commun. 2021, 8, 1–9. [CrossRef]
- Ivanov, D.A. Theoretical aspects of agrogeography. Her. Russ. Acad. Sci. 2018, 88, 379–384. [CrossRef]
- Kiryushin, V.I. The management of soil fertility and productivity of agrocenoses in adaptive-landscape farming systems. Eurasian Soil Sci. 2019, 52, 1137–1145. [CrossRef]
- Gorbunov, A.S.; Mikhno, V.B.; Bykovskaya, O.P. Agricultural landscape studies in Russian Federation. Curr. Landsc. Ecol. Rep. 2022, 7, 83–95. [CrossRef]
- Lopyrev, M.I.; Orobinsky, S.A. Agrolandscape and formation of landscape farming systems. Russ. Agric. Sci. 1993, 4, 25–33. (In Russian).
- Savchenko, E.S.; Kiryushin, V.I.; Lukin, S.V. Experience of biologization of agricultural technologies during the development of adaptive-landscape agricultural systems in Belgorod region. Int. Agric. J. 2022, 6, 658–661. (In Russian) . [CrossRef]
- Shoba, S.A.; Alyabina, I.O.; Golozubov, O.M.; Chekmaryov, P.A.; Lukin, S.V.; Chernova, O.V.; Kolesnikova, V.M. Experience in creating an information system for rational use of soil resources. Mosc. Univ. Soil Sci. Bull. 2023, 78, 327–338. [CrossRef]
- Villat, J.; Nicholas, K.A. Quantifying soil carbon sequestration from regenerative agricultural practices in crops and vineyards. Front. Sustain. Food Syst. 2024, 7, 1234108. [CrossRef]
- Zhuchenko, A.A. Adaptive plant-growing (genetic and ecological bases); Stiintsa Publishers: Kishinev, Moldova, 1990. ISBN 5-376-00834-7. (In Russian).
- Gabechaya, V.; Andreeva, I.; Morev, D. Comparative assessment of the climatological conditions on the biological activity of ampelocenoses soils cultivated in the wine-growing regions of the Southern Coast of Crimea and the eastern part of the national park “Fruska Gora”. In Proceedings of the BIO Web of Conferences; 85, 01051. [CrossRef]
- Fonseca, A.; Cruz, J.; Fraga, H.; Andrade, C.; Valente, J.; Alves, F.; Neto, A.C.; Flores, R.; Santos, J.A. Vineyard microclimatic zoning as a tool to promote sustainable viticulture under climate change. Sustainability 2024, 16, 3477. [CrossRef]
- Santagostini, L.; Guglielmi, V. Geological influences on wine quality: Analyzing Nebbiolo grapes from Northern Italy. Appl. Sci. 2025, 15, 258. [CrossRef]
- Tomić, N.; Ninkov, J.; Milić, S.; Marković, S.B.; Tomić, T. Power of Terroir: Case study of Grašac at the Fruška Gora wine region (North Serbia). Open Geosci. 2024, 16, 20220701. [CrossRef]
- White, R.E. The value of soil knowledge in understanding wine terroir. Front. Environ. Sci. 2020, 8, 12. [CrossRef]
- Eslava-Lecumberri, F.J.; Jiménez-Ballesta, R. Delineating vineyard management zones: Intrafield spatial variability of soil properties of carbonate vineyard soils. Eur. J. Soil Sci. 2024, 75, e70029. [CrossRef]
- Castillo, P.; Serra, I.; Townley, B.; Aburto, F.; López, S.; Tapia, J.; Contreras, M. Biogeochemistry of plant essential mineral nutrients across rock, soil, water and fruits in vineyards of Central Chile. Catena 2021, 196, 104905. [CrossRef]
- van Leeuwen, C.; Schmutz, M.; de Rességuier, L. The contribution of near surface geophysics to measure soil related terroir factors in viticulture: A review. Geoderma 2024, 449, 116983. [CrossRef]
- Khalilova, E.A.; Islammagomedova, E.A.; Abakarova, A.A.; Kotenko, M.E.; Aliverdieva, D.A. Soil-climatic conditions of the vineyard and biochemical characteristics of the red dry wine ‘Kara-Koysu’ (Republic of Dagestan, Russian Federation). J. Wine Res. 2024, 35, 307–322. [CrossRef]
- Bažon, I.; Bakić, H.; Romić, M. Soil geochemistry as a component of terroir of the wine-growing station Jazbina, Zagreb. Agric. Conspec. Sci. 2013, 78, 95–106.
- García-Navarro, F.J.; Jiménez-Ballesta, R.; Chacón-Vozmediano, J.L.; Martínez-Gascueña, J.; Amorós, J.A.; Pérez-de-Los-Reyes, C.; García-Pradas, J.; Sanchez, M.; Bravo, S. Connecting the soils with a potential viticultural terroir zone. Commun. Soil Sci. Plant Anal. 2023, 54, 597–610. [CrossRef]
- Ghilardi, F.; Virano, A.; Prandi, M.; Borgogno-Mondino, E. Zonation of a viticultural territorial context in Piemonte (NW Italy) to support terroir identification: The role of pedological, topographical and climatic factors. Land 2023, 12, 647. [CrossRef]
- Karapetsas, N.; Alexandridis, T.K.; Bilas, G.; Theocharis, S.; Koundouras, S. Delineating natural terroir units in wine regions using geoinformatics. Agriculture 2023, 13, 629. [CrossRef]
- Averianov, A.A.; Androsovа, E.D.; Rusakov, A.V. Winemaking terroir – the guideline for choosing of grape rootstocks for soils with different characteristics. Dokuchaev Soil Bull. 2023, 116, 155–187. [CrossRef]
- del Río, S.; Álvarez-Esteban, R.; Alonso-Redondo, R.; Hidalgo, C.; Penas, Á. A new integrated methodology for characterizing and assessing suitable areas for viticulture: A case study in Northwest Spain. Eur. J. Agron. 2021, 131, 126391. [CrossRef]
- Ferretti, C.G.; Febbroni, S. Terroir traceability in grapes, musts and Gewürztraminer wines from the South Tyrol wine region. Horticulturae 2022, 8, 586. [CrossRef]
- Zeng, G.; Hao, X.; Wang, H.; Li, H.; Gao, F. Effects of geographical origin, vintage, and soil on stable isotopes and mineral elements in Ecolly grape berries for traceability. Food Chem. 2024, 435, 137646. [CrossRef]
- Visconti, F.; López, R.; Olego, M.Á. The health of vineyard soils: Towards a sustainable viticulture. Horticulturae 2024, 10, 154. [CrossRef]
- Tana, C.M.; Marginean, M.C.; Tita, O. Characterization vineyard soil agrochemical Tarnave. In Proceedings of the 13th International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, Albena, Bulgaria, 16–22 June 2013; pp. 521–526. [CrossRef]
- Grinko, E.L.; Alesina, N.V.; Kuzmin, A.V. Conditions, opportunities, and issues of actualizing the potential for developing viticulture and winemaking in current realities: the regional aspect of the Russian Federation. Sib. J. Life Sci. Agric. 2022, 14, 297–334. (In Russian) . [CrossRef]
- Ablaev, R.R.; Abramova, L.S.; Ablaev, A.R. Modern trends in the development of viticulture and winemaking in the agro-industrial complex of the Russian Federation. Int. Agric. J. 2023, 66, 748–765. [CrossRef]
- Van Leeuwen, C.; Seguin, G. The concept of terroir in viticulture. J. Wine Res. 2006, 17, 1–10. [CrossRef]
- Riccioli, F.; El Asmar, T.; El Asmar, J.P.; Fratini, R. Use of cellular automata in the study of variables involved in land use changes: An application in the wine production sector. Environ. Monit. Assess. 2013, 185, 5361–5374. [CrossRef]
- Šindelková, I.; Novotná, J.; Badalíková, B. The influence of vineyard greening on soil properties. In Proceedings of the 17th International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, Albena, Bulgaria, 29 June – 5 July 2017; pp. 595–602. [CrossRef]
- Averianov, A.A.; Androsova, E.D.; Rusakov, A.V. Integral assessment of the soil component of wine terroir. Eurasian Soil Sci. 2023, 56, S172–S182. [CrossRef]
- Scott, E.I.; Toensmeier, E.; Iutzi, F.; Rosenberg, N.A.; Lovell, S.T.; Jordan, N.R.; Peters, T.E.; Akwii, E.; Broad Leib, E.M. Policy pathways for perennial agriculture. Front. Sustain. Food Syst. 2022, 6, 983398. [CrossRef]
- Lisetskii, F.N.; Zelenskaya, E.Ya. Ampelopedological peculiarities of geographical areas of Crimea viticulture. Eurasian Soil Sci. 2022, 55, 1770–1785. [CrossRef]
- Rybalko, E.A.; Cherviak, S.N.; Ermikhina, M.V. Evaluation of viticulture and winemaking regions of Crimea in accordance with climatic factors, and their influence on the quality characteristics of grapes. Sib. J. Life Sci. Agric. 2023, 15, 246–263. (In Russian) . [CrossRef]
- Semenov, V.A.; Aleshina, M.A. Scenario-based forecasts of changes in the temperature and hydrological regime of Crimea in the XXI century by data of CMIP6 climate models. Water Resour. 2022, 49, 661–670. [CrossRef]
- Doetterl, S.; Berhe, A.A.; Heckman, K.; Lawrence, C.; Schnecker, J.; Vargas, R.; Vogel, C.; Wagai, R. A landscape-scale view of soil organic matter dynamics. Nat. Rev. Earth Environ. 2025, 6, 67–81. [CrossRef]
- Lisetskii, F.N. Soil catenas in archeological landscapes. Eurasian Soil Sci. 1999, 32, 1084–1093.
- Narbarte-Hernández, J.; Iriarte, E.; Rad, C.; Tejerizo, C.; Eraso, J.F.; Quirós-Castillo, J.A. Long-term construction of vineyard landscapes in the Ebro Valley: The deserted village of Torrentejo (Basque Country, Spain). Catena 2020, 187, 104417. [CrossRef]
- Ved’, I.P. Climate Atlas of Crimea. Supplement to the scientific and practical discussion and analytical collection “Issues of Development of Crimea”; Tavria-Plus: Simferopol, Ukraine, 2000; ISBN 966-7503-53-4. (In Russian).
- .
- Lisetskii, F.N.; Ergina, E.I. Soil development on the Crimean Peninsula in the late Holocene. Eurasian Soil Sci. 2010, 43, 601–613. [CrossRef]
- Rybalko, E.A.; Baranova, N.V.; Borisova, V.Y. Patterns of spatial variation of the Huglin index in the conditions of the Crimean peninsula. Winemaking and viticulture. 2020, 1, 18–23. (In Russian).
- Strzheletsky, S.F. Klers of Tauric Chersonesos; Krymizdat: Simferopol, Ukrainian SSR, 1961. (In Russian).
- Nikolaenko, G.M. The Chora of Tauric Chersonesos and the cadastre of the 4th-2nd century BC. In Surveying the Greek Chora: The Black Sea Region in a Comparative Perspective; Bilde, P.G., Stolba, V.F., Eds.; Aarhus University Press: Aarhus, Denmark, 2006; pp. 151–174.
- Kolesnikov, A.B.; Jacenko, I.V. Le territoire agricole de Chersonèsos Taurique dans la région de Kerkinitis. Territoires des Cités Grecques. BCH Suppl. 1999, 34, 307–311.
- Smekalova, T.N.; Bevan, B.W.; Chudin, A.V.; Garipov, A.S. The discovery of an ancient Greek vineyard. Archaeol. Prospect. 2016, 23, 15–26. [CrossRef]
- Kruglikova, I.T. Agriculture of the Bosporus; Nauka: Moscow, USSR, 1975. (In Russian).
- Vinokurov, N.I. Viticulture and wine production in the antique states of the Northern Black Sea area. Bosporos Stud. 2007, 3, 22–39.
- Zelenskaya, E. Biogeochemical characteristics of grape growing soils and their soil-forming materials on post-ancient and modern vineyards of the Crimean Peninsula. In Proceedings of the 20th International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, Albena, Bulgaria, 18–24 August 2020; pp. 107–114. [CrossRef]
- Kadeev, V.I.; Sorochan, S.B. Economic ties of ancient cities of the Northern Black Sea region in the 1st century BC – 5th century AD (Based on materials from Chersonesos); Vyshha shkola: Kharkov, Ukrainian SSR, 1989; ISBN 5-11-000701-2. (In Russian).
- Smekalova, T.N.; Kutaisov, V.A. Two recently-discovered ancient vineyards in northwestern Crimea. Vestn. Drevnei Istor. 2014, 2, 54–78. (In Russian).
- IUSS Working Group WRB. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps; Update 2015 (No. World Soil Resources Report 106); FAO: Rome, Italy, 2015.
- Nikolaenko, G.M. Chora of Tauric Chersonesus. Land cadastre of the 4th and 3rd cc. BC. Part II; Sevastopol, Ukraine, 2001. (In Russian).
- Terekhin, E.A.; Smekalova, T.N. Study of ancient land boundaries at Tauric Chersonesos using satellite images. Anc. Civiliz. Scythia Sib. 2019, 25, 44–58. [CrossRef]
- Marshall, C.E. Russian literature on pedology: Ecology of soils. Science 1965, 3677, 1581. [CrossRef]
- Huglin, P. Nouveau mode d’évaluation des possibilités héliothermiques d’un milieu viticole. Comptes Rendus de l’Académie d’Agriculture; Académie d’agriculture de France: Paris, France, 1978.
- Van Leeuwen, C.; Friant, P.; Chone, X.; Tregoat, O.; Koundouras, S.; Dubourdieu, D. Influence of climate, soil, and cultivar on terroir. Am. J. Enol. Vitic. 2004, 55, 207–217. [CrossRef]
- Andrianov, P.I. On the strength of a soil lump and methods for determining it. Pochvovedenie. 1947, 2, 96–101. (In Russian).
- Munsell, A.H. Munsell soil color charts; Gretag Macbeth: New Windsor, NY, USA, 2000.
- Maher, B.A.; Alekseev, A.; Alekseeva, T. Variation of soil magnetism across the Russian steppe: its significance for use of soil magnetism as a palaeorainfall proxy. Quat. Sci. Rev. 2002, 21, 1571–1576. [CrossRef]
- Arinushkina, E.V. Treatise for chemical analysis of soils; Moscow State University: Moscow, USSR, 1970. (In Russian).
- van Reeuwijk, L.P. Procedures for soil analysis; International Soil Reference and Information Centre: Wageningen, Netherlands, 2002.
- Bityutsky, N.P. Microelements of higher plants; Publishing house of St. Petersburg State University: St. Petersburg, Russia, 2011; ISBN 978-5-288-05127-2. (In Russian).
- Orlov, D.S. Debatable problems of modern soil chemistry. Eurasian Soil Sci. 2001, 34, 336–341.
- Alekseev, A.O.; Kalinin, P.I.; Alekseeva, T.V. Soil indicators of paleoenvironmental conditions in the south of the East European Plain in the Quaternary time. Eurasian Soil Sci. 2019, 52, 349–358. [CrossRef]
- Lisetskii, F.N.; Smekalova, T.N.; Marinina, O.A. Biogeochemical features of fallow lands in the steppe zone. Contemp. Probl. Ecol. 2016, 9, 366–375. [CrossRef]
- Storie, R.E. Storie index soil rating. Div. Agric. Sci. Univ. Calif. Spec. Publ. 1978, 3203.
- O’Geen, A.T.; Susan, B.; Southard, B.S.; Southard, J.R. A revised Storie Index for use with digital soil information; University of California, Division of Agriculture and Natural Resources: Oakland, CA, USA, 2008. [CrossRef]
- Krupenikov, I.A.; Godelman, Ya.M. New aspects of large-scale soil mapping. Pochvovedenie. 1973, 1, 25–34. (In Russian).
- Novikova, L.Y.; Naumova, L.G. Dependence of fresh grapes and wine taste scores on the origin of varieties and weather conditions of the harvest year in the northern zone of industrial viticulture in Russia. Agronomy 2020, 10, 1613. [CrossRef]
- Cordova, C. Crimea and the Black Sea: An environmental history; I.B. Tauris: London, UK; New York, NY, USA, 2016; ISBN 9781784530013.
- Ivanov, I.V.; Lisetskiy, F.N. Correlation of soil formation rhythms with periodicity of solar activity over the last 5000 years. Trans. Russ. Acad. Sci. Earth Sci. Sect. 1996, 340, 189–194. (In Russian).
- Isikov, V.P.; Plugatar, Yu.V. Wild-growing trees and bushes of the Crimea; PP Arial: Simferopol, Russia, 2018; ISBN 978-5-907032-47-7. (In Russian).
- Main Directorate of Natural Resources and Ecology of the City of Sevastopol. The Red Data Book of Sevastopol; ID "ROST-DOAFK": Kaliningrad, Sevastopol, Russia, 2018; ISBN 978-5-6040479-4-1. (In Russian).
- Cordova, C.E.; Lehman, P.H. Holocene environmental change in southwestern Crimea (Ukraine) in pollen and soil records. The Holocene 2005, 15, 263–277. [CrossRef]
- Agroclimatic reference book for the Crimean region; Cherenkova, N.I., Ed.; Hydrometeorological Publishing House: Leningrad, USSR, 1959. (In Russian).
- Janushevich, Z.V. Cultivated plants of the Northern Black Sea region (Paleobotanical studies); Stiintsa Publishers: Kishinev, Moldova, 1986. (In Russian).
- Volynkin, V.; Likhovskoi, V.; Polulyakh, A.; Levchenko, S.; Ostroukhova, E.; Vasylyk, I.; Peskova, I. Native grape varieties of the Euro-Asian eco-geographical region of Russia: Taxonomic, biological and agroeconomic specificity of cultivars from Crimea. In Vitis: Biology and Species; Nova Science Publishers: New York, NY, USA, 2020; pp. 45–72.
- Polulyakh, A.A. Adaptive potential of native Crimean grape varieties to extreme winter frosts of 2006. "Magarach". Viticulture and Winemaking 2007, 4, 5–8. (In Russian).
- Shiraishi, M.; Yamada, M.; Mitani, N.; Ueno, T. A rapid determination method for anthocyanin profiling in the grape genetic resources. J. Japan. Soc. Hort. Sci. 2007, 76, 28–35. [CrossRef]
- Deineka, L.A.; Litvin, Y.Y.; Deineka, V.I. Сriteria for grape classification by fruit anthocyanins composition. Nauch. Ved. Belgorod. Gos. Univ. Ser. Estestv. Nauki 2008, 7, 71–78.
- Cosano, D.; Román, J.M.; Esquivel, D.; Lafont, F.; Arrebola, J.R.R. New archaeochemical insights into Roman wine from Baetica. J. Archaeol. Sci. Rep. 2024, 57, 104636. [CrossRef]
- Skorbanova, E.A.; Ryinda, P.D.; Kayryak, N.F. Detection of variety of the wine from grape of Vitis vinifera. Winemaking and viticulture 2006, 1, 24–25. (In Russian).
- Ginjom, I.; D’Arcy, B.; Caffin, N.; Gidley, M. Phenolic compound profiles in selected Queensland red wines at all stages of the wine-making process. Food Chem. 2011, 125, 823–834. [CrossRef]
- Khmelev, V.N.; Sevodin, V.P.; Shesternin, V.I.; Kuzovnikov, Y.M.; Levin, S.V. Using of ultrasound in grape wine making process. In Proceedings of the 16th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, Novosibirsk State Technical University, Erlagol, Russia, 29 June – 03 July 2015; pp. 218–220. [CrossRef]
- Lopina, E.M.; Zelenskaya, E.Ya. Geochemical features of the translocation of elements in the "soil-plant" system based on the results of studying the geographical regions of Crimean viticulture. Region. Geosyst. 2021, 45, 431–440. (In Russian) . [CrossRef]
- Ščeglov, A.N. Utilisation de la photographie aérienne dans l'étude du cadastre de Chersonésos Taurique (IVe-IIe s. av. n. ère). Dialogues Hist. Anc. 1980, 6, 59–72.
- Surveying the Greek chora. Black Sea region in a comparative perspective; Bilde, P.G., Stolba, V.F., Eds.; Aarhus University Press: Aarhus, Denmark, 2006; ISBN 978-87-7934-972-8.
- Vinokurov, N.I. Viticulture and winemaking of the ancient states of the Northern Black Sea region. Bosporan studies; ID "ADEF-Ukraine": Simferopol, Kerch, Ukraine, 2007.
- Garbuzov, G. Quantiication of arable land in the bosphorus region during antiquity. Mediterranee 2016, 126, 101–109. [CrossRef]
- Lisetskii, F.N.; Stolba, V.F.; Pichura, V.I. Late-Holocene palaeoenvironments of Southern Crimea: Soils, soil-climate relationship and human impact. The Holocene 2017, 27, 1859–1875. [CrossRef]
- Zelenskaya, E.Ya.; Marinina, O.A. Geoecological assessment of soils in the main areas of viticulture of the Crimean Peninsula. Region. Geosyst. 2021, 45, 258–268. (In Russian) . [CrossRef]
- Kuzyakov, Y.; Zamanian, K. Reviews and syntheses: Agropedogenesis – humankind as the sixth soil-forming factor and attractors of agricultural soil degradation. Biogeosciences 2019, 16, 4783–4803. [CrossRef]
- Dudal, R. The sixth factor of soil formation. Eurasian Soil Sci. 2005, 38, 60–65.
- Yigini, Y.; Panagos, P.; Montanarella, L. Soil Resources of Mediterranean and Caucasus Countries; Office for Official Publications of the European Communities: Luxembourg, 2013. [CrossRef]
- Tabunshchik, V.; Gorbunov, R.; Gorbunova, T.; Safonova, M. Vegetation dynamics of Sub-Mediterranean low-mountain landscapes under climate change (on the example of Southeastern Crimea). Forests 2023, 14, 1969. [CrossRef]
- Agadzhanova, N.V.; Izosimova, Y.G.; Kostenko, I.V.; Krasilnikov, P.V. Indicators of pedogenic processes in red clayey soils of the Cape Martyan Reserve, South Crimea. Eurasian Soil Sci. 2021, 54, 1–12. [CrossRef]
- Zech, W.; Schad, P.; Hintermaier-Erhard, G. Böden der Welt: Ein Bildatlas, 2nd ed.; Springer: Berlin, Heidelberg, Germany, 2014; ISBN 3-8274-1348-6.
- Grodzinsky, M.D. Evolution of Ukrainian landscapes: landscape-geographical world of the problem; Kyiv University: Kyiv, Ukraine, 2023. (In Ukrainian).
- Lisetskii, F.N. Autogenic succession of steppe vegetation in postantique landscapes. Russ. J. Ecol. 1998, 29, 217–219.
- Borovyk, L.P. Patterns of vegetation succession in abandoned fields in semi-arid conditions. Biosyst. Divers. 2020, 28, 357–363. [CrossRef]
- Lisetskii, F.; Pichura, V. Steppe ecosystem functioning of East-European plain under age-long climatic change influence. Indian J. Sci. Technol. 2016, 9, 1–9. [CrossRef]
- Titlyanova, A.A.; Shibareva, S.V. Change in the net primary production and carbon stock recovery in fallow soils. Eurasian Soil Sci. 2022, 55, 501–510. [CrossRef]
- Lisetskii, F.N. Soil reproduction in steppe ecosystems of different ages. Contemp. Probl. Ecol. 2012, 5, 580–588. [CrossRef]
- Dembicz, I.; Zachwatowicz, M.; Moysiyenko, I.; Shapoval, V.; Smreczak, B.; Zagorodniuk, N.; Davydova, A.; Vynokurov, D.; Seiler, H.; Sudnik-Wójcikowska, B. Rapid functional but slow species diversity recovery of steppe vegetation on former arable fields in southern Ukraine. App. Veg. Sci. 2023, 26, e12756. [CrossRef]
- Akimtsev, V.V. Soil and quality of wines. Pochvovedenie. 1950, 5, 296–302.
- Li, X.; Fu, S.; Hu, Y.; Liu, B. Effects of rock fragment coverage on soil erosion: Differ among rock fragment sizes? Catena 2022, 214, 106248. [CrossRef]
- Sukhacheva, E.Yu.; Revina, Ya.S. Medium-scale soil map of the Crimea Southern Coast. Eurasian Soil Sci. 2020, 53, 397–404. [CrossRef]
- Klymenko, O.; Klymenko, M.; Kameneva, I.; Klymenko, N. Ecologization of fruit crops grafted seedlings growing. Acta Hort. 2014, 1032, 125–132. [CrossRef]
- Aver'yanov, A.A.; Agadzhanova, N.V.; Androsova, E.D.; Rusakov, A.V. Parametrization and integral evaluation of the terroir of winemaking sites on the Taman Peninsula. Gruntovedenie 2021, 2, 22–30. (In Russian) . [CrossRef]
- Vavilov, N.I.; Bukinich, D.D. Agriculture Afghanistan. Supplement 33th to the bulletin of applied botany, of genetics and plant-breeding; All-union institute of applied botany and new crops under the Council of People's Commissars, USSR, State institute of experimental agronomy of the People's Commissariat of Agriculture, RSFSR, Leningrad, 1929. (In Russian).
- Kochkin, M.A.; Opanasenko, N.E. Fundamentals of rational use of skeletal soils of Crimea for gardens. Plant Biology and Horticulture: theory, innovation 1981, 84, 14–24. (In Russian).
- Medvedev, V.V. Physical properties and spatial distribution of the plowpan in different arable soils. Eurasian Soil Sci. 2011, 44, 1364–1372. [CrossRef]
- Bulygin, S.Y.; Lisetskii, F.N. Soil microaggregation as an index of erosion resistance. Eurasian Soil Sci. 1992, 24, 59–65.
- Bryk, M.; Słowińska-Jurkiewicz, A.; Medvedev, V.V. Morphometrical structure evaluation of long-term manured Ukrainian Chernozem. Int. Agrophysics 2012, 26, 117–128. [CrossRef]
- Lisetskii, F.; Chepelev, O. Quantitative substantiation of pedogenesis model key components. Adv. Environ. Biol. 2014, 8, 996–1000.
- Kubiena, W.L. The Soils of Europe; Thomas Murby & Co.: London, UK, 1953; ISBN 978-00-4550-001-7.
- Kiriliuk, V.P. Microelements in the Components of the Biosphere of Moldova; Pontos: Chisinau, Moldova, 2006; ISBN 978-9975-72-206-3. (In Russian).
- Evangelou, E.; Giourga, C. Identification of soil quality factors and indicators in Mediterranean agro-ecosystems. Sustainability 2024, 16, 10717. [CrossRef]
- Orlov, D.S.; Biryukova, O.N.; Rozanova, M.S. Revised system of the humus status parameters of soils and their genetic horizons. Eurasian Soil Sci. 2004, 37, 918–926.
- Savosko, V.M. Genesis of the idea and definition of pedogeochemical barriers of heavy metals migration. Gruntoznavstvo 2017, 18, 21–29.
- Lisetskii, F.N.; Pichura, V.I. Catena linking of landscape-geochemical processes and reconstruction of pedosedimentogenesis: A case study of defensive constructions of the mid-17th century, South Russia. Catena 2020, 187, 104300. [CrossRef]
- Prikhodko, V.; Savelev, N.; Kotov, V.; Nikolaev, S.; Ruslanov, E.; Rumyantsev, M.; Manakhova, E. Complex study of settlements dating from the Paleolithic to Medieval Period in the Ural Mountains on the border of Europe and Asia. Geosciences 2025, 15, 31. [CrossRef]
- Sirbu-Radasanu, D.S.; Huzum, R.; Iftode, S.P.; Iancu, G.O.; Buzgar, N. Geochemical assessment of soil potentially toxic elements from Copou-Iasi vineyard area (NE Romania). Analele Stiintifice de Universitatii AI Cuza din Iasi. Sect. 2, Geologie 2015, 61, 5–19.
- Gallet, S.; Borming, J.; Gallet, S.; Masayuki, T. Geochemical characterization of the Luochuan loess-paleosol sequence, China, and paleoclimatic implications. Chem. Geol. 1996, 133, 67–88. [CrossRef]
- Jiménez-Ballesta, R.; García-Navarro, F.J.; Amorós, J.A.; Pérez-de-los-Reyes, C.; Bravo, S. Unravelling the concentrations of five rare earth elements in two vineyard red soils. Pollutants 2023, 3, 114–122. [CrossRef]
- Lisetskii, F., Poletaev, A., Zelenskaya, E. Soil-litological features of ancient Greek vineyards on the Herakleian Peninsula, south-west Crimea. In 20th International Multidisciplinary Scientific GeoConference Proceedings SGEM 2020. 2020. 20(5.1), 599-606. https://. [CrossRef]
- Vaudour, E.; Costantini, E.; Jones, G.V.; Mocali, S. An overview of the recent approaches to terroir functional modelling, footprinting and zoning. Soil 2015, 1, 287–312. [CrossRef]




|
No. section |
CEC | рН H2O | СО2 | P(mob.) | K(mob.) | Cu(mob.) | B(mob.) | Mb(mob.) | SQ(8) |
| cmol+ kg-1 | % | mg/kg | |||||||
| 29 | 24.6 | 8.1 | 16.38 | 6 | 435 | 0.115 | 1.78 | 0.11 | 0.074 |
| 30 | 26.6 | 8.1 | 15.34 | 7 | 785 | 0.116 | 2.56 | 0.13 | 0.079 |
| 31 | 20.8 | 8.2 | 9.77 | 9 | 380 | 0.099 | 2.00 | 0.11 | 0.069 |
| 32 | 24.4 | 8.0 | 16.50 | 5 | 301 | 0.106 | 2.48 | 0.12 | 0.074 |
| 33 | 32.6 | 8.1 | 24.13 | 5 | 242 | 0.092 | 1.67 | 0.13 | 0.062 |
| 34 | 25.2 | 8.2 | 11.26 | 6 | 209 | 0.148 | 1.51 | 0.14 | 0.064 |
| 35 | 29.2 | 8.1 | 4.93 | 8 | 346 | 0.123 | 4.04 | 0.11 | 0.060 |
| 36 | 36.8 | 8.1 | 9.76 | 5 | 401 | 0.115 | 3.07 | 0.12 | 0.063 |
| 37 | 33.4 | 8.1 | 11.46 | 5 | 321 | 2.240 | 2.10 | 0.13 | 0.100 |
| No. section |
Ca | Si | Fe | Mg | Mn | K | P | S | Cl | Ni | Cu | Zn | SQ(7) | SQ(12) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| % | mg/kg | |||||||||||||
| 29 | 16.80 | 17.42 | 1.89 | 0.96 | 0.06 | 1.33 | 0.09 | 877.35 | 98.47 | 27.37 | 22.95 | 52.99 | 1.21 | 0.15 |
| 30 | 15.59 | 18.12 | 1.96 | 1.03 | 0.06 | 1.41 | 0.09 | 874.35 | 156.06 | 30.14 | 21.97 | 54.50 | 1.23 | 0.16 |
| 31 | 9.01 | 21.62 | 3.15 | 0.96 | 0.07 | 1.49 | 0.09 | 681.13 | 48.67 | 47.77 | 17.88 | 69.10 | 1.28 | 0.15 |
| 32 | 16.95 | 17.51 | 1.82 | 0.90 | 0.05 | 1.25 | 0.09 | 975.69 | 80.96 | 27.36 | 27.29 | 54.46 | 1.15 | 0.15 |
| 33 | 25.95 | 10.51 | 1.19 | 0.72 | 0.04 | 0.91 | 0.04 | 691.50 | 95.44 | 15.02 | 43.07 | 43.02 | 0.86 | 0.12 |
| 34 | 10.80 | 22.09 | 2.52 | 1.03 | 0.08 | 1.33 | 0.09 | 526.00 | 25.21 | 38.63 | 28.57 | 62.70 | 1.29 | 0.14 |
| 39 | 8.75 | 23.22 | 2.73 | 1.00 | 0.07 | 1.49 | 0.08 | 586.34 | 16.44 | 41.15 | 25.69 | 63.40 | 1.24 | 0.13 |
| 40 | 5.75 | 25.11 | 3.00 | 1.01 | 0.09 | 1.41 | 0.07 | 539.45 | 6.11 | 47.01 | 14.49 | 65.81 | 1.21 | 0.11 |
| No. section |
Land a | No. plotb |
Depth cm |
Munsell colour (dry) |
Ca | Si | Fe | Mg | Mn | K | P | S | Cl | Ni | Cu | Zn | SQ(7) | SQ(12) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| % | mg/kg | |||||||||||||||||
| 35 | V (forest) | - | 3.6-19.5 | 10YR 6/4 | 4.60 | 53.90 | 5.30 | 1.70 | 0.06 | 2.60 | 0.10 | 545.50 | 107.30 | 62.00 | 19.70 | 97.30 | 0.15 | 1.05 |
| 43 | V (steppe) | - | 1.5-17 | 10YR 5/5 | 0.60 | 73.40 | 3.50 | 0.90 | 0.04 | 1.20 | 0.10 | 565.90 | 56.00 | 28.30 | 39.30 | 52.20 | 0.09 | 0.59 |
| 36 | PA-F | 153 | 3.5-20.5 | 7.5YR 4/4 | 12.6 | 44.80 | 4.90 | 1.50 | 0.10 | 2.10 | 0.20 | 737.00 | 20.10 | 58.50 | 13.20 | 87.30 | 0.14 | 1.32 |
| 37 | PA-F + VY(MF) | 378 | 4-21 | 7.5YR 4/6 | 15.4 | 43.50 | 4.30 | 1.10 | 0.08 | 1.40 | 0.20 | 654.80 | 65.50 | 43.80 | 306.40 | 90.40 | 0.18 | 1.16 |
| 41 | PA-F | 175 | 0-21 | 7.5YR 5/4 | 20.04 | 37.39 | 3.75 | 1.34 | 0.08 | 1.71 | 0.15 | 805.65 | 32.75 | 44.84 | 28.25 | 75.66 | 0.14 | 1.17 |
| 42 | PA-F | 131 | 0-18 | 10YR 5/4 | 27.04 | 30.28 | 2.96 | 1.38 | 0.08 | 1.65 | 0.16 | 871.73 | 47.96 | 34.38 | 8.25 | 66.59 | 0.13 | 1.16 |
| 44 | PA-F | 360 | 3-17.5 | 10YR 4/3 | 19.62 | 37.72 | 4.14 | 1.21 | 0.07 | 1.46 | 0.16 | 715.20 | 16.14 | 42.83 | 19.09 | 83.21 | 0.13 | 1.13 |
| 45 | PA-F + VY(MF) | 365 | 2-14.5 | 10YR 5/4 | 22.90 | 36.42 | 3.81 | 1.17 | 0.08 | 1.54 | 0.08 | 332.84 | LOD | 36.73 | 56.60 | 72.70 | 0.18 | 1.05 |
| 46 | PA-F + VY(MF) | 366 | 2-17.5 | 10YR 5/3 | 4.53 | 55.29 | 5.40 | 1.27 | 0.15 | 1.79 | 0.12 | 369.79 | LOD | 62.41 | 138.96 | 93.93 | 0.22 | 1.12 |
| 47 | PA-F + VY(MF) | 380 | 1.5-20 | 10YR 4/4 | 7.69 | 53.17 | 4.82 | 1.27 | 0.10 | 1.55 | 0.14 | 461.02 | LOD | 50.66 | 178.74 | 92.30 | 0.23 | 1.12 |
| 48 | PA-F + MF | 379 | 1.5-21 | 7.5YR 4/3 | 2.69 | 59.68 | 5.36 | 1.21 | 0.13 | 1.79 | 0.10 | 349.43 | LOD | 58.95 | 98.69 | 83.12 | 0.20 | 0.99 |
| 49 | PA-F +VY | 403 | 0-21 | 7.5YR 4/2 | 2.15 | 58.76 | 5.39 | 1.49 | 0.11 | 1.68 | 0.13 | 307.77 | LOD | 51.78 | 34.12 | 78.81 | 0.17 | 0.99 |
| 50 | PA-F +VY | 403б | 0-20 | 10YR 5/4 | 16.68 | 46.40 | 3.54 | 1.45 | 0.10 | 1.48 | 0.23 | 374.39 | 5.70 | 25.82 | 98.76 | 68.33 | 0.13 | 1.27 |
| 51 | PA-F + VY(MF) | 404 | 0-21 | 10YR 5/4 | 5.84 | 56.04 | 4.95 | 1.88 | 0.12 | 1.22 | 0.17 | 294.09 | 9.25 | 20.59 | 40.29 | 80.75 | 0.12 | 1.17 |
| 52 | PA-F | 268 | 2.5-19.5 | 10YR 4/3 | 10.60 | 49.11 | 4.63 | 1.55 | 0.10 | 1.96 | 0.21 | 802.02 | 6.09 | 50.24 | 16.65 | 89.47 | 0.13 | 1.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
