Submitted:
24 February 2025
Posted:
25 February 2025
You are already at the latest version
Abstract
Keywords:
0. Introduction
0.1. GSVD and Its Applications
0.2. Riemannian Optimization
- On theoretic aspect we provide a new explicit formula of sum of chordal metric between generalized singular values of Grassmann matrix pairs with Riemannian optimization models instead of the existing upper bounds.
- On algorithm aspect the new expression formula involves only two small-size unitary variable matrices from Riemannian optimization models and Newton methods on Riemannian manifolds are given, which reduces the required computational cost.
0.3. Notations
0.4. Overview of Existing Results about Chordal Metric Between GSVs of GMP
0.5. Organization
1. Preliminaries
2. Explicit Formula of with Riemannian Optimization Models
2.1. For complex grassman matrix pair
2.2. Solving Riemannian Optimization Models in (45) and (46) for Complex Grassman Matrix Pair
| Exact values | formula by Alg. 4 | Upper Bound | ||
| (80,40,60) | 30.2 | 27.24709031 | 41.3510 | |
| (200,500,450) | 218.6 | 189.26910247 | 380.4629 | |
| (900,800,700) | 359.4 | 458.42618210 | 573.0744 | |
| (60,120,140) | 103.56173621 | 103.56172847 | 126.0846 | |
| (100,200,150) | 79.35162440 | 79.35157629 | 118.5329 | |
| (250,500,450) | 268.49009138 | 268.49008938 | 376.4290 | |
| (800,600,500) | 409.05215925 | 409.05215570 | 454.7393 | |
| (2000,1900,1800) | 1516.38636811 | 1516.38632996 | 1704.1106 | |
| (500,600,800) | 379.23164800 | 379.23164655 | 634.2572 |
3. Concluding Remarks
References
- Alter, O., Brown, P. O., and Botstein, D. 2000. "Singular value decomposition for genome-wide expression data processing and modelling." Proceedings of the National Academy of Sciences 97: 10101–10106. [CrossRef]
- Alter, O., Brown, P. O., and Botstein, D. 2001. "Processing and modelling gene expression data using singular value decomposition." Proceedings of SPIE 4266: 171–186. [CrossRef]
- Alter, O., Brown, P. O., and Botstein, D. 2003. "Generalized singular decomposition for comparative analysis of genome-scale expression data sets of two different organisms." Proceedings of the National Academy of Sciences 100: 3351–3356. [CrossRef]
- lter, O., Golub, G. H., Brown, P. O., and Botstein, D. 2004. "Novel genome-scale correlation between DNA replication and RNA transcription during the cell cycle in yeast is predicted by data-driven models." In Proceedings of the Miami Nature Biotechnology Winter Symposium on the Cell Cycle, Chromosomes and Cancer, vol. 15, edited by M. P. Deutscher et al., 15. University of Miami School of Medicine, Miami.
- Bai, Z. , and Demmel, J. W. 1993. "Computing the generalized singular value decomposition." SIAM Journal on Scientific Computing 14: 1464–1486.
- Bai, Z. , and Zha, H. 1993. "A new preprocessing algorithm for the computation of the generalized singular value decomposition." SIAM Journal on Scientific Computing 14: 1007–1012. [CrossRef]
- Bhatia, R. 1997. Matrix Analysis. New York: Springer.
- Sun, J.-G. 1983. "Perturbation analysis for the generalized eigenvalue problem and the generalized singular value problem." In Matrix Pencils, Lecture Notes in Mathematics, vol. 973, edited by Springer Verlag, 221–244.
- Li, R.-C. 1993. "Bounds on perturbations of generalized singular values and of associated subspaces." SIAM Journal on Matrix Analysis and Applications 14: 195–234. [CrossRef]
- Li, R.-C. 1993. "A perturbation bound for definite pencils." Linear Algebra and its Applications 179: 191–202. [CrossRef]
- Li, R.-C. 1994. "On perturbations of matrix pencils with real spectra." Mathematics of Computation 62: 231–265.
- Li, R.-C. 2002. "On perturbations of matrix pencils with real spectra, a revisit." Mathematics of Computation 72: 715–728.
- Mahony, R. E. 1996. "The constrained Newton method on a Lie group and the symmetric eigenvalue problem." Linear Algebra and its Applications 248(15): 67–89.
- Owren, B. , and Welfert, B. 2000. "The Newton iteration on Lie groups." BIT 40(1): 121–145.
- Paige, C. C. , and Saunders, M. A. 1981. "Towards a generalized singular value decomposition." SIAM Journal on Numerical Analysis 18: 398–405.
- Sun, J.-G. 1983. "Perturbation analysis for the generalized singular value problem." SIAM Journal on Matrix Analysis and Applications 20: 611–625.
- Sun, J.-G. 1998. "Perturbation analysis of generalized singular subspaces." Numerische Mathematik 79: 615–641.
- Sun, J.-G. 2000. "Condition number and backward error for the generalized singular value decomposition." SIAM Journal on Matrix Analysis and Applications 22: 323–341.
- Van Loan, C. F. 1976. "Generalizing the singular value decomposition." SIAM Journal on Numerical Analysis 13: 76–83.
- Wang, J. H., and Li, C. 2011. "Kantorovich’s theorems for Newton’s method for mappings and optimization problems on Lie groups." IMA Journal of Numerical Analysis 31:.
- Xu, W. W., Li, W., Zhu, L., and Huang, X. P. 2019. "The analytic solutions of a class of constrained matrix minimization and maximization problems with applications." SIAM Journal on Optimization 29: 1657–1686.
- Xu, W. W., Pang, H. K., Li, W., Huang, X. P., and Guo, W. J. 2018. "On the explicit expression of chordal metric between generalized singular values of Grassmann matrix pairs with applications." SIAM Journal on Matrix Analysis and Applications 39(4): 1547–1563.
- Zha, H. 1992. "A numerical algorithm for computing restricted singular value decomposition of matrix triplets." Linear Algebra and Its Applications 168: 1–26.
- Hua, L. K. 1963. Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains. Providence, RI: American Mathematical Society.
- Golub, G. H., and Van Loan, C. F. 2013. Matrix Computations, 4th ed. Baltimore: Johns Hopkins University Press.
- Golub, G. H. , and Kahan, W. 1965. "Calculating the singular values and pseudo-inverse of a matrix." SIAM Journal on Numerical Analysis 2: 205–224.
- Ben-Israel, A., and Greville, T. N. E. 1977. Generalized Inverses: Theory and Applications. New York: Wiley.
- Jodár, L., Law, A. G., Rezazadeh, A., Watson, J. H., and Wu, G. 1991. "Computations for the Moore-Penrose and Other Generalized Inverses." Congressus Numerantium 80: 57–64.
- Manton, J. H. 2002. "Optimization algorithms exploiting unitary constraints." IEEE Transactions on Signal Processing 50: 635–650.
- Absil, P.-A., Mahony, R., and Sepulchre, R. 2008. Optimization Algorithms on Matrix Manifolds. Princeton: Princeton University Press.
- Adler, R. L., Dedieu, J. P., Margulies, J. Y., Martens, M., and Shub, M. 2002. "Newton’s method on Riemannian manifolds and a geometric model for the human spine." IMA Journal of Numerical Analysis 22: 359–390.
- Edelman, A., Arias, T. A., and Smith, S. T. 1998. "The geometry of algorithms with orthogonality constraints." SIAM Journal on Matrix Analysis and Applications 20: 303–353.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).