Submitted:
28 August 2024
Posted:
29 August 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. On Information Geometry on Lie Groups
2.1. Fisher Information Metric, Amari-Chentsov 3-Tensor, -Connections
2.2. Information Geometry Using Cartan-Schouten Metrics
2.3. Some Advantages and More Motivations
2.4. Hypersurfaces, Totally Geodesic Submanifolds
3. Cartan-Schouten Metrics on Lie Groups
3.1. General Results
3.2. Riemannian Cartan-Schouten Metrics
3.3. Lorentzian Cartan-Schouten Metrics
3.3.1. A General Result on Lorentzian Cartan-Schouten Metrics
3.3.2. The Oscillator Lie algebras and Lie Groups
3.4. Case Where the Exponential Map Is a Diffeomorphism
3.5. Cartan-Schouten Metrics on 2-nilpotent Lie Groups
3.5.1. Proof of Theorem 10
3.5.2. The Heisenberg Lie Group
3.5.3. Cartan-Schouten Metrics on Carnot Groups
3.5.4. Biinvariant Metrics on 2-nilpotent Lie Groups
4. Dual Connections and Statistical Structures
4.1. Statistical Structures
4.2. Biinvariant Dual Connections
5. A New Model for Statistics, Machine Learning and Data Science
5.1. On 2-nilpotent Lie Group Structures on
5.2. Exponential Barycenter
5.3. On a New Model of Parametric Means
5.4. More Discussions on the New Model of Parametric Means
References
- Amari, S.: Information geometry and its applications. Appl. Math. Sci.,194. Springer, (Tokyo), 2016. [CrossRef]
- Amari, S.: Differential-Geometrical Methods in Statistics. Lecture Notes in Statistics 28 (Springer, New York, 1985). [CrossRef]
- Aubert, A. and Medina, A.: Groupes de Lie pseudo-riemanniens plats. Tohoku Math. J.(2) 55, no. 4, 487-506 (2003). [CrossRef]
- Benayadi, S. and Boucetta, M.: Special bi-invariant linear connections on Lie groups and finite dimensional Poisson structures. Differential Geom. Appl. 36, 66-89 (2014). [CrossRef]
- Benayadi, S. and Elduque, A.: Classification of quadratic Lie algebras of low dimension. J. Math. Phys. 55, 081703 (2014). [CrossRef]
- Benito, P.; de-la-Concepción, D.; Roldán-López, J. and Sesma, I., Quadratic 2-step Lie algebras: computational algorithms and classification. J. Symbolic Comput. 94, 70-89 (2019). [CrossRef]
- Cartan, E. and Schouten, J.A.: On the geometry of the group-manifold of simple and semi-simple groups. Proc. Akad. Wekensch, Amsterdam 29 (1926) 803-815.
- Diatta, A.; Manga B. and Sy, F.: On dual quaternions, dual split quaternions and Cartan-Schouten metrics on perfect Lie groups. Trends Math. Birkhäuser/Springer, Cham, 2024, pp 317-339. [CrossRef]
- Diatta, A., Géométrie de Poisson et de contact des espaces homogènes. Ph.D. Thesis. University Montpellier 2, France (2000).
- Diatta A., Left Invariant Contact Structures on Lie Groups. Diff. Geom. Appl. 26 (2008), no. 5, 544-552. [CrossRef]
- Eberlein, P. Geometry of 2-step nilpotent Lie groups. Modern dynamical systems and applications, 67-101. Cambridge University Press, Cambridge, 2004.
- Eberlein, P. Geometry of 2-step nilpotent groups with a left invariant metric. Ann. Sci. Ecole Norm. Sup. (4) 27, no. 5, 611-660 (1994). [CrossRef]
- Eberlein, P. Geometry of 2-step nilpotent groups with a left invariant metric. II Trans. Amer. Math. Soc. 343, no. 2, 805-828 (1994).
- García T. N. Gromov-Hausdorff limit of Wasserstein spaces on point clouds. Calc. Var. Partial Differential Equations 59, no.2, Paper No. 73, 43 pp (2020). [CrossRef]
- Godoy M.M.; Kruglikov, B.; Markina, I. and Vasil’ev, A.: Rigidity of 2-step Carnot groups. J. Geom. Anal.28, no.2, 1477-1501 (2018). [CrossRef]
- Kumari, S. and Pestov, V. G. Universal consistency of the k-NN rule in metric spaces and Nagata dimension. II ESAIM Probab. Stat. 28, 132-160 (2024). [CrossRef]
- Figueroa-O’Farrill, J. and Stanciu, S.: On the structure of symmetric self-dual Lie algebras. J. Math. Phys. 37 (8), 4121-4134 (1996). [CrossRef]
- Gallier J. and Quaintance, J.: Differential geometry and Lie groups - a computational perpective. Geometry and Computing, 12. Springer, Cham, 2020, 777pp. [CrossRef]
- Ghanam, R.; Hindeleh, F. and Thompson, G.; Bi-invariant and noninvariant metrics on Lie groups. J. Math. Phys. 48 (2007), no. 10, 102903. [CrossRef]
- Lauritzen, S. L.: Statistical manifolds In Differential Geometry in Statistical Inferences. IMS Lecture Notes Monogr. Ser., 10, Inst. Math. Statist., Hayward California, 1987, pp. 96-163.
- Lê, H. V.:Statistical manifolds are statistical models. J. Geom. 84, no. 1-2, 83-93 (2005). [CrossRef]
- Lorenzi, M. and Pennec, X.: Geodesics, parallel transport and one-parameter subgroups for diffeomorphic image registration. Int. J. Comput. Vis. 105, no. 2, 111-127 (2013). [CrossRef]
- Matumoto, T.: Any statistical manifold has a contrast function. - On the C3-functions taking the minimum at the diagonal of the product manifold. Hiroshima Math. J. 23, 327-332 (1993).
- Matsuzoe, H.: Geometry of statistical manifolds and its generalization. In Proceedings of the 8th International Workshop on Complex Structures and Vector Fields. World Scientific, 2007, pp. 244-251. [CrossRef]
- Matsuzoe, H.: Statistical manifolds and affine differential geometry. Advanced Studies in Pure Mathematics 57, 2010 Probabilistic Approach to Geometry pp. 303-321.
- Medina, A. Groupes de Lie munis de métriques biinvariantes. Tôhoku Math. J. 37, 405-421 (1985). [CrossRef]
- Medina, A. and Revoy, Ph.: Algèbres de Lie et produit scalaire invariant. Ann. Scient. Ec. Norm. Sup., 4e serie, 18, no 3, 553-561 (1985).
- Milnor, J.: Curvatures of left invariant metrics on Lie groups. Adv. Math. 21, no. 3, 293-329 (1976). [CrossRef]
- Miolane, N. and Pennec, X.; Computing bi-invariant pseudo-metrics on Lie groups for consistent statistics. Entropy 17, no. 4, 1850-1881 (2015). [CrossRef]
- Miolane, N. and Pennec X.; Statistics on Lie groups: a need to go beyond the pseudo-Riemannian framework. AIP Conference Proceedings 1641 (1) 59-66 (2015). [CrossRef]
- Nomizu, K.: Left-invariant Lorentz metrics on Lie groups. Osaka J. Math. 16, no. 1, 143-150 (1979).
- Noui, L. and Revoy, Ph., Algèbres de Lie orthogonales et formes trilinéaires alternées. Comm. Algebra 25, no. 2, 617-622 (1997). [CrossRef]
- Pennec, X.: Bi-invariant means on Lie groups with Cartan-Schouten connections. Geometric Science of Information, 59-67, Lecture Notes in Comput. Sci, 8085, Springer, Heidelberg, 2013. [CrossRef]
- Pennec, X. Intrinsic statistics on Riemannian Manifolds: Basic tools for geometric measurements. J. Math. Imaging Vision 25 (1), 127-154 (2006). [CrossRef]
- Phillips, N.C.: How many exponentials? Amer. J. Math. 116, no. 6, 1513-1543 (1994).
- Rawashdeh, M. and Thompson, G. The inverse problem for six-dimensional codimension two nilradical Lie algebras. J. Math. Phys. 47, no. 11, 112901, 29 pp (2006). [CrossRef]
- Samereh, L.; Peyghan, E. and Mihai, I.: On almost Norden statistical manifolds. Entropy 24, no. 6, Paper No. 758, 10 pp (2022). [CrossRef]
- Shima, H. Homogeneous Hessian manifolds. Ann. Inst. Fourier (Grenoble) 30 (1980), 91-128. [CrossRef]
- Strugar, I.; Thompson, G.: Inverse problem for the canonical Lie group connection. Houston J. Math. 35, no. 2, 373-409 (2009).
- Sy, F.; Restricted Inverse problem of Langrangian dynamics for the Cartan-Schouten canonical connection and applications. Ph.D Thesis. Université C.A. Diop. In preparation.
- Thompson, G. Metrics compatible with a symmetric connection in dimension three. J. Geom. Phys. 19, 1-17 (1996). [CrossRef]
- Tondeur, Ph.: Sur certaines connexions naturelles d’un groupe de Lie. Applications. Séminaire Ehresmann. Topologie et géométrie différentielle, tome 6 (1964), exp. no 5, p1-9.
- Watanabe, S.: Algebraic geometry and statistical learning theory. Cambridge Monogr. Appl. Comput. Math., 25. Cambridge University Press, Cambridge, 2009.
- Zefran,M.; Kumar, V. and Croke, C.; Metrics and Connections for Rigid-Body Kinematics. The International Journal of Robotics Research, 18 (2) 242 (1999). [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).