Preprint
Article

This version is not peer-reviewed.

Paired-Like Homeodomain Transcription Factor 2 (PITX2): Time Behavioural Study of 3rd Order Combinations in WNT3A Stimulated HEK 293 Cells

Submitted:

22 February 2025

Posted:

24 February 2025

You are already at the latest version

Abstract
PITX2 (also known as pituitary homeobox 2), encodes a member of the RIEG/PITX homeobox family (a bicoid class of homeodomain proteins), that acts as a transcription factor and regulates procollagen lysyl hydroxylase gene expression. It is known to play an important role in pituitary, heart, brain, lungs, spleen, twisting of the gut and stomach, as well as the development of the eyes. Gujral and MacBeath [1] provides a quantitative, and dynamic study of WNT3A-mediated stimulation of HEK 293 cells, where they record time based expression profiles of several response genes which correlated significantly with proliferation and migration. By monitoring the dynamics of gene expression using self-organizing maps, they identified clusters of genes that exhibit similar expression dynamics and uncovered previously unrecognized positive and negative feedback loops. However, their study depicts/uses singular measurements of individual gene expression at different time snapshots/points to infer the system wide analysis of the pathway. At any particular time point, it is often the case that genes are working synergistically in combinations, even though their expression measurements are singular in nature. Here, I • enumerate and rank all 2415 PITX2 related 3rd order combinations in a forest of 71C3 combinations using four different sensitivity methods; • show the conserved rankings for PITX2-X-X combinations, which point to existence of biological synergy of some of these combinations across the different sensitivity methods; and • study the behaviour of some of these combinations related to WNT3A response genes that are ranked by the machine learning search engine (Sinha [2]) in time. Patterns of combinations emerge, some of which have been tested in wet lab, while others require further wet lab analysis.
Keywords: 
;  ;  ;  

1. Significance

Sinha [2] recently demonstrated the use of machine learning based search engine to rank/reveal gene combinations at 2nd order for the time series data by Gujral and MacBeath [1] and showed how it is possible to locate combinations of priority that might be working synergistically, using sensitivity methods and powerful support vector ranking algorithm. However, the problem explodes combinatorially with even a small set of 71 recorded genes in the study by Gujral and MacBeath [1], when one steps to explore 3rd order combinations. With the total number of 71 C 3 (= 57155) combinations, it becomes nearly impossible for any biologist to study the system wide dynamics of any pathway. Also, the amount of time usually needed to search for and test a combination is far more than the search down by the machine learning based search engine. Here, I extend the research work by Sinha [2] to conduct a behavioral study of 3rd order PITX2 related combinations using individual gene expressions measured in time, in WNT3A stimulated HEK 293 cells.

2. Introduction

The details of the machine learning based search engine has been recently published in Sinha [2] and deployed to explore the 2nd order combinations of genes in the data set provided by Gujral and MacBeath [1]. Nevertheless, here, I point to the fundamentals of the published work for completeness.

2.1. A Combinatorial Problem

Sensitivity analysis plays a major role in computing the strength of the influence of involved factors in any phenomena under investigation. When applied to expression profiles of various intra/extracellular factors that form an integral part of a signaling pathway, the variance and density based analysis yields a range of sensitivity indices for individual as well as various combinations of factors. These combinations denote the higher order interactions among the involved factors. Computation of higher order interactions is often time consuming but it gives a chance to explore the various combinations that might be of interest in the working mechanism of the pathway. For example, in a range of fourth order combinations among the various factors of the Wnt pathway, it would be easy to assess the influence of the destruction complex formed by APC, AXIN, CSKI and GSK3 interaction. But the effect of these combinations vary over time as measurements of fold changes and deviations in fold changes vary. So it is imperative to know how an interaction or a combination of the involved factors behave in time and Sinha [2] develops a procedure to track the behaviour by exploiting the influences of these involved factors.

2.2. A Possible Solution

In this work, after estimating the individual effects of factors for a higher order combination, the individual indices are considered as discriminative features. A combination, then, is a feature set in higher order (≥2 ,i.e multivariate). With an excessively large number of factors involved in the pathway, it is difficult to search for important combinations in a wide search space over different orders. Exploiting the analogy with the issues of prioritizing webpages using ranking algorithms, for a particular order, a full set of combinations of interactions can then be prioritized based on these features using a powerful ranking algorithm via support vectors Joachims [3]. Recording the changing rankings of the combinations over time reveals how higher order interactions behave within the pathway and when an intervention might be necessary to influence the interaction within the pathway.

2.3. Paired-Like Homeodomain Transcription Factor 2 (PITX2)

PITX2, encodes a member of the RIEG/PITX homeobox family (a bicoid class of homeodomain proteins (Holland et al. [4])). A homeobox is an approximately 180 base pairs long DNA sequence, that regulates anatomical features in the early stages of embryonic development (Wikipedia contributors [5]). Mutations in a homeobox may change large-scale anatomical features of the full-grown organism. Homeobox genes (Gehring [6] and Gehring [7]) encode homeodomain protein products are transcription factors with important roles in embryonic patterning and cell differentiation, and several have been implicated in human diseases and congenital abnormalities (Boncinelli [8]).
ALL1 (human homologue of Drosophila trithorax), is directly involved in human acute leukemias associated with abnormalities at 11q23. Arakawa et al. [9] isolated a gene that is down-regulated in All1 double-knockout mouse embryonic stem (ES) cells and designated it ARP1 (also termed RIEG, PITX2, or OTLX2) belonging to the PRD class homeoboxes and pseudogenes. Logan et al. [10] show that PITX2 encodes a transcription factor expressed through-out the left lateral plate mesoderm and subsequentlyon the left side of asymmetric organs such as the heart and gut during organogenesis in the chick embryo. Misexpression of PITX2 on the right side of the embryo is sufficient to produce reversed heart looping and heart isomerisms, reversed body rotation, and reversed gut situs (Campione et al. [11], Shiratori et al. [12], Zacharias et al. [13]). Finally, different isoforms of the transcription factor: PITX2-A/B/C, each with distinct and non-overlapping functions exist.
In this research work, I present 3rd order combinations of PITX2 with other genes, that the machine learning based search engine points to, as possible synergistic combinations that might be working in time.

3. Methods

Please refer to sections of Sinha [2] for methods, design of study and analysis of data for 2nd order combinations. The same method and design of study is used to generate results for 3rd order combinations presented in this study.

4. Time Series Data

Gujral and MacBeath [1] present a set of 71 WNT-related gene expression values for 6 different times points over a range of 24-hour period using qPCR. The changes represent the fold-change in the expression levels of genes in 200 ng/mL WNT3A-stimulated HEK 293 cells in time relative to their levels in unstimulated, serum-starved cells at 0-hour. Gujral and MacBeath [1] state that qPCR data are the means of three biological replicates. Only genes whose mean transcript levels changed by more than two-fold at one or more time points during the 24-hour time course were considered significant. Positive (negative) numbers represent up (down) -regulation. We have already covered the issues related to these data sets in detail in Sinha [14]. Readers are requested to go through them in the pointed reference. The tools of study which are used here have been published in another foundational work in Sinha [14].

5. Design of Experiment

5.1. Pipeline for Time Series Data

For the case of time series data, interactions among the contributing factors are studied by comparing triplets of fold-changes at single time points. The prodecure begins with the generation of distribution around measurements at single time points with added noise is done to estimate the indices. A distribution is generated for the fold changes at single time points. Then for every gene, there is a vector of values representing fold changes as well as deviations in fold changes for different time points and durations between time points, respectively. Next a listing of all C k n combinations for k number of genes from a total of n genes is generated. k is ≥ 2 and ≤ ( n − 1 ) . Each of the combination of order k represents a unique set of interaction between the involved genetic factors. After this, the datasets are combined in a specifed format which go as input as per the requirement of a particular sensitivity analysis method. Thus for each p t h combination in C k n combinations, the dataset is prepared in the required format from the distributions for two separate cases which have been discussed above. (See .R code in mainScript-1-1.R). After the data has been transformed, vectorized programming is employed for density based sensitivity analysis and looping is employed for variance based sensitivity analysis to compute the required sensitivity indices for each of the p combinations. This procedure is done for different kinds of sensitivity analysis methods.
After the above sensitivity indices have been stored for each of the p t h combination, the next step in the design of experiment is conducted. Since there is only one recording of sensitivity index per combination, each combination forms a training example which is alloted a training index and the sensitivity indices of the individual genetic factors form the training example. Thus there are C k n training examples for k t h order interaction. Using this training set S V M l e a r n R a n k Joachims [3] is used to generate a model on default value C value of 20. In the current experiment on toy model C value has not been tunned. The training set helps in the generation of the model as the different gene combinations are numbered in order which are used as rank indices. The model is then used to generate score on the observations in the testing set using the S V M c l a s s i f y R a n k Joachims [3]. Note that due to availability of only one example per combination, after the model has been built, the same training data is used as test data to generates the scores. This procedure is executed for each and every sensitivity analysis method. This is followed by sorting of these scores along with the rank indices (i.e the training indices) already assigned to the gene combinations. The end result is a sorted order of the gene combinations based on the ranking score learned by the S V M R a n k algorithm. Finally, this entire procedure is computed for sensitivity indices generated for each and every fold change at time point and deviations in fold change at different durations. Observing the changing rank of a particular combination at different times and different time periods will reveal how a combination is behaving.
Note that the following is the order in which the files should be executed in R, in order, for obtaining the desired results (Note that the code will not be explained here) - • use source("mainScript-1-1.R") with arguments for Dynamic data • source("SVMRank-Results-D.R"), to rank the interactions (again this needs to be done separately for different kinds of SA methods), • use source("Combine-Time-files.R"), if computing indices separately via previous file, • source("Sort-n-Plot-D.R") to sort the interactions. Note that the sorting is chages the interaction ranking in time. Thus • use source("Interaction-Priority-Intime.R") to find the prioritized ranking of each and every interaction over the different time points and finally • use source("Print-Ranking-AND-Interaction-Rank.R") to print individual ranking of the required input factor with other interaction factors.

6. Results & Discussion

6.1. Time Series Data by Gujral and MacBeath [1]

NOTE - Ranking was assigned on scores that were sorted in DECREASING values. So, 1 was assigned to highest score and vice versa.
Results for the 3rd order interactions are presented here. The results first discuss the behaviour of interactions across the snapshots of time using the computed sensitivities on fold change measurements per time snapshot. The analysis was done using 4 different sensitivity indices. Out of the 71 C 3 combinations, I consider/present only those combinations that show a ranking within first 10,000 out of 57,155. This choice is liberal and biologists/oncologists can have a more stricter choice as per need. Two observations are made, • the ranking of a particular combination is conserved (i.e within the 10,000 range) in a particular time point or in the early phase or late phase of WNT3A stimulation, across the majority of the four sensitivity methods, which is a strict criteria of assessment or • the ranking of a particular combination is conserved across time points/phase (i.e they are within the 10,000 range) and the majority of the four sensitivity methods, which is relaxed criteria of assessment. Applying this filter helps reveal important combinations of interest that might be working synergistically at a higher order level in the cell.
Regarding technical points of implementation, the rankings were generated without scaling/normalizing the time series data provided by Gujral and MacBeath [1]. For estimating the sensitivity indices, a small gaussian distribution using the function rnorm that generates a vector of normally distributed random variables given a vector length n (here 9, the 10th one is the mean/recorded gene regulation itself), a population mean μ and population standard deviation σ . The syntax for using rnorm is as follows: rnorm(n, mean, sd). Further, I use the jitter funtion to add a little bit of noise to the data. This helps to see if the generated rankings are robust or not.

6.2. Enumeration and Ranking of 2415 PITX2-X-X Combinations from Gujral and MacBeath [1]

In the supplementary section, I present four files, each containing the rankings of 3rd order combinations, that wary in time (shown for 5 time points). Each file represents the rankings computed using a particular sensitivity method. The changing rankings in time for a particular combination represents the importance of contribution/role that combination plays in the cell stimulated with WNT3A. The sensitivity methods used are Hilbert Schmidt Independence Criterion indices (HSIC) indices (with rbf and linear kernel in Da Veiga [15]) and Sobol indicies (with 2002 implementation in Saltelli [16] and martinez implementation in Martinez [17] and Baudin et al. [18]).

6.3. Conserved Machine Learning Rankings for Tested PITX2-X-X Combinations

A total of 2415, 3rd order combinations involving PITX2 were obtained from a full set of 71 C 3 = 57155 combinations. Further, from this selected set, using the above criteria for conserved rankings, I report/tabulate the meaningful combinations that might be working synergistically. Table 2, Table 3 and Table 4 show the rankings for the same combinations as in Table 1, but using rbf kernel for HSIC, 2002 implementation for SOBOL and martinez implementation for SOBOL, respectively. As one tallies the rankings of across these tables for a particular combination, one finds that the role of the combination of interest is conserved. This conservation points to the existence of the biological synergy, whether the combination has been tested or unexplored/untested.

6.3.1. Examining the behaviour of WNT-PITX2-X combinations

Kioussi et al. [19] report that PITX2 is rapidly induced by the WNT/DVL/ β -catenin pathway and is required for effective cell-type-specific proliferation by directly activating specific growth-regulating genes. Regulated exchange of HDAC1/ β -catenin converts PITX2 from repressor to activator (analogous to control of TCF/LEF1) which then serves as a competence factor required for the temporally ordered and growth factor-dependent recruitment of a series of specific coactivator complexes that prove necessary for CCND2 gene induction. Since the WNT pathway is strongly involved in ovarian development and cancer, Basu and Roy [20] focused on the possible association between PITX2 and WNT pathway in ovarian carcinoma cells and found that PITX2 interacts and regulates WNT2/5A/9A/6/2B genes of the canonical, noncanonical, or other pathways in the human ovarian adenocarcinoma cell SKOV-3. Chromatin immunoprecipitation and promoter-reporter assays further indicated the significant association of PITX2 with WNT2 and WNT5A promoters. Looking at the tables above, one finds the following combinations for member of WNT family along with PITX2, to be prominent at 3rd order level - PITX2-PORCN-WNT4, PITX2-PORCN-WNT5A, APC-PITX2-WNT4, PITX2-WNT3-WNT5A, PITX2-WNT1-WNT5A, PITX2-SFRP4-WNT2B, CCND3-PITX2-WNT3A, PITX2-WNT1-WNT2B, FZD5-PITX2-WNT2B, PITX2-WNT1-WNT4, FBXW11-PITX2-WNT2B, FZD6-PITX2-WNT2, PITX2-PORCN-WNT2B, FZD6-PITX2-WNT2B, PITX2-WNT3-WNT3A, APC-PITX2-WNT3, DIXDC1-PITX2-WNT2B, DIXDC1-PITX2-WNT4 and DKK1-PITX2-WNT2B. All these combinations indicate the existence of a possible synergy when they take a higher rank in the list of combinations.

6.3.2. Examining the Behaviour of FGF / CCND -PITX2-X Combinations

PITX2 is mutated in the haploinsufficient Rieger Syndrome type 1 that includes dental, ocular and abdominal wall anomalies as cardinal features. Analysis of the craniofacial phenotype of PITX2-null mice has revealed that PITX2 was both a positive regulator of fibroblast growth factor 8 (FGF8) and a repressor of BMP4-signaling. Liu et al. [21] show by analysis that PITX2 allelic combinations that encode varying levels of PITX2 showed that repression of BMP signaling requires high PITX2 while maintenance of FGF8 signaling requires only low PITX2.
Cleft palate is a common congenital birth defects. Transforming growth factor β (TGF β ) signaling regulates craniofacial development, and loss of TGF β receptor type II in cranial neural crest cells leads to craniofacial malformations, including cleft palate in mice (Tgfbr2fl/fl;WNT1-Cre mice). Iwata et al. [22] indicate that a TGF β -FGF9-PITX2 signaling cascade regulates cranial neural crest cell proliferation during palate formation. They found that FGF9 and PITX2 expressions were significantly down-regulated in the palate of Tgfbr2fl/fl;WNT1-Cre mice, and FGF9 and PITX2 loss of function mutations resulted in cleft palate in mice. PITX2 expression was found to be down-regulated by siRNA knockdown of FGF9, suggesting that FGF9 is upstream of PITX2. Further, exogenous FGF9 restores expression of CCND1 and CCND3 in a PITX2-dependent manner and rescues the cell proliferation defect in the palatal mesenchyme of Tgfbr2fl/fl; WNT1-Cre mice.
Looking at the tables above, one finds the following combinations for member of FGF family along with PITX2, to be prominent at 3rd order level - CCND1-FGF4-PITX2, FGF4-JUN-PITX2, CTBP1-FGF4-PITX2, CSNK1D-FGF4-PITX2 and CXXC4-FGF4-PITX2. Also, looking at the tables above, one finds the following combinations for member of CCND family along with PITX2, to be prominent at 3rd order level - CCND1-FGF4-PITX2, CCND1-CTBP1-PITX2, CCND3-PITX2-WNT3A, CCND1-JUN-PITX2, CCND2-LRP6-PITX2, CCND1-CTNNBIP1-PITX2, CCND3-PITX2-SFRP4, CCND3-PITX2-SENP2, FZD5-CCND3-PITX2 and CCND1-NLK-PITX2. All these combinations indicate the existence of a possible synergy when they take a higher rank in the list of combinations.

6.3.3. Examining the behaviour of FSHB-PITX2-X combinations

PITX regulate the activity of pituitary hormone-encoding genes and Lamba et al. [23] examined mechanisms through which the family of PITX proteins control murine follicle stimulating hormone β -subunit (FSHB) transcription. They found that both PITX-1/2C regulated murine and human Fshb/FSHB transcription through a conserved cis-element in the proximal promoter. Looking at the tables above, one finds the following combinations FSHB along with PITX2, to be prominent at 3rd order level - FSHB-FZD2-PITX2. All these combinations indicate the existence of a possible synergy when they take a higher rank in the list of combinations.

6.3.4. Examining the behaviour of FOX-PITX2-X combinations

Axenfeld–Rieger ocular dysgenesis is associated with mutations of the human PITX2 and forkhead box C1 (FOXC1) genes. Berry et al. [24] identified a functional link between FOXC1 and PITX2 which underpins the similar Axenfeld–Rieger phenotype caused by mutations of these genes. They show that FOXC1 and PITX2A physically interact, and this interaction requires crucial functional domains on both proteins: the C-terminal activation domain of FOXC1 and the homeodomain of PITX2. Immunofluorescence further showed FOXC1 and PITX2A to be colocalized within a common nuclear subcompartment. Looking at the tables above, one finds the following combinations for members of FOX family along with PITX2, to be prominent at 3rd order level - DAAM1-FOXN1-PITX2, CSNK2A1-FOXN1-PITX2, FBXW11-FOXN1-PITX2, FOSL1-FOXN1-PITX2, DVL1-FOXN1-PITX2, AXIN1-FOXN1-PITX2, FOXN1-GSK3A-PITX2, CSNK1D-FOXN1-PITX2, CTNNB1-FOXN1-PITX2, CTBP2-FOXN1-PITX2, AES-FOXN1-PITX2 and CTBP1-FOXN1-PITX2. All these combinations indicate the existence of a possible synergy when they take a higher rank in the list of combinations.

6.3.5. Examining the behaviour of JUN-PITX2-X combinations

Briata et al. [25] report that PITX2 mRNA displays a rapid turnover rate and that activation of the Wnt/ β -catenin pathway stabilizes PITX2 mRNA as well as other unstable mRNAs,including c-JUN and CCND-1/2 encoded pathway. There might not be an interaction between JUN and PITX2, but they might be synergistically getting stabilized due to the WNT pathway. Looking at the tables above, one finds the following combinations for JUN along with PITX2, to be prominent at 3rd order level - DVL2-JUN-PITX2, FOSL1-JUN-PITX2, CXXC4-JUN-PITX2, FBXW2-JUN-PITX2, FGF4-JUN-PITX2, FZD8-JUN-PITX2, CTNNBIP1-JUN-PITX2, FRAT1-JUN-PITX2, DKK1-JUN-PITX2, CCND1-JUN-PITX2, CSNK2A1-JUN-PITX2, DAAM1-JUN-PITX2, FBXW11-JUN-PITX2 and CTBP1-JUN-PITX2. All these combinations indicate the existence of a possible synergy when they take a higher rank in the list of combinations.

6.3.6. Examining the behaviour of EP300-PITX2-X combinations

Malformations of the septum, outflow tract and aortic arch are the most common congenital cardiovascular defects and occur in mice lacking CITED2, a transcriptional coactivator of TFAP2. Bamforth et al. [26] show that CITED2 and TFAP2 were detected at the PITX2C promoter in embryonic hearts, and they activate PITX2C transcription in transient transfection assays. They propose an abnormal NODAL-PITX2C pathway presents a mechanism for the cardiovascular malformations observed in CITED2−/− mice, and that such malformations may be the sole manifestation of a laterality defect. Further, EP300 and CREBBP interact with high affinity with CITED2. CITED2 also physically interacts with and coactivates TFAP2 (transcription factor AP2) and LIM-domain containing transcription factors by linking them to EP300 and CREBBP (Bamforth et al. [27]). Looking at the tables above, one finds the following combinations for EP300 along with PITX2, to be prominent at 3rd order level - EP300-FZD2-PITX2, DVL1-EP300-PITX2, AXIN1-EP300-PITX2, AES-EP300-PITX2 and EP300-GSK3B-PITX2. All these combinations indicate the existence of a possible synergy when they take a higher rank in the list of combinations.

7. Conclusion

This manuscript studies the time behaviour of 3rd order combinations of PITX2 in WNT3A stimulated HEK 293 cells. Based on the extablished 2nd order combinations of the PITX2, 3rd order combinations emerge using the machine learning based search engine. These 3rd order combinations might be of interest for further wet lab investigations.

Supplementary Materials

The following files (ending with .txt and can be opened in R or in simple text processing program) with these names are made available with this manuscript. For every WNT family member, (1) -3-odr-TP-ranking-linear.txt, (2) -3-odr-TP-ranking-rbf.txt, (3) -3-odr-TP-ranking-2002.txt, and (4) -3-odr-TP-ranking-martinez.txt, contain rankings for 3rd order combinations across each time point for, HSIC (linear kernel), HSIC (rbf kernel), SOBOL (2002 implementation) and SOBOL (martinez implementation), respectively.

Author Contributions

SS conceived and designed the experiments; wrote the code; performed the experiments; analyzed the data; wrote the manuscript.

Data Availability Statement

Code for time series data available at CERN based Zenodo on https://zenodo.org/records/14637456.

Acknowledgments

Special thanks to Mrs. Rita Sinha and late Mr. Prabhat Sinha for supporting the author financially, without which this work could not have been made possible.

Conflicts of Interest

No competing interest is declared.

References

  1. Gujral, T.S.; MacBeath, G. A system-wide investigation of the dynamics of Wnt signaling reveals novel phases of transcriptional regulation. PloS one 2010, 5, e10024. [Google Scholar] [CrossRef] [PubMed]
  2. Sinha, S. Machine learning ranking of plausible (un) explored synergistic gene combinations using sensitivity indices of time series measurements of Wnt signaling pathway. Integrative Biology 2024, 16, zyae020. [Google Scholar] [CrossRef] [PubMed]
  3. Joachims, T. Training linear SVMs in linear time. In Proceedings of the Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining.
  4. Holland, P.W.; Booth, H.A.F.; Bruford, E.A. Classification and nomenclature of all human homeobox genes. BMC biology 2007, 5, 1–28. [Google Scholar] [CrossRef] [PubMed]
  5. Wikipedia contributors. Homeobox — Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Homeobox&oldid=1274247238, 2025. [Online; accessed 21-February-2025].
  6. Gehring, W.J. The homeobox in perspective. Trends in biochemical sciences 1992, 17, 277–280. [Google Scholar] [CrossRef]
  7. Gehring, W.J. Exploring the homeobox. Gene 1993, 135, 215–221. [Google Scholar] [CrossRef]
  8. Boncinelli, E. Homeobox genes and disease. Current opinion in genetics & development 1997, 7, 331–337. [Google Scholar]
  9. Arakawa, H.; Nakamura, T.; Zhadanov, A.B.; Fidanza, V.; Yano, T.; Bullrich, F.; Shimizu, M.; Blechman, J.; Mazo, A.; Canaani, E.; et al. Identification and characterization of the ARP1 gene, a target for the human acute leukemia ALL1 gene. Proceedings of the National Academy of Sciences 1998, 95, 4573–4578. [Google Scholar] [CrossRef]
  10. Logan, M.; Pagan-Westphal, S.M.; Smith, D.M.; Paganessi, L.; Tabin, C.J. The transcription factor Pitx2 mediates situs-specific morphogenesis in response to left-right asymmetric signals. Cell 1998, 94, 307–317. [Google Scholar] [CrossRef]
  11. Campione, M.; Steinbeisser, H.; Schweickert, A.; Deissler, K.; Bebber, F.v.; Lowe, L.A.; Nowotschin, S.; Viebahn, C.; Haffter, P.; Kuehn, M.R.; et al. The homeobox gene Pitx2: mediator of asymmetric left-right signaling in vertebrate heart and gut looping. Development 1999, 126, 1225–1234. [Google Scholar] [CrossRef]
  12. Shiratori, H.; Yashiro, K.; Shen, M.M.; Hamada, H. Conserved regulation and role of Pitx2 in situs-specific morphogenesis of visceral organs 2006.
  13. Zacharias, A.L.; Lewandoski, M.; Rudnicki, M.A.; Gage, P.J. Pitx2 is an upstream activator of extraocular myogenesis and survival. Developmental biology 2011, 349, 395–405. [Google Scholar] [CrossRef]
  14. Sinha, S. Hilbert-Schmidt and Sobol sensitivity indices for static and time series Wnt signaling measurements in colorectal cancer-part A. BMC systems biology 2017, 11, 120. [Google Scholar] [CrossRef] [PubMed]
  15. Da Veiga, S. Global sensitivity analysis with dependence measures. Journal of Statistical Computation and Simulation 2015, 85, 1283–1305. [Google Scholar] [CrossRef]
  16. Saltelli, A. Making best use of model evaluations to compute sensitivity indices. Computer physics communications 2002, 145, 280–297. [Google Scholar] [CrossRef]
  17. Martinez, J. Analyse de sensibilite globale par decomposition de la variance. Presentation in “Journée des GdR Ondes & Mascot 2011, 13, 207. [Google Scholar]
  18. Baudin, M.; Boumhaout, K.; Delage, T.; Iooss, B.; Martinez, J.M. Numerical stability of Sobol’indices estimation formula. In Proceedings of the Proceedings of the 8th International Conference on Sensitivity Analysis of Model Output (SAMO 2016), 2016, Vol.
  19. Kioussi, C.; Briata, P.; Baek, S.H.; Rose, D.W.; Hamblet, N.S.; Herman, T.; Ohgi, K.A.; Lin, C.; Gleiberman, A.; Wang, J.; et al. Identification of a Wnt/Dvl/β-catenin -> Pitx2 pathway mediating cell-type-specific proliferation during development. Cell 2002, 111, 673–685. [Google Scholar] [CrossRef]
  20. Basu, M.; Roy, S.S. Wnt/β-catenin pathway is regulated by PITX2 homeodomain protein and thus contributes to the proliferation of human ovarian adenocarcinoma cell, SKOV-3. Journal of Biological Chemistry 2013, 288, 4355–4367. [Google Scholar] [CrossRef]
  21. Liu, W.; Selever, J.; Lu, M.F.; Martin, J.F. Genetic dissection of Pitx2 in craniofacial development uncovers new functions in branchial arch morphogenesis, late aspects of tooth morphogenesis and cell migration 2003.
  22. Iwata, J.i.; Tung, L.; Urata, M.; Hacia, J.G.; Pelikan, R.; Suzuki, A.; Ramenzoni, L.; Chaudhry, O.; Parada, C.; Sanchez-Lara, P.A.; et al. Fibroblast growth factor 9 (FGF9)-pituitary homeobox 2 (PITX2) pathway mediates transforming growth factor β (TGFβ) signaling to regulate cell proliferation in palatal mesenchyme during mouse palatogenesis. Journal of Biological Chemistry 2012, 287, 2353–2363. [Google Scholar] [CrossRef]
  23. Lamba, P.; Khivansara, V.; D’Alessio, A.C.; Santos, M.M.; Bernard, D.J. Paired-like homeodomain transcription factors 1 and 2 regulate follicle-stimulating hormone β-subunit transcription through a conserved cis-element. Endocrinology 2008, 149, 3095–3108. [Google Scholar] [CrossRef]
  24. Berry, F.B.; Lines, M.A.; Oas, J.M.; Footz, T.; Underhill, D.A.; Gage, P.J.; Walter, M.A. Functional interactions between FOXC1 and PITX2 underlie the sensitivity to FOXC1 gene dose in Axenfeld–Rieger syndrome and anterior segment dysgenesis. Human molecular genetics 2006, 15, 905–919. [Google Scholar] [CrossRef]
  25. Briata, P.; Ilengo, C.; Corte, G.; Moroni, C.; Rosenfeld, M.G.; Chen, C.Y.; Gherzi, R. The Wnt/β-catenin -> Pitx2 pathway controls the turnover of Pitx2 and other unstable mRNAs. Molecular cell 2003, 12, 1201–1211. [Google Scholar] [CrossRef]
  26. Bamforth, S.D.; Bragança, J.; Farthing, C.R.; Schneider, J.E.; Broadbent, C.; Michell, A.C.; Clarke, K.; Neubauer, S.; Norris, D.; Brown, N.A.; et al. Cited2 controls left-right patterning and heart development through a Nodal-Pitx2c pathway. Nature genetics 2004, 36, 1189–1196. [Google Scholar] [CrossRef] [PubMed]
  27. Bamforth, S.D.; Bragança, J.; Eloranta, J.J.; Murdoch, J.N.; Marques, F.I.; Kranc, K.R.; Farza, H.; Henderson, D.J.; Hurst, H.C.; Bhattacharya, S. Cardiac malformations, adrenal agenesis, neural crest defects and exencephaly in mice lacking Cited2, a new Tfap2 co-activator. Nature genetics 2001, 29, 469–474. [Google Scholar] [CrossRef]
Table 1. Rankings of PITX2-X-X. A list of approximately first 125 combinations with rankings below 10,000 out of 57,155. SA - HSIC; Kernel - linear
Table 1. Rankings of PITX2-X-X. A list of approximately first 125 combinations with rankings below 10,000 out of 57,155. SA - HSIC; Kernel - linear
Ranking @ t i using HSIC - linear
3rd order comb. t 1 t 3 t 6 t 12 t 24 3rd order comb. t 1 t 3 t 6 t 12 t 24
APC-PITX2-SFRP4 14 26861 33433 10197 18249 APC-PITX2-SENP2 37 14630 40719 18877 15582
APC-PITX2-TCF7 130 34995 20653 15851 17861 PITX2-PORCN-TLE2 169 22676 35351 44094 14423
PITX2-PORCN-WNT4 177 16891 32175 32123 27627 PITX2-PORCN-SENP2 270 20159 27718 25665 18827
DVL2-JUN-PITX2 293 27343 32163 42607 21387 FZD5-PITX2-SENP2 328 35236 22541 1156 14803
APC-PITX2-PPP2CA 334 14753 2900 19245 30663 APC-PITX2-RHOU 397 38592 32191 27698 15148
PITX2-PORCN-WNT5A 460 36097 17787 53210 23094 PITX2-PORCN-FBXW4 499 12554 20396 26439 17842
DIXDC1-PITX2-SENP2 526 28707 7274 5676 35235 CTNNBIP1-JUN-PITX2 546 6389 45937 54346 11119
CCND1-FGF4-PITX2 554 54983 49474 23953 29838 PITX2-PORCN-TCF7L1 572 42893 22702 25919 13429
DIXDC1-PITX2-SFRP4 614 29602 6543 3868 43507 PITX2-PORCN-WNT2B 630 42884 44910 50269 15186
APC-PITX2-WNT4 634 38339 50192 23301 18227 FRAT1-JUN-PITX2 748 50033 38113 50412 44660
PITX2-PORCN-TLE1 813 43605 21513 22845 15786 DKK1-JUN-PITX2 913 6407 42538 52798 634
AES-AXIN1-PITX2 978 46773 17137 47484 7382 PITX2-PORCN-PPP2R1A 1003 8071 39783 44256 5481
PITX2-PORCN-RHOU 1220 38816 23756 29958 13324 CCND1-JUN-PITX2 1260 51205 42011 18763 52917
FOSL1-JUN-PITX2 1479 1306 37107 54515 12375 FZD6-PITX2-WNT2B 1504 10725 14634 54318 17213
FZD5-PITX2-SFRP4 1559 51198 27058 788 14497 PITX2-PORCN-SFRP4 1607 32189 32121 34063 21972
CCND1-CTBP1-PITX2 1644 56351 33831 12174 34580 FSHB-FZD2-PITX2 1681 25060 56319 33266 14323
PITX2-WNT3-WNT5A 1726 32979 5136 41370 17012 CCND2-LRP6-PITX2 1887 36449 16637 55064 12492
PITX2-PORCN-SFRP1 1905 39236 31192 37387 9110 AES-EP300-PITX2 2125 50901 43504 52709 17083
FZD6-PITX2-SFRP4 2136 44403 22523 5027 25162 PITX2-WNT3-WNT3A 2155 50776 27010 46543 38273
DAAM1-FOXN1-PITX2 2183 45577 23419 17738 1022 CSNK2A1-JUN-PITX2 2295 11006 48321 42767 19026
FBXW11-LRP6-PITX2 2307 48503 41757 51594 35405 CCND1-CTNNBIP1-PITX2 2315 54797 33975 42838 34145
CSNK2A1-FOXN1-PITX2 2356 10265 14777 12628 14201 FOXN1-GSK3A-PITX2 2381 48019 32781 32844 21255
AXIN1-FZD6-PITX2 2480 44926 6159 53367 9917 FRZB-GSK3A-PITX2 2482 10817 2209 668 13402
PITX2-WNT1-WNT5A 2609 5926 14837 51671 5692 BTRC-GSK3A-PITX2 2613 49655 52881 6241 50065
PITX2-SFRP4-WNT2B 2621 47714 20847 52301 32634 DAAM1-JUN-PITX2 2739 53719 47964 55644 657
CXXC4-JUN-PITX2 2757 3424 36286 40345 36376 APC-PITX2-WNT3 2778 27077 34088 34710 13819
PITX2-PORCN-PPP2CA 2847 24874 33030 43172 21878 DIXDC1-PITX2-WNT2B 2863 14619 3889 45440 40568
FBXW11-FOXN1-PITX2 2886 3843 4957 17704 23607 CSNK1D-FGF4-PITX2 3093 11417 24874 53815 30793
LRP5-PITX2-SFRP4 3210 16171 31459 8145 26086 DIXDC1-PITX2-WNT4 3214 52681 19702 7189 37575
FOSL1-GSK3A-PITX2 3246 8961 918 7353 12922 FBXW11-JUN-PITX2 3374 35385 45082 55257 41153
CCND3-PITX2-WNT3A 3484 43666 17937 5868 27350 CSNK2A1-MYC-PITX2 3758 35967 33879 27313 16543
EP300-FZD2-PITX2 3771 12315 30396 16799 22718 CSNK1D-FOXN1-PITX2 3778 6280 4678 21772 36345
FZD1-GSK3A-PITX2 3798 30685 3123 6034 15265 CCND3-PITX2-SFRP4 3846 53365 17972 862 38266
DVL1-EP300-PITX2 3886 37126 11319 53194 36735 DAAM1-GSK3A-PITX2 3913 55523 36819 2364 4273
DKK1-PITX2-SFRP4 3919 36216 54630 36550 651 GSK3B-PITX2-SFRP4 3969 51591 11242 44587 45162
FBXW2-JUN-PITX2 4023 15973 52731 42180 49503 FRZB-FZD2-PITX2 4081 5620 20625 16286 21997
DIXDC1-PITX2-PPP2CA 4123 13781 1911 14325 45522 DAAM1-LRP6-PITX2 4134 55453 49218 56874 3254
FOSL1-FOXN1-PITX2 4149 3704 3591 20411 19698 CTNNB1-FOXN1-PITX2 4154 3460 4095 19749 19696
PITX2-WNT1-WNT2B 4158 13925 1462 19718 12422 CCND3-PITX2-SENP2 4176 37072 17505 1404 25804
FZD5-PITX2-WNT2B 4182 39042 16284 52876 11251 FZD7-GSK3A-PITX2 4302 20752 736 4869 12197
AXIN1-EP300-PITX2 4304 11293 12887 53659 13073 FRAT1-GSK3A-PITX2 4363 56251 2247 18588 44926
CSNK1G1-FZD2-PITX2 4407 7002 19144 19885 20203 FOSL1-FZD2-PITX2 4478 4516 12555 16266 17423
FBXW11-PITX2-SFRP4 4547 50563 47219 11287 28318 CSNK1G1-PITX2-SENP2 4579 38292 32335 49857 17717
PITX2-PYGO1-TLE2 4588 2003 47249 8274 54767 CTBP2-FOXN1-PITX2 4611 37603 5195 14491 24302
DVL1-FOXN1-PITX2 4624 42047 4932 11016 38406 CTBP1-JUN-PITX2 4720 2611 40385 42676 12432
PITX2-WNT1-WNT4 4724 908 3272 33901 10244 DIXDC1-PITX2-RHOU 4739 31170 5147 8935 19768
FZD6-PITX2-TCF7 4754 25933 18851 11368 22426 DKK1-GSK3A-PITX2 4759 23623 33694 50522 6502
FZD6-PITX2-SENP2 4827 47413 31625 7317 23700 APC-PITX2-SLC9A3R1 4832 13233 25730 31544 21292
FBXW11-PITX2-WNT2B 4991 55437 27760 53601 30191 DIXDC1-PITX2-TCF7 5005 35931 12459 6681 32860
CSNK1D-PITX2-SFRP4 5096 37446 11233 10582 41257 FZD5-CCND3-PITX2 5106 9271 1305 14097 20152
FZD6-PITX2-WNT2 5113 30267 46069 12925 22168 AES-FOXN1-PITX2 5216 17207 8200 21874 15128
CSNK1G1-PITX2-RHOU 5258 16813 32518 47070 15599 FZD7-NKD1-PITX2 5310 12439 25127 40994 7486
FGF4-JUN-PITX2 5343 2634 32672 53764 32133 CCND1-NLK-PITX2 5399 39293 9478 4030 37469
FZD6-PITX2-SFRP1 5615 37130 25262 13890 9233 CXXC4-FGF4-PITX2 5669 13032 45784 50894 54142
AXIN1-FOXN1-PITX2 5682 1318 3400 19758 15375 FOSL1-PITX2-SFRP4 5766 29791 9666 5926 21290
FOSL1-NKD1-PITX2 5819 8607 19299 34454 29628 DKK1-PITX2-WNT2B 5967 20722 56765 57114 736
FZD5-PITX2-RHOU 5980 46930 21039 1256 11863 GSK3B-PITX2-SENP2 6007 41103 11874 39352 36153
FZD6-PITX2-TCF7L1 6019 6483 34081 5505 18404 CTBP1-FOXN1-PITX2 6078 7952 6550 21251 24027
FBXW2-GSK3A-PITX2 6113 23145 5408 17937 19874 EP300-GSK3B-PITX2 6131 11194 7972 26156 25577
CTBP1-FGF4-PITX2 6132 3149 40895 31072 24686 FRAT1-FZD2-PITX2 6168 56131 24624 14249 36492
AES-FZD2-PITX2 6222 26972 33042 43053 11722 FBXW11-GSK3A-PITX2 6249 47414 27591 23081 13112
FZD8-JUN-PITX2 6263 42057 38010 54749 2980 CXXC4-FZD2-PITX2 6270 7825 20641 14923 45220
PITX2-SFRP4-TLE2 6342 43420 38012 10662 35267 DIXDC1-FZD2-PITX2 6448 5815 17969 18298 39281
Table 2. Rankings of PITX2-X-X. A list of approximately first 125 combinations with rankings below 10,000 out of 57,155. SA - HSIC; Kernel - rbf
Table 2. Rankings of PITX2-X-X. A list of approximately first 125 combinations with rankings below 10,000 out of 57,155. SA - HSIC; Kernel - rbf
Ranking @ t i using HSIC - rbf
3rd order comb. t 1 t 3 t 6 t 12 t 24 3rd order comb. t 1 t 3 t 6 t 12 t 24
APC-PITX2-SFRP4 6639 22831 16274 5172 51942 APC-PITX2-SENP2 2251 31790 24604 4114 39754
APC-PITX2-TCF7 5809 43852 29659 2608 54162 PITX2-PORCN-TLE2 13743 33091 10461 36155 54286
PITX2-PORCN-WNT4 9247 2492 36647 13332 52478 PITX2-PORCN-SENP2 9499 29209 4986 29421 35908
DVL2-JUN-PITX2 22623 16521 37051 52719 15020 FZD5-PITX2-SENP2 10435 42695 24116 3954 33353
APC-PITX2-PPP2CA 4042 33446 8698 18579 52910 APC-PITX2-RHOU 4699 39874 24475 1820 49384
PITX2-PORCN-WNT5A 11335 32674 6548 15458 54809 PITX2-PORCN-FBXW4 2782 19946 19676 35972 50951
DIXDC1-PITX2-SENP2 3537 43865 15972 13329 19669 CTNNBIP1-JUN-PITX2 55688 6273 51543 54725 26305
CCND1-FGF4-PITX2 55688 6273 51543 54725 26305 PITX2-PORCN-TCF7L1 13222 48332 9570 21227 51753
DIXDC1-PITX2-SFRP4 9005 33898 35036 1595 29334 PITX2-PORCN-WNT2B 6802 25276 16938 13140 54357
APC-PITX2-WNT4 6441 34135 28508 16023 43494 FRAT1-JUN-PITX2 28349 55075 50998 56838 16856
PITX2-PORCN-TLE1 13872 39019 23792 7146 28106 DKK1-JUN-PITX2 24208 3989 4050 56945 15274
AES-AXIN1-PITX2 37489 47814 10383 53313 22724 PITX2-PORCN-PPP2R1A 11355 50277 26063 28070 55628
PITX2-PORCN-RHOU 11795 30595 6426 8297 54722 CCND1-JUN-PITX2 44312 43519 25962 49672 2955
FOSL1-JUN-PITX2 42099 14135 52254 57017 24935 FZD6-PITX2-WNT2B 8135 7300 14987 7418 3456
FZD5-PITX2-SFRP4 8368 50438 38825 1203 52857 PITX2-PORCN-SFRP4 7652 26224 19994 9630 41059
CCND1-CTBP1-PITX2 7652 26224 19994 9630 41059 FSHB-FZD2-PITX2 11301 38653 1373 55358 36056
PITX2-WNT3-WNT5A 50071 36976 3198 23809 43096 CCND2-LRP6-PITX2 20931 44333 44558 56656 20738
PITX2-PORCN-SFRP1 20244 35446 37738 24843 55456 AES-EP300-PITX2 46927 53837 1549 50756 32506
FZD6-PITX2-SFRP4 7135 52408 16969 864 34132 PITX2-WNT3-WNT3A 36927 41437 49172 9526 14468
DAAM1-FOXN1-PITX2 1685 41262 42245 51064 684 CSNK2A1-JUN-PITX2 25321 4747 44298 56844 22732
FBXW11-LRP6-PITX2 29615 47349 39438 51084 16601 CCND1-CTNNBIP1-PITX2 17845 54257 2633 44741 19765
CSNK2A1-FOXN1-PITX2 1130 13168 44037 50356 32422 FOXN1-GSK3A-PITX2 35488 50787 34525 56639 52918
AXIN1-FZD6-PITX2 33737 44557 47717 57090 46710 FRZB-GSK3A-PITX2 5619 18480 55073 54146 46967
PITX2-WNT1-WNT5A 29674 16693 38632 17220 34621 BTRC-GSK3A-PITX2 2406 44730 43962 54217 10925
PITX2-SFRP4-WNT2B 13474 47608 14111 19231 2624 DAAM1-JUN-PITX2 35874 49308 2846 56449 4164
CXXC4-JUN-PITX2 5093 2871 54929 54382 25342 APC-PITX2-WNT3 18467 40797 31945 31204 47530
PITX2-PORCN-PPP2CA 9603 23189 295 19554 39138 DIXDC1-PITX2-WNT2B 12649 21037 9654 4112 8993
FBXW11-FOXN1-PITX2 661 3042 46901 46989 62 CSNK1D-FGF4-PITX2 21808 22200 7826 55044 47261
LRP5-PITX2-SFRP4 1850 34385 2623 13213 34281 DIXDC1-PITX2-WNT4 11062 47027 42885 4269 14148
FOSL1-GSK3A-PITX2 22118 26574 53921 57069 41599 FBXW11-JUN-PITX2 17945 27019 14279 54975 2329
CCND3-PITX2-WNT3A 14471 39233 2731 800 1147 CSNK2A1-MYC-PITX2 21651 30519 49254 52766 16814
EP300-FZD2-PITX2 21066 1261 6278 52068 50788 CSNK1D-FOXN1-PITX2 11143 1695 49037 55776 7145
FZD1-GSK3A-PITX2 6732 30000 53910 56520 34560 CCND3-PITX2-SFRP4 4452 50957 21986 3532 9719
DVL1-EP300-PITX2 56689 28520 27891 57038 12113 DAAM1-GSK3A-PITX2 1726 56240 42341 56628 12934
DKK1-PITX2-SFRP4 9818 37503 3735 2305 35936 GSK3B-PITX2-SFRP4 5309 55194 34830 18305 53111
FBXW2-JUN-PITX2 42532 23223 17767 54368 980 FRZB-FZD2-PITX2 22096 10208 42171 51487 54482
DIXDC1-PITX2-PPP2CA 5166 50281 13595 5982 18374 DAAM1-LRP6-PITX2 25969 54325 26609 56867 3176
FOSL1-FOXN1-PITX2 10188 3461 55891 51582 2726 CTNNB1-FOXN1-PITX2 7149 4991 55880 53565 3414
PITX2-WNT1-WNT2B 26078 12206 23538 5721 30071 CCND3-PITX2-SENP2 10221 40135 22112 6819 7030
FZD5-PITX2-WNT2B 22980 38933 9787 4035 21144 FZD7-GSK3A-PITX2 3127 14890 47575 57093 5868
AXIN1-EP300-PITX2 56749 23129 25963 57120 24869 FRAT1-GSK3A-PITX2 4495 57021 56892 56898 45139
CSNK1G1-FZD2-PITX2 45412 7430 10137 54602 39686 FOSL1-FZD2-PITX2 12121 784 39252 52428 46106
FBXW11-PITX2-SFRP4 8480 50287 2608 4536 27519 CSNK1G1-PITX2-SENP2 8978 31266 11421 7149 23975
PITX2-PYGO1-TLE2 1782 35079 27236 39307 56772 CTBP2-FOXN1-PITX2 18240 37720 54077 51182 7949
DVL1-FOXN1-PITX2 7131 54107 45985 52139 6298 CTBP1-JUN-PITX2 33380 1220 50964 56252 25801
PITX2-WNT1-WNT4 32926 5300 37141 2973 19943 DIXDC1-PITX2-RHOU 6079 35454 22214 14529 24323
FZD6-PITX2-TCF7 5172 16188 13820 2800 28962 DKK1-GSK3A-PITX2 605 17271 39751 55202 27215
FZD6-PITX2-SENP2 3363 52204 8127 5114 16199 APC-PITX2-SLC9A3R1 6853 5291 25242 18176 16828
FBXW11-PITX2-WNT2B 30130 56623 1327 7485 2572 DIXDC1-PITX2-TCF7 4373 37581 13658 8585 32638
CSNK1D-PITX2-SFRP4 4175 45358 33459 4847 37993 FZD5-CCND3-PITX2 40000 10437 46397 54792 20187
FZD6-PITX2-WNT2 10709 28286 1099 25993 43215 AES-FOXN1-PITX2 3577 24818 43679 53324 2571
CSNK1G1-PITX2-RHOU 11965 12955 21369 13669 45243 FZD7-NKD1-PITX2 25856 8298 48445 57028 4035
FGF4-JUN-PITX2 24971 2275 32263 54277 17002 CCND1-NLK-PITX2 30491 29337 45690 39544 1454
FZD6-PITX2-SFRP1 18690 52116 9763 7836 11500 CXXC4-FGF4-PITX2 3350 14873 39377 55805 47209
AXIN1-FOXN1-PITX2 17522 6988 53149 55878 9496 FOSL1-PITX2-SFRP4 7348 5890 31972 1744 49355
FOSL1-NKD1-PITX2 29467 27288 56470 57104 13679 DKK1-PITX2-WNT2B 17111 13223 40502 378 15000
FZD5-PITX2-RHOU 12500 51905 7871 1962 44656 GSK3B-PITX2-SENP2 915 34496 33084 22723 32507
FZD6-PITX2-TCF7L1 4289 24535 11228 6141 16611 CTBP1-FOXN1-PITX2 8239 9962 54422 50573 10742
FBXW2-GSK3A-PITX2 13991 18085 38156 55688 24970 EP300-GSK3B-PITX2 22813 7384 28301 49131 16578
CTBP1-FGF4-PITX2 24027 10442 12158 56632 50733 FRAT1-FZD2-PITX2 19475 56951 30336 56309 51026
AES-FZD2-PITX2 56089 10520 10321 45652 34757 FBXW11-GSK3A-PITX2 6618 46116 51128 49797 28514
FZD8-JUN-PITX2 40592 40343 33795 57114 7221 CXXC4-FZD2-PITX2 28941 8301 39688 54135 51166
PITX2-SFRP4-TLE2 23954 41848 2647 36476 20017 DIXDC1-FZD2-PITX2 15533 7397 34069 54461 17799
Table 3. Rankings of PITX2-X-X. A list of approximately first 125 combinations with rankings below 10,000 out of 57,155. SA - SOBOL; Implementation - 2002
Table 3. Rankings of PITX2-X-X. A list of approximately first 125 combinations with rankings below 10,000 out of 57,155. SA - SOBOL; Implementation - 2002
Ranking @ t i using SOBOL - 2002
3rd order comb. t 1 t 3 t 6 t 12 t 24 3rd order comb. t 1 t 3 t 6 t 12 t 24
APC-PITX2-SFRP4 17003 19660 7752 22464 43680 APC-PITX2-SENP2 16777 21369 5264 21757 43696
APC-PITX2-TCF7 19670 34554 8057 26773 38941 PITX2-PORCN-TLE2 14738 34228 17868 7003 24689
PITX2-PORCN-WNT4 38340 23219 45866 44679 30684 PITX2-PORCN-SENP2 49351 13297 36355 31422 8016
DVL2-JUN-PITX2 23671 1038 12434 27999 54466 FZD5-PITX2-SENP2 521 47250 5679 3657 50275
APC-PITX2-PPP2CA 24251 10201 10127 26604 27627 APC-PITX2-RHOU 39285 21142 46215 32608 9407
PITX2-PORCN-WNT5A 4366 18564 14041 19978 22471 PITX2-PORCN-FBXW4 8808 13705 22864 22147 31748
DIXDC1-PITX2-SENP2 55978 6920 46363 55209 16814 CTNNBIP1-JUN-PITX2 11329 1937 10201 6114 40219
CCND1-FGF4-PITX2 43513 2928 44305 52341 16554 PITX2-PORCN-TCF7L1 7523 29695 12381 16214 18408
DIXDC1-PITX2-SFRP4 46369 10535 43650 52909 13347 PITX2-PORCN-WNT2B 9536 5794 12824 18961 17911
APC-PITX2-WNT4 24477 25329 3199 26367 36930 FRAT1-JUN-PITX2 19630 54721 9834 10848 22067
PITX2-PORCN-TLE1 49615 27631 44758 40897 38885 DKK1-JUN-PITX2 2939 11664 23494 19389 44598
AES-AXIN1-PITX2 47687 38614 55070 30813 9874 PITX2-PORCN-PPP2R1A 10644 13926 20214 8562 45301
PITX2-PORCN-RHOU 7818 43749 20769 25705 49200 CCND1-JUN-PITX2 17592 41812 11511 4995 53682
FOSL1-JUN-PITX2 29544 47341 44123 52018 7644 FZD6-PITX2-WNT2B 42547 47083 32974 29428 5335
FZD5-PITX2-SFRP4 2340 11183 13226 1835 33599 PITX2-PORCN-SFRP4 52035 24948 36616 49778 2115
CCND1-CTBP1-PITX2 47450 37599 38364 47623 15808 FSHB-FZD2-PITX2 21425 53181 12066 7803 49923
PITX2-WNT3-WNT5A 3631 37403 19670 4320 50237 CCND2-LRP6-PITX2 45303 45054 55240 46174 9660
PITX2-PORCN-SFRP1 5118 32289 20516 7388 55055 AES-EP300-PITX2 27429 13782 22774 24073 54041
FZD6-PITX2-SFRP4 2191 34024 23773 8678 52481 PITX2-WNT3-WNT3A 1072 29636 4611 11649 49643
DAAM1-FOXN1-PITX2 23402 15789 15327 5498 42400 CSNK2A1-JUN-PITX2 4226 47140 759 5831 41428
FBXW11-LRP6-PITX2 19674 55920 14183 7236 52984 CCND1-CTNNBIP1-PITX2 23479 13649 20332 26184 43389
CSNK2A1-FOXN1-PITX2 484 10646 14993 25101 56105 FOXN1-GSK3A-PITX2 55917 8017 43971 38630 16813
AXIN1-FZD6-PITX2 45899 20191 43656 43529 4707 FRZB-GSK3A-PITX2 42536 49066 41808 51663 3945
PITX2-WNT1-WNT5A 34 29476 27919 8439 25717 BTRC-GSK3A-PITX2 53128 50908 30242 52659 1281
PITX2-SFRP4-WNT2B 7927 31067 16874 24744 41200 DAAM1-JUN-PITX2 24371 14681 11567 17251 47118
CXXC4-JUN-PITX2 7081 3972 8713 3640 32183 APC-PITX2-WNT3 14234 12446 706 24449 41729
PITX2-PORCN-PPP2CA 48624 10701 36145 29228 15037 DIXDC1-PITX2-WNT2B 3174 55687 15258 13757 29932
FBXW11-FOXN1-PITX2 13141 28980 22463 8005 34303 CSNK1D-FGF4-PITX2 45761 16034 33072 48233 21295
LRP5-PITX2-SFRP4 315 27436 8203 2763 45221 DIXDC1-PITX2-WNT4 44341 8459 33406 35610 21988
FOSL1-GSK3A-PITX2 3336 36071 6692 8964 29002 FBXW11-JUN-PITX2 27953 2910 15908 22 55248
CCND3-PITX2-WNT3A 34394 29164 30661 48295 16862 CSNK2A1-MYC-PITX2 9129 7731 935 12301 36666
EP300-FZD2-PITX2 24012 15242 9973 25729 44122 CSNK1D-FOXN1-PITX2 18384 31000 27911 15993 34137
FZD1-GSK3A-PITX2 49460 16018 43507 46060 9217 CCND3-PITX2-SFRP4 22350 19459 24189 16717 42599
DVL1-EP300-PITX2 548 36053 11918 25848 49131 DAAM1-GSK3A-PITX2 40753 11421 43484 37867 5004
DKK1-PITX2-SFRP4 694 29442 14079 22614 54046 GSK3B-PITX2-SFRP4 14898 11432 9059 22640 47560
FBXW2-JUN-PITX2 12579 4618 17745 364 46971 FRZB-FZD2-PITX2 35229 41345 36872 51138 49950
DIXDC1-PITX2-PPP2CA 53041 37364 46121 33605 10550 DAAM1-LRP6-PITX2 16446 14829 15814 16673 38836
FOSL1-FOXN1-PITX2 54512 5376 32845 52595 9349 CTNNB1-FOXN1-PITX2 29063 19206 49013 56402 27258
PITX2-WNT1-WNT2B 3768 50433 24960 15608 43963 CCND3-PITX2-SENP2 22323 19475 21774 24829 24809
FZD5-PITX2-WNT2B 45840 6879 31831 55937 11210 FZD7-GSK3A-PITX2 8237 8741 24973 13187 10820
AXIN1-EP300-PITX2 1837 53367 4684 5496 23397 FRAT1-GSK3A-PITX2 44421 52054 29767 47337 1646
CSNK1G1-FZD2-PITX2 4443 9218 19882 21920 41937 FOSL1-FZD2-PITX2 18628 35229 27305 27474 41987
FBXW11-PITX2-SFRP4 22007 13276 18287 6972 23461 CSNK1G1-PITX2-SENP2 42929 46890 54375 42726 15165
PITX2-PYGO1-TLE2 19850 10379 18180 6093 40940 CTBP2-FOXN1-PITX2 12690 32085 14231 16779 36765
DVL1-FOXN1-PITX2 13716 11451 12180 2594 46581 CTBP1-JUN-PITX2 24353 53693 13796 3746 36415
PITX2-WNT1-WNT4 55244 8137 33549 51863 7332 DIXDC1-PITX2-RHOU 1183 50113 10813 1973 40351
FZD6-PITX2-TCF7 58 54592 26110 20224 55626 DKK1-GSK3A-PITX2 51992 863 44516 56355 32287
FZD6-PITX2-SENP2 432 817 17937 22896 56866 APC-PITX2-SLC9A3R1 17574 24386 9813 27607 44761
FBXW11-PITX2-WNT2B 29169 24449 32207 29680 32687 DIXDC1-PITX2-TCF7 53422 53152 36175 42927 22338
CSNK1D-PITX2-SFRP4 26609 44292 24260 17256 33381 FZD5-CCND3-PITX2 19393 32161 13355 11683 5330
FZD6-PITX2-WNT2 14637 10126 24195 27724 51796 AES-FOXN1-PITX2 17914 21798 703 10325 20162
CSNK1G1-PITX2-RHOU 14243 10287 2792 14397 41970 FZD7-NKD1-PITX2 1376 4501 11215 16178 40845
FGF4-JUN-PITX2 18457 36152 1440 2969 44768 CCND1-NLK-PITX2 48102 11112 41884 52866 812
FZD6-PITX2-SFRP1 56728 56346 39190 34205 286 CXXC4-FGF4-PITX2 38294 56427 50581 38505 7533
AXIN1-FOXN1-PITX2 4350 36135 20767 6550 49005 FOSL1-PITX2-SFRP4 48140 54056 50405 43960 31198
FOSL1-NKD1-PITX2 9221 29087 12816 22289 29068 DKK1-PITX2-WNT2B 54626 45844 39615 30595 28144
FZD5-PITX2-RHOU 55488 4203 52989 44916 13289 GSK3B-PITX2-SENP2 16336 29784 11616 16048 44166
FZD6-PITX2-TCF7L1 57098 2574 31025 36904 1546 CTBP1-FOXN1-PITX2 8046 12489 6826 22448 30443
FBXW2-GSK3A-PITX2 36714 12730 37356 49810 4808 EP300-GSK3B-PITX2 26038 11762 5959 1368 52250
CTBP1-FGF4-PITX2 41855 4408 56680 38243 15293 FRAT1-FZD2-PITX2 55832 24730 44050 40886 5856
AES-FZD2-PITX2 29806 34809 44098 30337 5206 FBXW11-GSK3A-PITX2 35583 52800 48903 44758 21694
FZD8-JUN-PITX2 14227 28361 22535 6380 50233 CXXC4-FZD2-PITX2 49278 49869 33082 55290 10056
PITX2-SFRP4-TLE2 16042 46434 18733 25251 47254 DIXDC1-FZD2-PITX2 7897 43672 18332 7315 28673
Table 4. Rankings of PITX2-X-X. A list of approximately first 125 combinations with rankings below 10,000 out of 57,155. SA - SOBOL; Implementation - martinez
Table 4. Rankings of PITX2-X-X. A list of approximately first 125 combinations with rankings below 10,000 out of 57,155. SA - SOBOL; Implementation - martinez
Ranking @ t i using SOBOL - martinez
3rd order comb. t 1 t 3 t 6 t 12 t 24 3rd order comb. t 1 t 3 t 6 t 12 t 24
APC-PITX2-SFRP4 21135 9002 6211 25291 18551 APC-PITX2-SENP2 8228 7160 4560 17437 34258
APC-PITX2-TCF7 10603 6873 14988 17051 4307 PITX2-PORCN-TLE2 34575 49797 39649 34525 4049
PITX2-PORCN-WNT4 9395 23474 32883 37297 24846 PITX2-PORCN-SENP2 20617 22563 38695 45455 12377
DVL2-JUN-PITX2 36525 53951 49133 9931 6910 FZD5-PITX2-SENP2 41803 45522 15594 45235 8865
APC-PITX2-PPP2CA 13736 5292 47096 11939 9629 APC-PITX2-RHOU 51464 18486 41767 41508 48864
PITX2-PORCN-WNT5A 23589 48950 34402 37236 3755 PITX2-PORCN-FBXW4 6203 42677 48707 17993 5734
DIXDC1-PITX2-SENP2 22480 35744 10230 30579 35447 CTNNBIP1-JUN-PITX2 22154 22207 5596 2608 22098
CCND1-FGF4-PITX2 50568 42194 37514 30676 15317 PITX2-PORCN-TCF7L1 4744 47264 23302 15463 5925
DIXDC1-PITX2-SFRP4 6126 5499 2542 31975 46995 PITX2-PORCN-WNT2B 32916 28214 19614 42831 17840
APC-PITX2-WNT4 33809 3550 4717 20161 40028 FRAT1-JUN-PITX2 12383 53362 24248 28478 2424
PITX2-PORCN-TLE1 26366 14552 49163 2938 25505 DKK1-JUN-PITX2 12302 18067 6655 22598 48385
AES-AXIN1-PITX2 12302 18067 6655 22598 48385 PITX2-PORCN-PPP2R1A 28551 48685 56979 48784 335
PITX2-PORCN-RHOU 5900 36986 56261 27068 40618 CCND1-JUN-PITX2 26952 23887 45413 42573 55139
FOSL1-JUN-PITX2 6068 2098 52232 48612 54047 FZD6-PITX2-WNT2B 10663 27608 9003 33499 56550
FZD5-PITX2-SFRP4 20840 47471 15797 20287 564 PITX2-PORCN-SFRP4 34090 15340 54473 55067 54878
CCND1-CTBP1-PITX2 30618 10940 32193 972 31794 FSHB-FZD2-PITX2 1274 54630 28998 48951 32890
PITX2-WNT3-WNT5A 11058 51240 29498 43821 8108 CCND2-LRP6-PITX2 33683 15677 29830 6781 45787
PITX2-PORCN-SFRP1 3773 36533 56407 54176 6456 AES-EP300-PITX2 1201 15547 40455 15398 55710
FZD6-PITX2-SFRP4 37787 24023 8434 15004 34203 PITX2-WNT3-WNT3A 27307 12715 32115 33802 9431
DAAM1-FOXN1-PITX2 1465 52252 45599 49025 5462 CSNK2A1-JUN-PITX2 27303 36268 42893 48996 26416
FBXW11-LRP6-PITX2 41653 34792 56343 41510 9933 CCND1-CTNNBIP1-PITX2 5144 23911 28169 30083 48576
CSNK2A1-FOXN1-PITX2 42869 56525 55768 53229 9861 FOXN1-GSK3A-PITX2 8151 3885 48407 38343 35200
AXIN1-FZD6-PITX2 30708 20336 36283 2992 46685 FRZB-GSK3A-PITX2 38546 36100 12520 26239 9128
PITX2-WNT1-WNT5A 34426 18511 22931 30346 5013 BTRC-GSK3A-PITX2 47166 48343 22973 655 24369
PITX2-SFRP4-WNT2B 927 39222 24017 42692 21210 DAAM1-JUN-PITX2 1061 37083 38686 12471 9610
CXXC4-JUN-PITX2 40461 38937 29744 13401 491 APC-PITX2-WNT3 4548 9482 3841 24293 17208
PITX2-PORCN-PPP2CA 13665 21071 35213 8665 8832 DIXDC1-PITX2-WNT2B 1930 455 20150 24837 6597
FBXW11-FOXN1-PITX2 21045 14442 3872 11989 28492 CSNK1D-FGF4-PITX2 44579 43462 767 11821 46293
LRP5-PITX2-SFRP4 44579 43462 767 11821 46293 DIXDC1-PITX2-WNT4 7785 53066 8449 29987 33965
FOSL1-GSK3A-PITX2 41751 14274 10983 10196 4550 FBXW11-JUN-PITX2 17329 8127 25753 12601 5194
CCND3-PITX2-WNT3A 17329 8127 25753 12601 5194 CSNK2A1-MYC-PITX2 17421 12288 5142 54094 13707
EP300-FZD2-PITX2 42426 55258 55923 31463 6536 CSNK1D-FOXN1-PITX2 39725 19950 32730 49412 6271
FZD1-GSK3A-PITX2 48467 33105 24061 31062 11460 CCND3-PITX2-SFRP4 4204 22026 19937 33723 37285
DVL1-EP300-PITX2 3179 18813 1618 47057 47210 DAAM1-GSK3A-PITX2 55926 34919 2198 26476 34092
DKK1-PITX2-SFRP4 41420 54154 2348 32631 39954 GSK3B-PITX2-SFRP4 33905 8750 32946 40959 35507
FBXW2-JUN-PITX2 7565 3918 56772 31902 36091 FRZB-FZD2-PITX2 34589 22932 3335 4626 9832
DIXDC1-PITX2-PPP2CA 13451 49710 9306 15472 45623 DAAM1-LRP6-PITX2 4226 51422 34496 17910 19674
FOSL1-FOXN1-PITX2 34136 42061 42013 21630 10002 CTNNB1-FOXN1-PITX2 30090 3174 40964 41038 24723
PITX2-WNT1-WNT2B 30090 3174 40964 41038 24723 CCND3-PITX2-SENP2 26238 35315 30434 4445 31508
FZD5-PITX2-WNT2B 54327 51773 28527 10450 30322 FZD7-GSK3A-PITX2 53257 11920 36889 50223 7187
AXIN1-EP300-PITX2 35819 48198 7128 5864 15595 FRAT1-GSK3A-PITX2 54984 44532 31462 10423 18225
CSNK1G1-FZD2-PITX2 27767 17670 44181 29136 6588 FOSL1-FZD2-PITX2 46849 14143 26285 25720 2468
FBXW11-PITX2-SFRP4 24062 50479 55339 34232 43276 CSNK1G1-PITX2-SENP2 21368 35661 31239 903 35353
PITX2-PYGO1-TLE2 4242 25999 8726 47004 18848 CTBP2-FOXN1-PITX2 31599 17908 37379 3256 50472
DVL1-FOXN1-PITX2 5966 14588 26787 49885 38378 CTBP1-JUN-PITX2 52350 15661 6369 48385 43960
PITX2-WNT1-WNT4 29539 42190 49683 54991 25868 DIXDC1-PITX2-RHOU 53274 4427 27249 13322 6203
FZD6-PITX2-TCF7 34797 1642 14315 5723 2841 DKK1-GSK3A-PITX2 19149 27520 14397 22460 50424
FZD6-PITX2-SENP2 3638 21706 10102 1780 5953 APC-PITX2-SLC9A3R1 17135 12041 37141 24875 35496
FBXW11-PITX2-WNT2B 21655 37846 5599 10411 15406 DIXDC1-PITX2-TCF7 14448 13847 2584 29387 42594
CSNK1D-PITX2-SFRP4 783 12794 45331 28854 43563 FZD5-CCND3-PITX2 2967 9267 43490 56564 1817
FZD6-PITX2-WNT2 18122 28288 4331 4664 2986 AES-FOXN1-PITX2 35956 4067 8624 18700 37957
CSNK1G1-PITX2-RHOU 3677 41232 10163 26187 14032 FZD7-NKD1-PITX2 21282 14799 25761 53461 20283
FGF4-JUN-PITX2 47903 44221 6764 16153 53529 CCND1-NLK-PITX2 34312 8877 197 29441 23686
FZD6-PITX2-SFRP1 47783 46454 12281 1010 33862 CXXC4-FGF4-PITX2 15949 22104 53797 53381 41155
AXIN1-FOXN1-PITX2 41205 52384 56750 25249 1165 FOSL1-PITX2-SFRP4 9026 16248 48877 1791 54481
FOSL1-NKD1-PITX2 50255 20028 7545 39345 9274 DKK1-PITX2-WNT2B 31169 20699 272 25542 32964
FZD5-PITX2-RHOU 38238 30956 45448 44396 35805 GSK3B-PITX2-SENP2 53063 6524 48104 47493 2780
FZD6-PITX2-TCF7L1 23995 53280 5248 34635 32343 CTBP1-FOXN1-PITX2 40602 56308 50160 12837 53360
FBXW2-GSK3A-PITX2 30236 5683 49721 53618 29062 EP300-GSK3B-PITX2 32327 39363 15231 36079 50640
CTBP1-FGF4-PITX2 22020 31745 53245 9706 10584 FRAT1-FZD2-PITX2 38027 8675 30814 7454 12758
AES-FZD2-PITX2 28125 7101 38481 20396 36144 FBXW11-GSK3A-PITX2 55105 985 398 46541 28183
FZD8-JUN-PITX2 51716 20227 40146 38514 47991 CXXC4-FZD2-PITX2 54393 44977 17036 3028 55722
PITX2-SFRP4-TLE2 810 13707 22911 51972 37332 DIXDC1-FZD2-PITX2 616 9921 12975 22276 34068
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated