Preprint
Article

This version is not peer-reviewed.

Polyhedral Embeddings of Triangular Regular Maps of Genus g, 1 < g < 15, and Neighborly Spatial Polyhedra

Submitted:

22 February 2025

Posted:

24 February 2025

You are already at the latest version

Abstract
This article provides a survey about polyhedral embeddings of triangular regular maps of genus g, $2 \leq g \leq 14$, and of neighborly spatial polyhedra. An old conjecture of Gr\"unbaum from 1967, although disproved in 2000, lies behind this investigation. We discuss all duals of these polyhedra as well, whereby we accept, e.g., the Szilassi torus with its non-convex faces to be a dual of the M\"obius torus. A numerical optimization approach of the second author for finding such embeddings, was first applied to finding (unsuccessfully) a dual polyhedron of one of the 59 closed oriented surfaces with the complete graph of 12 vertices as their edge graph. The same method has been successfully applied for finding polyhedral embeddings of triangular regular maps of genus g, $2 \leq g \leq 14$. The effectiveness of the new method has led to ten additional new polyhedral embeddings of triangular regular maps and their duals. There does exist symmetrical polyhedral embeddings of all triangular regular maps with genus g, $2 \leq g \leq 14$, except a single undecided case of genus 13.
Keywords: 
;  ;  

1. Introduction

This article provides a contribution to the field of Computational Synthetic Geometry, which explores methods for realizing abstract geometric objects in concrete vector spaces, [1]. Our focus lies in the construction and analysis of triangular regular maps of genus g, 2 g 14 and of neighborly spatial polyhedra and of all these embeddings. These spatial polyhedra are all related to an old conjecture of Branko Grünbaum from 1967 [2], page 253, who conjectured that all oriented simplicial 2-manifolds have polyhedral embeddings in R 3 . This conjecture was not believed by many experts, however, a proof of a counter example was given only first in 2000, [3], and additional counter-examples provided by Lars Schewe in his Ph.D. thesis, see his publication in 2010 [4]. When we study convex polytopes with their convex faces, we have the polar dual polytopes with convex faces again. When we have polyhedra with higher genus there are polyhedra for which we have in the dual face lattice embeddings with non-convex faces. A famous example for such an embedding is Szilassi’s polyhedron with a dual face lattice compared with the 7 vertex torus of Möbius. We do allow non-convex faces when we use duality in this paper.
The investigation of the second author to study the dual cases, of what has been investigated by Bokowski, Guedes de Oliveira, and Schewe, could not find questionable embeddings in this area. The use of his numerical optimization approach has led to all but one embeddings of triangular regular maps of genus g, 2 g 14 . We recall that a regular map generalizes in a topological manner what we know from Platonic solids. A regular map is a decomposition of a two-dimensional manifold into topological disks such that every flag (an incident vertex-edge-face triple) can be transformed into any other flag by a combinatorial symmetry of the decomposition. We use the result of M. Conder [5] and his notation for triangular oriented regular maps of genus g, 2 g 14 with multiplicity 1. These 14 regular maps are listed in Table 1. For only five of them polyhedral embeddings were known. For the remaining cases, we have now eight new polyhedral embeddings of regular maps and for two former polyhedral embeddings, the symmetry properties have been improved. This has even led to detecting a fault in a previous paper, [6].
In the next two sections we provide tables with the list of triangular regular maps and neighborly polyhedra that were tested according to Grünbaum’s conjecture.
Afterwards we describe the algorithm of the second author.

2. Polyhedral Embeddings of Triangulated Orientable Regular Maps with Genus g, 2 g 14 and Some of Their Duals

We have listed in Table 1 all polyhedral embeddings of triangulated orientable regular maps with genus g, 2 g 14 and some of their duals. All triangular polyhedral embeddings in Table 1 are new for genus g, g 8 . Geometric symmetries are listed with Schoenflies Notation. The embeddings of genus 6 and 7 have higher geometrical symmetries compared to those that were known before. A former embedding of R6.1 of Brehm has never been published. It had no geometric symmetries according to a private communication of J.M.Wills.

3. Polyhedral Embeddings of Neighborly Spatial Polyhedra with Complete Graphs as Their Edge Graph and Their Duals

In Table 2 we have listed neighborly spatial polyhedra according to complete graph embeddings on 2-manifolds and pseudo-manifolds. For complete graphs with 9 and 10 vertices we have polyhedra with pseudo-manifolds as their boundaries: A vertex can have more than one circular sequence of incident faces. For the seven vertex torus of Möbius you can download a video with all four embeddings at http://science-to-touch.com/ForJB/MoebiusTorus.mov.

4. Polyhedral Embeddings as an Optimization Problem

Finding a flat embedding of a simplicial complex without intersections is, in general, a difficult problem. While solutions can be easily verified in polynomial time, there are no efficient algorithms to generate them or prove their non-existence without a full search of the space. For small vertex counts, there has been some success using SAT solvers with oriented matroids [4] however, this can take significant computational resources and becomes intractable for larger complexes.
There are methods that are more efficient at solving NP problems of this sort if we introduce heuristics and non-determinism to our search. As a consequence, we will not be able to guarantee that a solution will be found for a given complex, and questions about which symmetries can be realized will remain open. This compromise is acceptable as we are looking for any embeddable examples where none exist currently.
We choose to focus on triangular regular maps specifically. This is because a polyhedron with all triangle faces can be completely defined by its set of 3-dimensional vertices and triangulation with no additional constraints. This greatly simplifies the optimization. By contrast, faces with polygons of more than 3 vertices need additional constraints to find embeddings since the points may be skew and not all lie on a common plane.
Duals of triangular maps are also equally efficient since these polyhedra can be entirely described by a set of planes and vertex adjacency list. Since the edge graph is cubic, the vertices of the dual are simply the intersection of the 3 planes that share the vertex.
Enforcing a geometric symmetry helps reduce the search space, speed up the computation, and in general seems to produce the best results when a suitable symmetry is used. All embeddings found so far have had some non-trivial geometric symmetry, and there have been no cases where an asymmetric solution has had fewer intersections than a symmetric one for a non-embeddable example. Therefore, we conjecture that all embeddable regular maps can be embedded with at least 1 non-trivial geometric symmetry.
Possible geometric symmetries can be inferred from the automorphisms of the regular map. Examples:
Permutation Group Possible Geometric Symmetries
(a,b)(c,d)(e,f) S2, C2, Cs
(a,b)(c,d)(e)(f) C2, Cs
(a,b,c)(d,e,f) C3
(a,b,c,d)(e,f,g,h) C4, D2
(a,b,c,d)(e,f) D2
(a,b,c,d)(e)(f) C4
To enforce a geometric symmetry, the first point of a permutation becomes the reference and the other points in the permutation get defined relative to the first one by the given symmetry type.
The solver works in 2 stages; First a large random search is conducted to find low-intersection candidates, then a second stage is used to refine each solution to both reduce the intersections if they are non-zero, and improve the aesthetics of the shape to eliminate things like large scale differences between edges, near-intersections, or very skinny polygons. This stage can also truncate the vertex positions to produce small integer coordinates.
The heuristic used for the large search is simply the number of edge-polygon intersections plus the number of self-crossings of each polygon as illustrated in Figure 1. For triangular maps, self-crossings are always zero, but duals may have crossings.
Figure 1. Left: An edge-polygon intersection. Right: A polygon with a self-crossing.
Figure 1. Left: An edge-polygon intersection. Right: A polygon with a self-crossing.
Preprints 150275 g001
The second stage heuristic includes the penalty from the first stage plus one minus the minimum of the following metrics:
Length Quality: minimum side length maximum side length for each polygon
Distance Quality: closest distance between non - neighboring edges farthest distance between 2 points
Angle Quality: 1 cos ( smallest angle in any polygon )
Plane Quality: 1 cos ( smallest angle between neighboring faces )
The general algorithm is listed in Algorithm 1
Algorithm 1:Primary search for embeddings
Input: 
List of index triplets representing the triangles T 
1:
ProcedureSearchEmbeddings(T, i t e r s , c l u s t e r s , σ =1.0, β =0.997, γ =1.25) 
2:
fori in c l u s t e r s  do 
3:
    V i A p p l y S y m m e t r y ( R a n d o m V e r t i c e s ( ) )  
4:
    p i P e n a l t y ( T , V i )  
5:
end for 
6:
forj in i t e r s  do 
7:
    m A r g M i n i m u m ( p )  
8:
   for i in c l u s t e r s  do 
9:
     if  p i > p m * γ  then 
10:
         r = R a n d o m I n d e x ( )  
11:
         V i V r  
12:
         p i p r  
13:
     end if 
14:
      V n e w β * ( V i + R a n d o m N o i s e ( σ ) )  
15:
      V n e w A p p l y S y m m e t r y ( V n e w )  
16:
      p n e w P e n a l t y ( T , V n e w )  
17:
     if  p n e w p i or ( i m and p n e w p m * γ )  then 
18:
         V i V n e w  
19:
         p i p n e w  
20:
     end if 
21:
   end for 
22:
end for 
23:
  return  V m
24:
End Procedure
Depending on the complexity of the problem, the optimizer can usually find solutions within only seconds or minutes for the smallest examples such as R3.2, and about a day for the largest ones like R14.2 on a standard desktop computer. Again for dual problems, the algorithm is nearly identical, but each point represents a plane instead, which has the same degrees of freedom. These are generally slower and harder to find since the placement of the planes is more sensitive than the vertex positions.
For any undecided cases, best results are Kepler–Poinsot-like with low intersection count. R13.2 has been realized with as few as 64 edge intersections with D2 symmetry.

5. Polyhedral Embeddings According to Table 1

5.1. Case R3.1

This regular map R3.1 is also called Felix Klein’s quartic of Schläfli type { 3 , 7 } 8 and genus 3. It is the first element of the infinite sequence of Hurwitz of type { 3 , 7 } ,[16]. Its abstract symmetry group has order 336. References are [17,18].
It is an example of a regular Leonardo polyhedron, i.e., it is a polyhedral embedding of a regular map with a geometrical symmetry group of the rotational symmetry group of a Platonic solid. This polyhedral embedding is due to Schulte and Wills [19]. For additional articles about the six regular Leonardo polyhedra, see [20,21,22,23,24,25].
Figure 2. R3.1 with chiral tetrahedral symmetry
Figure 2. R3.1 with chiral tetrahedral symmetry
Preprints 150275 g002
Figure 3. The combinatorial input for a polyhedron of Felix Klein’s quartic of type { 3 , 7 } 8 . Here we see an example of a Petrie polygon.
Figure 3. The combinatorial input for a polyhedron of Felix Klein’s quartic of type { 3 , 7 } 8 . Here we see an example of a Petrie polygon.
Preprints 150275 g003

5.2. The Dual Case R3.1’

An embedding of the dual polyhedron of R3.1 is due to D. McCooey, [26].
Figure 4. R3.1’ with chiral tetrahedral symmetry
Figure 4. R3.1’ with chiral tetrahedral symmetry
Preprints 150275 g004

5.3. Case R3.2

The regular map of R3.2 is due to W. Dyck, [27] [28] of Schläfli type { 3 , 8 } 6 and genus 3. The combinatorial symmetry group has order 192.
A first embedding was found by J. Bokowski, [29]. An embedding with better geometrical symmetries, with the dihedral group D3, is due to U. Brehm, [30]. An additional embedding symmetry S2 and an alternative D3 embedding are new and due to the second author.
Figure 5. R3.2 with D3 and S2 symmetry
Figure 5. R3.2 with D3 and S2 symmetry
Preprints 150275 g005
Figure 6. The triangles of Dyck’s regular map R3.2 of type { 3 , 8 } 6 shown with a cyclic symmetry of order 3.
Figure 6. The triangles of Dyck’s regular map R3.2 of type { 3 , 8 } 6 shown with a cyclic symmetry of order 3.
Preprints 150275 g006
Figure 7. Two pictures of Jarke van Wijk’s video with topological embeddings of regular maps, [31,32]. Here we see Dyck’s regular map R3.2’ of type { 8 , 3 } 6 .
Figure 7. Two pictures of Jarke van Wijk’s video with topological embeddings of regular maps, [31,32]. Here we see Dyck’s regular map R3.2’ of type { 8 , 3 } 6 .
Preprints 150275 g007
Figure 8. Here we see Brehm's polyhedral embedding of Dyck's regular map R3.2 of type {3.8}6. The polyhedron is complete when the red parts cannot be seen. In the front and back parts, eight blue triangles have to be reinserted. The red triangles are the inner sides of the polyhedron. The polyhedron has a geometrical dihedral symmetry D3 of order 6.
Figure 8. Here we see Brehm's polyhedral embedding of Dyck's regular map R3.2 of type {3.8}6. The polyhedron is complete when the red parts cannot be seen. In the front and back parts, eight blue triangles have to be reinserted. The red triangles are the inner sides of the polyhedron. The polyhedron has a geometrical dihedral symmetry D3 of order 6.
Preprints 150275 g008
Figure 9. This embedding of Dyck’s regular map R3.2 of type { 3 , 8 } 6 has the geometrical dihedral symmetry D3 like Behm’s embedding. However, it is different. For a front triangle and for a triangle of the rear part we see only their boundaries, so that we can imagine the shape of this polyhedron.
Figure 9. This embedding of Dyck’s regular map R3.2 of type { 3 , 8 } 6 has the geometrical dihedral symmetry D3 like Behm’s embedding. However, it is different. For a front triangle and for a triangle of the rear part we see only their boundaries, so that we can imagine the shape of this polyhedron.
Preprints 150275 g009

5.4. Case R5.1

R5.1, due to Klein and Fricke [33] of type { 3 , 8 } 12 and genus 5, symmetry group of order 384.
The first embedding was found by B. Grünbaum, [34]. This is another example of the six regular Leonardo polyhedra. Later U. Brehm and J. M. Wills independently discovered this embedding again.
Figure 10. R5.1 with chiral octahedral and S2 symmetry
Figure 10. R5.1 with chiral octahedral and S2 symmetry
Preprints 150275 g010

5.5. The Dual Case R5.1’

The embedding of the dual is a new result of the second author in this paper.
Figure 11. R5.1’ with D2 and C3 symmetry
Figure 11. R5.1’ with D2 and C3 symmetry
Preprints 150275 g011

5.6. Case R6.1

R6.1, due to Coxeter and Moser of type { 3 , 10 } 6 and genus 6, symmetry group of order 300.
According to a private communication by J. M. Wills: A former polyhedral embedding of this regular map without any symmetry was found by U. Brehm. However, It was never published.
Figure 12. R6.1 with C3 and C2 symmetries
Figure 12. R6.1 with C3 and C2 symmetries
Preprints 150275 g012

5.7. Case R7.1

R7.1, due to Hurwitz of type { 3 , 7 } 18 and genus 7, the second element of the infinite Hurwitz sequence with types { 3 , 7 } , also denoted as Macbeath surface as she rediscovered it, symmetry group of order 1008. A first embedding without geometrical symmetries was found in 2018, [35]. The symmetry of this new embedding has order 3, although we find in [6] the claim that such a symmetry is not possible. In other words, this example tells us that a fault in that paper has been detected.
Figure 13. R7.1 with C3, C2, and S2 symmetry
Figure 13. R7.1 with C3, C2, and S2 symmetry
Preprints 150275 g013
Figure 14. We have 72 vertices, 252 edges, and 168 triangles.
Figure 14. We have 72 vertices, 252 edges, and 168 triangles.
Preprints 150275 g014
Figure 15. We see two orthogonal projections of the order 2 symmetric polyhedral embedding of Hurwitz's regular map {3,7}18 of genus 7 through the axis of symmetry. The 168 triangles are marked as their boundaries.
Figure 15. We see two orthogonal projections of the order 2 symmetric polyhedral embedding of Hurwitz's regular map {3,7}18 of genus 7 through the axis of symmetry. The 168 triangles are marked as their boundaries.
Preprints 150275 g015
Figure 16. An order 3 symmetrical polyhedral embedding of Hurwitz’s regular map { 3 , 7 } 18 of genus 7 with triangles progressively removed to show internal structure.
Figure 16. An order 3 symmetrical polyhedral embedding of Hurwitz’s regular map { 3 , 7 } 18 of genus 7 with triangles progressively removed to show internal structure.
Preprints 150275 g016

5.8. The Dual Case R7.1’

Figure 17. R7.1’ with C3 and C2 symmetry
Figure 17. R7.1’ with C3 and C2 symmetry
Preprints 150275 g017
Figure 18. R7.1’ with C3 symmetry. Faces removed to show: central axis, knotted cycle, ring cycle
Figure 18. R7.1’ with C3 symmetry. Faces removed to show: central axis, knotted cycle, ring cycle
Preprints 150275 g018

5.9. Case R8.1

The regular map R8.1 has Schläfli type { 3 , 8 } 8 and genus 8. Its combinatorial symmetry group has order 672. The regular map has 42 vertices, 112 faces.
Figure 19. R8.1 with D2, C4, C3, and S2 symmetry
Figure 19. R8.1 with D2, C4, C3, and S2 symmetry
Preprints 150275 g019

5.10. Case R8.2

The regular map R8.2 has Schläfli type { 3 , 8 } 14 and genus 8. Its combinatorial symmetry group has order 672. This regular map has 42 vertices and 112 faces.
Figure 20. R8.2 with D2, C4, and C3 symmetry
Figure 20. R8.2 with D2, C4, and C3 symmetry
Preprints 150275 g020

5.11. Case R10.1

The regular map R10.1 has Schläfli type { 3 , 9 } 12 and genus 10. Its combinatorial symmetry group has order 648.
Figure 21. R10.1 with D2 symmetry
Figure 21. R10.1 with D2 symmetry
Preprints 150275 g021

5.12. Case R10.2

R10.2, of type { 3 , 12 } 6 and genus 10, symmetry group of order 432.
Figure 22. R10.2 with C2 symmetry
Figure 22. R10.2 with C2 symmetry
Preprints 150275 g022
Figure 23. The triangles in the outer circular sequence appear twice. The colored line segments indicate these pairs.
Figure 23. The triangles in the outer circular sequence appear twice. The colored line segments indicate these pairs.
Preprints 150275 g023

5.13. Case R13.1

R13.1, of type { 3 , 10 } 30 and genus 13, symmetry group of order 720.
Figure 24. R13.1 with C3 and C2 symmetry
Figure 24. R13.1 with C3 and C2 symmetry
Preprints 150275 g024

5.14. Case R14.1

R14.1 due to Hurwitz of type { 3 , 7 } 12 of genus 14, symmetry group of order 2184.
In the theory of Riemann surfaces, the first Hurwitz triplet is a triple of distinct Hurwitz surfaces (R14.1, R14.2, and R14.3) with the identical automorphism group of the lowest possible genus, here 14.
Figure 25. R14.1 with D2 symmetry
Figure 25. R14.1 with D2 symmetry
Preprints 150275 g025

5.15. Case R14.2

R14.2 due to Hurwitz of type { 3 , 7 } 26 of genus 14, symmetry group of order 2184.
Figure 26. R14.2 with C2 symmetry
Figure 26. R14.2 with C2 symmetry
Preprints 150275 g026

5.16. Case R14.3

R14.3 due to Hurwitz of type { 3 , 7 } 14 of genus 14, symmetry group of order 2184.
Figure 27. R14.3 with D2 symmetry
Figure 27. R14.3 with D2 symmetry
Preprints 150275 g027

5.17. Case R13.2

The regular map R13.2 has Schläfli type { 3 , 12 } 12 and genus 13. Its combinatorial symmetry group has order 576.
It is the only triangular regular map of genus g, 2 g 14 that is not likely to be embeddable.

6. Complete Graphs with 4, 7, and 12 Vertices on Closed Oriented 2-Manifolds, No Diagonals

In general, a k-neighborly polytope is a convex polytope where any k or fewer vertices form a face. We concentrate on the spatial case (k=1), where a polyhedron must not be convex and it is considered neighborly if either its edge graph is complete (no diagonals) or each face shares exactly one edge with every other face (face-sharing property). These two properties are linked through duality: The dual of a neighborly polyhedron with a complete edge graph is a neighborly polyhedron with the face-sharing property, and vice versa.
Crucially, we are interested in embeddings of these neighborly polyhedra that are free of self-intersections. This requires us to consider only oriented closed surfaces for our polyhedra, as non-orientable surfaces cannot be embedded in R 3 . Furthermore, neighborly polyhedra with complete edge graphs necessarily have triangular faces. Therefore, our investigation centers on embeddings of triangular complete graphs on surfaces and their duals. These embeddings have played a significant role in results like the map color theorem, [15].
While we do not assume familiarity with oriented matroids, it is worth noting that all such triangular complete graph embeddings can be obtained by naturally extending the concept of pseudoline arrangements to curve arrangements on surfaces, [36].
Computations of all combinatorially possible embeddings is a second step before we discuss possible polyhedral embeddings.
We find in this section the solution of a long standing conjecture of Branco Grünbaum whether a cell decomposition of a triangulated orientable surface exists that cannot have an embedding in R 3 .

6.1. The Tetrahedron

The Tetrahedron has the complete graph with 4 vertices as its edge graph. This is the easiest example of a neighborly polyhedron.

6.2. The Seven Vertex Torus of Möbius

For the seven vertex torus of Möbius in his collected works, [7], Császár in [8] was the first to find an embedding for Möbius’s combinatorial description, although he was not aware of this former reference. Here the edge graph has seven vertices. In 1991 Bokowski and Eggert [9] have found via oriented matroid techniques additional three symmetrical polyhedral embeddings of this seven vertex torus of Möbius.
In this video we see another embedding as a YouTube video: https://youtu.be/LGUyT6xfTFs We find all four symmetric embeddings of this neighborly seven vertex torus also in [37]. The best version might be a video from 1986 that can be downloaded from http://science-to-touch.com/ForJB/MoebiusTorus.mov.
Figure 28. A symmetric Möbius torus embedding of Bokowski and Eggert [9] as a 3D-print, https://youtu.be/6GhtRzemOwU
Figure 28. A symmetric Möbius torus embedding of Bokowski and Eggert [9] as a 3D-print, https://youtu.be/6GhtRzemOwU
Preprints 150275 g028

6.3. The 59 Examples of the Complete Graph with 12 Vertices

The 59 combinatorial different examples of candidates for a triangular embedding with the complete graph with 12 vertices have been published in 1994, [12]. These 59 surfaces can be drawn topologically on this ceramic model in Figure 26. It is a shape that is topologically a sphere with six handles.
Figure 29. A genus 6 surface for all 59 topological embeddings of the complete graph with 12 vertices. Even finding just one such embedding is a challenge.
Figure 29. A genus 6 surface for all 59 topological embeddings of the complete graph with 12 vertices. Even finding just one such embedding is a challenge.
Preprints 150275 g029
A crucial first proof that an oriented closed triangular 2-manifold does not allow an embedding in 3-space was provided by Bokowski and Guedes de Oliveira in 2000, [3]. The theory of oriented matroids helped decisively: The set of possible oriented matroids that are not forbidden because of edge-face intersections turned out (after long computations) to be the empty set. Several models of the corresponding topological embedding of the corresponding surface have been produced by Bokowski. See: Die Geschichte eines Modells, in [37], p. 88ff.
For the topological embedding of this surface we have the attempt to visualize it in Figure 27.
Figure 30. Here you see the model for the topological shape of an example surface from the 59 surfaces that was used in [3]. Some topological triangles are drawn. The others are clear when you go along adjacent topological edges and take as a third edge the one connecting the other endpoints. A membrane with these three edges forms a triangle of the surface.
Figure 30. Here you see the model for the topological shape of an example surface from the 59 surfaces that was used in [3]. Some topological triangles are drawn. The others are clear when you go along adjacent topological edges and take as a third edge the one connecting the other endpoints. A membrane with these three edges forms a triangle of the surface.
Preprints 150275 g030

6.4. Neighborly Spatial Pseudo-Manifolds with 9 and 10 Vertices

We have additional spatial polyhedra without diagonals with 9 vertices in [12]. In Figure 28 we see an example of this paper.
Figure 31. A neighborly pseudomanifold with 9 vertices. Computer graphics and model.
Figure 31. A neighborly pseudomanifold with 9 vertices. Computer graphics and model.
Preprints 150275 g031
We have additional spatial polyhedra without diagonals with 10 vertices in [13]. Among these examples are embeddings of four pinched spheres. The polyhedra in all these cases are orientable neighborly 2-pseudomanifolds. There are several circular sequences of triangles around a vertex.

7. The Dual Case of the Former Section

7.1. The Tetrahedron

The tetrahedron has also the face-sharing property. It is the only dual case with convex faces.

7.2. Szilassi’s Polyhedron

The combinatorial property of Szilassi’s polyhedron is dual to the seven vertex torus of Möbius with non-convex faces.
Figure 32. Szilassi’s polyhedron with seven hexagons and the face-sharing property
Figure 32. Szilassi’s polyhedron with seven hexagons and the face-sharing property
Preprints 150275 g032
That this embedding of Szilassi is essentially unique, was shown via oriented matroid techniques in [11].

7.3. The 59 Examples of the Complete Graph with 12 Vertices Used for Its 59 Duals

No embeddings of the 59 dual abstract polyhedra with 12 eleven-gons and 44 vertices was found with methods of the second author. Therefore a Kepler-Poinsot version of an embedding with a low number of intersections is of interest. Such a polyhedron has been depicted in Figure 30. The two orthogonal projections along the x- ,y- and z-axis are shown in the four columns. The lower part shows an exploded view of all 12 eleven-gons.
Figure 33. A Kepler-Poinsot model with only 2 crossed polygons. Back, front, side, top, and faces to construct the polyhedron.
Figure 33. A Kepler-Poinsot model with only 2 crossed polygons. Back, front, side, top, and faces to construct the polyhedron.
Preprints 150275 g033

8. Conclusions

Compared with former progress in finding polyhedral embeddings of regular maps, these new results provide a huge step forward. Finding the maximal order of symmetry is in many cases still open. So far we have proofs for non-embeddable cases when the number of vertices is 12. For the open case R13.2, we have 24 vertices. We cannot hope that this open case is easy to tackle. What can still be done is the non-triangular case of regular maps. Whether we can still find an additional regular Leonardo polyhedron remains an interesting open problem.
The paper of A. Altshuler and U. Brehm [38] has additional neighborly pseudo-manifolds with 11 vertices. An investigation of their polyhedral embeddings is still open.
We do not have a neighborly spatial polyhedron according to a complete graph embedding with 12 vertices on a 2-manifold, however, we have seen the attempt to show such a topological embedding in Figure 27. Another topological embedding for the example with the highest symmetry has been constructed by Carlo Séquin and Ling Xiao, see Figure 31 and the article [39]. When you insert in each topological triangle a vertex and you construct topological eleven-gons around former vertices, you obtain a dual topological embedding.
Figure 34. A topological embedding of the complete graph with 12 vertices on a surface of genus 6 with the highest symmetry by Carlo Séquin and Ling Xiao.
Figure 34. A topological embedding of the complete graph with 12 vertices on a surface of genus 6 with the highest symmetry by Carlo Séquin and Ling Xiao.
Preprints 150275 g034

Acknowledgments

We wish to thank Jörg M. Wills for his advice and stimulating questions for finding polyhedral embeddings of regular maps. We wish to thank Alice Niemeyer and Reymond Akpanya for their support to find for some regular maps their detailed information.

Appendix A. Vertex Tables

Table A1. R3.1 with T Symmetry
Table A1. R3.1 with T Symmetry
Vertex X Y Z Vertex X Y Z Triangles
1 4 5 -6 13 4 3 -4 (1,5,23) (1,21,22) (2,6,20)
2 -4 5 6 14 -4 3 4 (2,22,21) (3,7,21) (3,23,20)
3 -4 -5 -6 15 -4 -3 -4 (4,8,13) (4,12,14) (5,9,12)
4 6 -4 5 16 4 -4 3 (5,13,15) (6,10,15) (6,14,12)
5 6 4 -5 17 4 4 -3 (7,11,14) (7,15,13) (8,4,24)
6 -6 4 5 18 -4 4 3 (8,16,17) (8,24,19) (9,1,18)
7 -6 -4 -5 19 -4 -4 -3 (9,5,1) (9,17,16) (10,2,17)
8 5 -6 4 20 3 -4 4 (10,6,2) (10,18,19) (11,3,16)
9 5 6 -4 21 3 4 -4 (11,7,3) (11,19,18) (12,4,5)
10 -5 6 4 22 -3 4 4 (12,16,20) (12,20,6) (13,5,4)
11 -5 -6 -4 23 -3 -4 -4 (13,17,21) (13,21,7) (14,6,7)
12 4 -3 4 24 4 -5 6 (14,18,22) (14,22,4) (15,7,6)
(15,19,23) (15,23,5) (16,8,11)
(16,12,9) (17,9,10) (17,13,8)
(18,10,9) (18,14,11) (19,11,8)
(19,15,10) (20,16,3) (20,24,2)
(21,1,3) (21,17,2) (22,2,24)
(22,18,1) (23,3,1) (23,19,24)
(24,4,22) (24,20,23)
Vertex Permutation Groups
(1,24)(2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)
(1,3)(2,24)(4,6)(5,7)(8,10)(9,11)(12,14)(13,15)(16,18)(17,19)(20,22)(21,23)
Table A2. R3.1’ with T Symmetry.
Table A2. R3.1’ with T Symmetry.
Vertex X Y Z Vertex X Y Z Polygons
1 513 513 -2337 29 209 -209 -855 (12,16,42,30,11,8,26)
2 -513 513 2337 30 -209 -209 855 (12,21,44,32,2,56,16)
3 -513 -513 -2337 31 -209 209 -855 (12,26,49,37,5,4,21)
4 2337 -513 513 32 855 209 209 (13,17,43,31,10,9,27)
5 2337 513 -513 33 855 -209 -209 (13,20,45,33,3,1,17)
6 -2337 513 513 34 -855 -209 209 (13,27,48,36,4,5,20)
7 -2337 -513 -513 35 -855 209 -209 (14,18,40,28,9,10,24)
8 513 -2337 513 36 209 855 209 (14,23,46,34,56,2,18)
9 513 2337 -513 37 209 -855 -209 (14,24,51,39,7,6,23)
10 -513 2337 513 38 -209 -855 209 (15,19,41,29,8,11,25)
11 -513 -2337 -513 39 -209 855 -209 (15,22,47,35,1,3,19)
12 2337 -2337 2337 40 549 141 549 (15,25,50,38,6,7,22)
13 2337 2337 -2337 41 549 -141 -549 (52,40,18,2,32,33,45)
14 -2337 2337 2337 42 -549 -141 549 (52,45,20,5,37,38,50)
15 -2337 -2337 -2337 43 -549 141 -549 (52,50,25,11,30,28,40)
16 342 57 1539 44 549 549 141 (53,41,19,3,33,32,44)
17 342 -57 -1539 45 549 -549 -141 (53,44,21,4,36,39,51)
18 -342 -57 1539 46 -549 -549 141 (53,51,24,10,31,29,41)
19 -342 57 -1539 47 -549 549 -141 (54,42,16,56,34,35,47)
20 1539 342 57 48 141 549 549 (54,47,22,7,39,36,48)
21 1539 -342 -57 49 141 -549 -549 (54,48,27,9,28,30,42)
22 -1539 -342 57 50 -141 -549 549 (55,43,17,1,35,34,46)
23 -1539 342 -57 51 -141 549 -549 (55,46,23,6,38,37,49)
24 57 1539 342 52 342 -342 342 (55,49,26,8,29,31,43)
25 57 -1539 -342 53 342 342 -342
26 -57 -1539 342 54 -342 342 342
27 -57 1539 -342 55 -342 -342 -342
28 209 209 855 56 513 -513 2337
Face Permutation Groups
(1,23)(2,10)(3,5)(4,11)(6,17)(7,13)(8,14)(9,20)(12,16)(15,21)(18,24)(19,22)
(1,21)(2,23)(3,22)(4,16)(5,17)(6,19)(7,18)(8,12)(9,13)(10,15)(11,14)(20,24)
Table A3. R3.2 with D3 Symmetry
Table A3. R3.2 with D3 Symmetry
Vertex X Y Z Triangles
1 3.50807 -2.08966 4.12484 (1,2,3) (1,3,5) (1,4,2)
2 -1.34797 -3.85437 -4.12484 (1,5,8) (1,7,4) (1,8,11)
3 -8.28589 -8.38412 6.58506 (1,10,7) (1,11,10) (2,4,9)
4 11.73538 -1.10915 -6.58506 (2,6,3) (2,8,6) (2,9,10)
5 11.40380 -2.98373 6.58506 (2,10,12) (2,12,8) (3,6,7)
6 4.01197 0.75981 -4.12484 (3,7,12) (3,9,5) (3,11,9)
7 -3.56373 -1.99324 4.12484 (3,12,11) (4,5,9) (4,6,11)
8 -2.66400 3.09456 -4.12484 (4,7,6) (4,11,12) (4,12,5)
9 -6.82824 -9.60857 -6.58506 (5,6,8) (5,10,6) (5,12,10)
10 0.05567 4.08290 4.12484 (6,10,11) (7,8,12) (7,9,8)
11 -4.90714 10.71771 -6.58506 (7,10,9) (8,9,11)
12 -3.11791 11.36785 6.58506
Vertex Permutation Groups
(1,2,10,6,7,8)(3,9,5,4,12,11)
Table A4. R3.2 with S2 Symmetry
Table A4. R3.2 with S2 Symmetry
Vertex X Y Z Triangles
1 0 -7 0 (1,2,3) (1,3,5) (1,4,2)
2 5 -24 8 (1,5,8) (1,7,4) (1,8,11)
3 0 13 7 (1,10,7) (1,11,10) (2,4,9)
4 0 -13 -7 (2,6,3) (2,8,6) (2,9,10)
5 -17 -3 -4 (2,10,12) (2,12,8) (3,6,7)
6 0 7 0 (3,7,12) (3,9,5) (3,11,9)
7 -5 24 -8 (3,12,11) (4,5,9) (4,6,11)
8 23 0 7 (4,7,6) (4,11,12) (4,12,5)
9 -4 9 24 (5,6,8) (5,10,6) (5,12,10)
10 -23 0 -7 (6,10,11) (7,8,12) (7,9,8)
11 17 3 4 (7,10,9) (8,9,11)
12 4 -9 -24
Vertex Permutation Groups
(1,6)(2,7)(3,4)(5,11)(8,10)(9,12)
Table A5. R5.1 with O Symmetry
Table A5. R5.1 with O Symmetry
Vertex X Y Z Triangles
1 -3 19 2 (1,2,3) (1,2,4) (1,3,5)
2 -2 3 19 (1,4,7) (1,5,8) (1,7,12)
3 -19 2 3 (1,8,14) (1,12,14) (2,3,6)
4 3 2 19 (2,4,10) (2,6,11) (2,10,20)
5 -2 19 -3 (2,11,18) (2,20,18) (3,5,9)
6 -19 -3 2 (3,6,13) (3,9,16) (3,13,21)
7 2 19 3 (3,16,21) (4,7,15) (4,10,17)
8 3 -2 -19 (4,15,16) (4,16,21) (4,17,21)
9 -19 3 -2 (5,8,15) (5,9,19) (5,15,20)
10 19 -3 -2 (5,19,18) (5,20,18) (6,11,17)
11 -3 -2 19 (6,12,14) (6,13,19) (6,14,19)
12 -19 -2 -3 (6,17,12) (7,9,11) (7,11,18)
13 2 -19 -3 (7,12,9) (7,15,22) (7,18,22)
14 2 3 -19 (8,10,13) (8,13,21) (8,14,10)
15 19 3 2 (8,15,23) (8,21,23) (9,12,23)
16 2 -3 19 (9,16,11) (9,19,23) (10,14,22)
17 -2 -19 3 (10,17,22) (10,20,13) (11,16,24)
18 3 19 -2 (11,17,24) (12,17,21) (12,23,21)
19 -3 2 -19 (13,19,24) (13,20,24) (14,19,18)
20 19 -2 3 (14,22,18) (15,16,20) (15,22,23)
21 -3 -19 -2 (16,24,20) (17,22,24) (19,23,24)
22 19 2 -3 (22,23,24)
23 -2 -3 -19
24 3 -19 2
Vertex Permutation Groups
(1,6,24,15)(2,11,16,4)(3,17,20,7)(5,12,13,22)
(8,14,19,23)(9,21,10,18)
(1,21)(2,23)(3,12)(4,8)
(5,17)(6,9)(7,13)(10,15)
(11,19)(14,16)(18,24)(20,22)
Table A6. R5.1 with S2 Symmetry
Table A6. R5.1 with S2 Symmetry
Vertex X Y Z Triangles
1 -16 -16 -2 (1,2,3) (1,3,5) (1,4,2)
2 -9 10 2 (1,5,8) (1,7,4) (1,8,14)
3 -2 -22 8 (1,12,7) (1,14,12) (2,4,10)
4 23 29 7 (2,6,3) (2,10,20) (2,11,6)
5 4 -14 5 (2,18,11) (2,20,18) (3,6,13)
6 -18 -6 2 (3,9,5) (3,13,21) (3,16,9)
7 -4 14 -5 (3,21,16) (4,7,15) (4,15,16)
8 -23 -29 -7 (4,16,21) (4,17,10) (4,21,17)
9 17 -15 -12 (5,9,19) (5,15,8) (5,18,20)
10 -8 23 29 (5,19,18) (5,20,15) (6,11,17)
11 -11 10 -20 (6,12,14) (6,14,19) (6,17,12)
12 -13 -4 -26 (6,19,13) (7,9,11) (7,11,18)
13 15 -26 24 (7,12,9) (7,18,22) (7,22,15)
14 -36 12 0 (8,10,14) (8,13,10) (8,15,23)
15 16 16 2 (8,21,13) (8,23,21) (9,12,23)
16 36 -12 0 (9,16,11) (9,23,19) (10,13,20)
17 -15 26 -24 (10,17,22) (10,22,14) (11,16,24)
18 -17 15 12 (11,24,17) (12,17,21) (12,21,23)
19 11 -10 20 (13,19,24) (13,24,20) (14,18,19)
20 13 4 26 (14,22,18) (15,20,16) (15,22,23)
21 8 -23 -29 (16,20,24) (17,24,22) (19,23,24)
22 2 22 -8 (22,24,23)
23 9 -10 -2
24 18 6 -2
Vertex Permutation Groups
(1,15)(2,23)(3,22)(4,8)
(5,7)(6,24)(9,18)(10,21)
(11,19)(12,20)(13,17)(14,16)
Table A7. R5.1’ with D2 Symmetry
Table A7. R5.1’ with D2 Symmetry
Vertex X Y Z Vertex X Y Z Polygons
1 20.65379 -21.80366 30.77811 33 -21.71225 -46.69755 -23.86363 (1,2,4,6,8,7,5,3)
2 12.74359 19.76101 29.74751 34 -23.71552 -42.38214 -21.10591 (1,3,15,17,19,18,16,9)
3 22.41124 -22.24871 26.29238 35 21.80365 20.65380 -30.77811 (1,9,11,13,14,12,10,2)
4 29.87010 38.88395 -26.55009 36 -19.76099 12.74359 -29.74751 (2,10,21,24,23,22,20,4)
5 17.18350 5.22081 25.61127 37 -60.30722 -73.01170 -49.44046 (3,5,25,27,29,28,26,15)
6 24.93641 54.96569 -21.91335 38 38.09246 -54.72530 -51.99704 (4,20,38,39,37,35,36,6)
7 33.96277 41.71029 -39.06823 39 33.11198 -49.63967 -50.27328 (5,7,41,40,42,44,43,25)
8 33.11615 50.33837 -41.42038 40 -21.80365 -20.65380 -30.77811 (6,36,46,54,53,32,31,8)
9 -73.01172 60.30723 49.44046 41 -22.24871 -22.41124 -26.29238 (7,8,31,34,57,58,49,41)
10 54.96571 -24.93641 21.91335 42 60.30722 73.01170 -49.44046 (9,16,33,34,31,32,30,11)
11 -49.63968 -33.11198 50.27328 43 49.63968 33.11198 50.27328 (10,12,48,40,41,49,50,21)
12 38.88394 -29.87010 26.55009 44 54.72530 38.09245 51.99703 (11,30,52,51,45,35,37,13)
13 -54.72530 -38.09245 51.99704 45 22.24871 22.41125 -26.29238 (12,14,29,27,59,61,56,48)
14 46.69755 -21.71224 23.86363 46 -38.88394 29.87010 26.55009 (13,37,39,58,57,28,29,14)
15 -41.71029 33.96277 39.06823 47 -54.96571 24.93641 21.91335 (15,26,47,46,36,35,45,17)
16 -38.09246 54.72530 -51.99703 48 19.76099 -12.74359 -29.74751 (16,18,42,40,48,56,55,33)
17 -5.22081 17.18350 -25.61127 49 5.22081 -17.18350 -25.61127 (17,45,51,61,59,22,23,19)
18 -33.11197 49.63968 -50.27328 50 41.71029 -33.96277 39.06823 (18,19,23,24,53,54,44,42)
19 -31.31434 39.35709 -17.76609 51 -33.96277 -41.71029 -39.06823 (20,22,59,27,25,43,60,38)
20 21.71225 46.69755 -23.86363 52 -17.18350 -5.22081 25.61127 (21,50,62,52,30,32,53,24)
21 50.33838 -33.11615 41.42038 53 -42.38214 23.71552 21.10591 (26,28,57,34,33,55,63,47)
22 23.71552 42.38214 -21.10591 54 -46.69755 21.71224 23.86363 (38,60,64,62,50,49,58,39)
23 14.61668 51.09704 -18.10958 55 -29.87010 -38.88395 -26.55009 (43,44,54,46,47,63,64,60)
24 1.40164 30.78678 33.25093 56 -24.93641 -54.96569 -21.91335 (51,52,62,64,63,55,56,61)
25 39.35710 31.31435 17.76608 57 -14.61668 -51.09704 -18.10958
26 -50.33838 33.11615 41.42038 58 31.31434 -39.35709 -17.76609
27 51.09705 -14.61667 18.10958 59 30.78679 -1.40162 -33.25093
28 -1.40164 -30.78678 33.25093 60 73.01172 -60.30723 49.44046
29 42.38214 -23.71552 21.10591 61 -33.11615 -50.33837 -41.42038
30 -39.35710 -31.31435 17.76608 62 -22.41124 22.24871 26.29238
31 -30.78679 1.40162 -33.25093 63 -12.74359 -19.76102 29.74751
32 -51.09705 14.61667 18.10958 64 -20.65379 21.80365 30.77811
Face Permutation Groups
(1,9,24,10)(2,7,23,13)(3,11,22,8)(4,12,19,20)(5,16,17,14)(6,18,15,21)
Table A8. R5.1’ with C3 Symmetry
Table A8. R5.1’ with C3 Symmetry
Vertex X Y Z Vertex X Y Z Polygons
1 43.46366 -21.64751 -61.72107 33 -39.16046 -28.68813 -56.03963 (1,2,4,6,8,7,5,3)
2 44.42489 -19.56988 -56.03962 34 9.96950 45.84838 -20.81775 (1,3,15,17,19,18,16,9)
3 53.86739 -46.58218 -39.71776 35 11.90551 85.75792 -36.03035 (1,9,11,13,14,12,10,2)
4 52.86341 -40.45273 -38.74069 36 38.96070 16.42411 -33.31914 (2,10,21,24,23,22,20,4)
5 55.43655 -42.78937 -30.10898 37 7.80724 83.27623 -40.60529 (3,5,25,27,29,28,26,15)
6 42.06058 26.82332 -27.12557 38 -2.98453 48.46441 -61.72105 (4,20,38,39,37,35,36,6)
7 43.23307 35.96650 -14.69191 39 13.40766 69.94163 -39.71775 (5,7,41,40,42,44,43,25)
8 41.34849 42.18495 -17.26068 40 9.53136 -55.42417 -14.69193 (6,36,46,54,53,32,31,8)
9 -50.16896 -22.72487 -43.52481 41 0 0 -3.48967 (7,8,31,34,57,58,49,41)
10 -44.69060 -14.29033 -20.81776 42 15.85899 -56.90131 -17.26070 (9,16,33,34,31,32,30,11)
11 -66.69357 -19.12815 -29.56035 43 34.72110 -31.55802 -20.81777 (10,12,48,40,41,49,50,21)
12 -54.41173 -16.29590 -24.30598 44 35.27372 -0.02124 -16.67734 (11,30,52,51,45,35,37,13)
13 -2.37166 14.42542 51.11662 45 0 0 79.84747 (12,14,29,27,59,61,56,48)
14 1.26806 12.52908 44.90553 46 27.61252 32.62213 -21.48363 (13,37,39,58,57,28,29,14)
15 68.21570 -48.39938 -40.60532 47 16.78131 67.32243 -29.56033 (15,26,47,46,36,35,45,17)
16 -61.46479 -25.55469 -38.74069 48 -64.77494 -26.61476 -30.10897 (16,18,42,40,48,56,55,33)
17 68.31578 -53.18943 -36.03039 49 -52.76442 19.45769 -14.69192 (17,45,51,61,59,22,23,19)
18 2.19938 -49.83717 -27.12558 50 -57.20747 14.71636 -17.26069 (18,19,23,24,53,54,44,42)
19 -5.25665 -41.95300 -33.31916 51 -80.22128 -32.56847 -36.03038 (20,22,59,27,25,43,60,38)
20 44.76481 -32.08516 -43.52481 52 -33.70404 25.52891 -33.31914 (21,50,62,52,30,32,53,24)
21 -17.65526 -30.53731 -16.67734 53 0 0 -38.49300 (26,28,57,34,33,55,63,47)
22 49.91226 -48.19425 -29.56035 54 22.32151 20.10489 -28.72768 (38,60,64,62,50,49,58,39)
23 14.44533 -40.22420 -21.48364 55 -40.47914 -26.81687 -61.72107 (43,44,54,46,47,63,64,60)
24 6.25059 -29.38343 -28.72769 56 -67.27505 -23.35943 -39.71776 (51,52,62,64,63,55,56,61)
25 41.31855 -38.97399 -24.30600 57 13.09319 55.26989 -24.30597
26 13.67862 -5.15880 51.11662 58 9.33840 69.40414 -30.10896
27 -11.48454 -5.16638 44.90554 59 -11.30695 -9.26664 51.11662
28 10.21648 -7.36273 44.90552 60 -5.26442 48.25803 -56.03961
29 0 0 60.29438 61 -76.02295 -34.87683 -40.60531
30 -42.05785 7.60208 -21.48363 62 -44.25996 23.01389 -27.12557
31 -17.61847 30.55856 -16.67733 63 5.40416 54.81006 -43.52480
32 -28.57210 9.27856 -28.72769 64 8.60138 66.00742 -38.74067
Face Permutation Groups
(1,22,13)(2,15,19)(3,7,24)(4,23,6)(5,18,20)(8,14,10)(9,11,16)(12,17,21)
Table A9. R6.1 with C2 Symmetry
Table A9. R6.1 with C2 Symmetry
Vertex X Y Z Triangles
1 0 0 -11 (1,2,3) (1,2,4) (1,3,5)
2 8 -3 0 (1,4,7) (1,5,8) (1,7,10)
3 8 -2 -2 (1,8,11) (1,10,13) (1,11,14)
4 2 -9 2 (1,13,14) (2,3,6) (2,4,9)
5 5 -15 5 (2,6,8) (2,8,12) (2,9,10)
6 -11 -6 0 (2,10,15) (2,12,14) (2,15,14)
7 4 0 -6 (3,5,9) (3,6,7) (3,7,12)
8 -4 0 -6 (3,9,11) (3,11,15) (3,12,13)
9 11 6 0 (3,15,13) (4,5,15) (4,6,13)
10 -5 15 5 (4,7,6) (4,9,5) (4,11,12)
11 -2 9 2 (4,13,12) (4,15,11) (5,6,14)
12 -2 -1 1 (5,8,6) (5,10,12) (5,14,12)
13 -8 2 -2 (5,15,10) (6,10,11) (6,13,10)
14 -8 3 0 (6,14,11) (7,8,15) (7,9,14)
15 2 1 1 (7,10,9) (7,12,8) (7,15,14)
(8,9,13) (8,11,9) (8,15,13)
(9,14,13) (10,12,11)
Vertex Permutation Groups
(2,14)(3,13)(4,11)(5,10)(6,9)(7,8)(12,15)
Table A10. R6.1 with C3 Symmetry
Table A10. R6.1 with C3 Symmetry
Vertex X Y Z Triangles
1 -5.99383 5.01307 1.24410 (1,2,3) (1,2,4) (1,3,5)
2 -18.71430 20.44390 9.90603 (1,4,7) (1,5,8) (1,7,10)
3 -1.34453 -7.69735 1.24410 (1,8,11) (1,10,13) (1,11,14)
4 27.06208 5.98511 9.90603 (1,13,14) (2,3,6) (2,4,9)
5 -12.16698 29.76071 -19.66275 (2,6,8) (2,8,12) (2,9,10)
6 -8.34778 -26.42901 9.90603 (2,10,15) (2,12,14) (2,15,14)
7 7.33837 2.68427 1.24410 (3,5,9) (3,6,7) (3,7,12)
8 -12.24958 -9.58165 -9.48644 (3,9,11) (3,11,15) (3,12,13)
9 -2.17316 15.39927 -9.48644 (3,15,13) (4,5,15) (4,6,13)
10 31.85702 -4.34345 -19.66276 (4,7,6) (4,9,5) (4,11,12)
11 -6.93376 -15.98406 -1.21418 (4,13,12) (4,15,11) (5,6,14)
12 -19.69004 -25.41726 -19.66275 (5,8,6) (5,10,12) (5,14,12)
13 14.42274 -5.81762 -9.48644 (5,15,10) (6,10,11) (6,13,10)
14 -10.37572 13.99685 -1.21417 (6,14,11) (7,8,15) (7,9,14)
15 17.30948 1.98721 -1.21418 (7,10,9) (7,12,8) (7,15,14)
(8,9,13) (8,11,9) (8,15,13)
(9,14,13) (10,12,11)
Vertex Permutation Groups
(1,3,7)(2,6,4)(5,12,10)(8,13,9)(11,15,14)
Table A11. R7.1 with C2 Symmetry
Table A11. R7.1 with C2 Symmetry
Vertex X Y Z Vertex X Y Z Triangles
1 25 -29 20 37 -16 4 -31 (1,2,3) (1,3,4) (1,4,5) (1,5,6)
2 25 28 15 38 0 7 0 (1,6,7) (1,7,8) (1,8,2) (2,8,9)
3 -25 29 20 39 -12 6 5 (2,9,23) (2,10,3) (2,16,10) (2,23,16)
4 -25 -28 15 40 11 2 10 (3,10,24) (3,11,4) (3,17,11) (3,24,17)
5 19 -18 17 41 0 -3 -9 (4,25,18) (8,7,15) (8,15,29) (10,52,33)
6 4 -4 0 42 -5 24 -2 (11,17,53) (11,25,4) (11,53,34) (12,4,18)
7 8 -10 10 43 0 -13 4 (12,5,4) (12,18,54) (12,26,5) (12,54,35)
8 14 -28 9 44 1 17 1 (13,5,19) (13,6,5) (13,27,6) (14,7,6)
9 31 -9 3 45 -11 -2 10 (14,28,7) (16,52,10) (19,5,26) (20,6,27)
10 -19 18 17 46 17 1 7 (20,14,6) (20,27,33) (21,7,28) (21,15,7)
11 -14 28 9 47 -5 -6 -10 (21,28,34) (21,34,40) (21,40,63) (21,57,15)
12 -6 -32 14 48 -30 24 -17 (21,63,57) (22,8,29) (22,9,8) (22,29,35)
13 5 6 -10 49 6 -33 10 (22,35,41) (22,51,9) (30,14,56) (30,17,24)
14 8 8 6 50 -13 3 -19 (30,24,38) (30,43,17) (30,56,43) (31,15,57)
15 -3 -15 6 51 10 0 1 (31,18,25) (31,37,18) (31,57,37) (32,9,51)
16 6 32 14 52 -17 10 15 (32,19,26) (34,28,42) (35,29,43) (36,16,23)
17 -8 10 10 53 3 15 6 (36,23,37) (36,42,16) (37,23,60) (37,60,18)
18 -27 -4 -30 54 17 -28 -21 (38,19,32) (38,24,61) (38,32,51) (38,61,19)
19 1 3 -4 55 0 3 -9 (39,20,33) (39,25,62) (39,31,25) (39,33,52)
20 0 -7 0 56 -1 -17 1 (39,62,20) (40,26,63) (40,32,26) (40,34,53)
21 3 -6 11 57 -24 -21 9 (41,33,27) (44,14,30) (44,28,14) (44,30,38)
22 30 -24 -17 58 -6 33 10 (44,38,51) (44,51,65) (44,58,28) (44,65,58)
23 27 4 -30 59 -3 6 11 (45,15,31) (45,29,15) (45,31,39) (45,39,52)
24 -4 4 0 60 16 -4 -31 (45,52,66) (45,59,29) (45,66,59) (46,9,32)
25 -31 9 3 61 -10 1 -5 (46,23,9) (46,32,40) (46,40,53) (46,53,67)
26 17 -10 15 62 -10 0 1 (46,60,23) (46,67,60) (47,10,33) (47,24,10)
27 10 -1 -5 63 -3 -23 12 (47,33,41) (47,41,54) (47,54,68) (47,61,24)
28 0 13 4 64 15 1 -8 (47,68,61) (48,11,34) (48,25,11) (48,34,42)
29 4 -9 7 65 12 7 -4 (48,42,55) (48,55,69) (48,62,25) (48,69,62)
30 -8 -8 6 66 3 23 12 (49,12,35) (49,26,12) (49,35,43) (49,43,56)
31 -17 -1 7 67 24 21 9 (49,56,70) (49,63,26) (49,70,63) (50,13,36)
32 12 -6 5 68 13 -3 -19 (50,27,13) (50,36,37) (50,37,57) (50,57,71)
33 -1 -3 -4 69 -15 -1 -8 (50,64,27) (50,71,64) (54,18,60) (54,41,35)
34 -4 9 7 70 -12 -7 -4 (55,13,19) (55,19,61) (55,36,13) (55,42,36)
35 5 -24 -2 71 -12 1 -30 (55,61,69) (56,14,20) (56,20,62) (56,62,70)
36 -17 28 -21 72 12 -1 -30 (58,16,42) (58,42,28) (58,52,16) (58,65,66)
(58,66,52) (59,17,43) (59,43,29) (59,53,17)
(63,70,71) (63,71,57) (64,22,41) (64,41,27)
(64,51,22) (64,65,51) (64,71,65) (65,71,72)
(66,65,72) (67,53,59) (67,59,66) (67,66,72)
(67,68,60) (67,72,68) (68,54,60) (68,69,61)
(68,72,69) (69,70,62) (69,72,70) (71,70,72)
Vertex Permutation Groups
(1,3)(2,4)(5,10)(6,24)(7,17)(8,11)(9,25)(12,16)(13,47)(14,30)(15,53)(18,23)
(19,33)(20,38)(21,59)(22,48)(26,52)(27,61)(28,43)(29,34)(31,46)(32,39)(35,42)(36,54)
(37,60)(40,45)(41,55)(44,56)(49,58)(50,68)(51,62)(57,67)(63,66)(64,69)(65,70)(71,72)
Table A12. R7.1 with S2 Symmetry
Table A12. R7.1 with S2 Symmetry
Vertex X Y Z Vertex X Y Z Triangles
1 54 77 -11 37 -62 0 -1 (1,2,8) (1,3,2) (1,4,3) (1,5,4)
2 26 -9 45 38 25 37 7 (1,6,5) (1,7,6) (1,8,7) (2,3,10)
3 55 55 -24 39 -5 20 8 (2,9,8) (2,10,16) (2,16,23) (2,23,9)
4 -10 50 23 40 5 -20 -31 (3,4,11) (3,11,17) (3,17,24) (3,24,10)
5 6 40 22 41 20 -24 68 (4,18,25) (8,15,7) (8,29,15) (10,33,52)
6 8 99 16 42 -85 -2 -40 (11,4,25) (11,34,53) (11,53,17) (12,4,5)
7 14 65 -78 43 85 -51 -13 (12,5,26) (12,18,4) (12,35,54) (12,54,18)
8 75 70 -5 44 -19 -6 -16 (13,5,6) (13,6,27) (13,19,5) (14,6,7)
9 18 -51 35 45 -18 -76 -36 (14,7,28) (16,10,52) (19,26,5) (20,6,14)
10 12 13 52 46 8 -40 -3 (20,27,6) (20,33,27) (21,7,15) (21,15,57)
11 46 71 -32 47 20 36 87 (21,28,7) (21,34,28) (21,40,34) (21,57,63)
12 47 -7 10 48 -21 43 -52 (21,63,40) (22,8,9) (22,9,51) (22,29,8)
13 14 95 29 49 18 -7 -11 (22,35,29) (22,41,35) (30,17,43) (30,24,17)
14 -75 44 -15 50 -56 0 14 (30,38,24) (30,43,56) (30,56,14) (31,18,37)
15 0 -40 -83 51 -10 -24 -13 (31,25,18) (31,37,57) (31,57,15) (32,26,19)
16 -18 7 11 52 -20 7 1 (32,51,9) (34,42,28) (35,43,29) (36,16,42)
17 56 0 -14 53 43 -6 -26 (36,23,16) (36,37,23) (37,18,60) (37,60,23)
18 19 6 16 54 81 -54 29 (38,19,61) (38,32,19) (38,51,32) (38,61,24)
19 18 76 36 55 -72 -56 31 (39,20,62) (39,25,31) (39,33,20) (39,52,33)
20 -8 40 3 56 -12 30 -10 (39,62,25) (40,26,32) (40,53,34) (40,63,26)
21 -20 -36 -87 57 -37 -49 14 (41,27,33) (44,14,28) (44,28,58) (44,30,14)
22 21 -43 52 58 -47 7 -10 (44,38,30) (44,51,38) (44,58,65) (44,65,51)
23 12 -30 10 59 -14 -95 -29 (45,15,29) (45,29,59) (45,31,15) (45,39,31)
24 37 49 -14 60 75 -44 15 (45,52,39) (45,59,66) (45,66,52) (46,9,23)
25 10 24 13 61 0 40 83 (46,23,60) (46,32,9) (46,40,32) (46,53,40)
26 20 -7 -1 62 -18 51 -35 (46,60,67) (46,67,53) (47,10,24) (47,24,61)
27 -43 6 26 63 -12 -13 -52 (47,33,10) (47,41,33) (47,54,41) (47,61,68)
28 -81 54 -29 64 -46 -71 32 (47,68,54) (48,11,25) (48,25,62) (48,34,11)
29 72 56 -31 65 10 -50 -23 (48,42,34) (48,55,42) (48,62,69) (48,69,55)
30 62 0 1 66 -6 -40 -22 (49,12,26) (49,26,63) (49,35,12) (49,43,35)
31 -25 -37 -7 67 -8 -99 -16 (49,56,43) (49,63,70) (49,70,56) (50,13,27)
32 5 -20 -8 68 -14 -65 78 (50,27,64) (50,36,13) (50,37,36) (50,57,37)
33 -5 20 31 69 -75 -70 5 (50,64,71) (50,71,57) (54,35,41) (54,60,18)
34 -20 24 -68 70 -26 9 -45 (55,13,36) (55,19,13) (55,36,42) (55,61,19)
35 85 2 40 71 -55 -55 24 (55,69,61) (56,20,14) (56,62,20) (56,70,62)
36 -85 51 13 72 -54 -77 11 (58,16,52) (58,28,42) (58,42,16) (58,52,66)
(58,66,65) (59,17,53) (59,29,43) (59,43,17)
(63,57,71) (63,71,70) (64,22,51) (64,27,41)
(64,41,22) (64,51,65) (64,65,71) (65,72,71)
(66,72,65) (67,59,53) (67,60,68) (67,66,59)
(67,68,72) (67,72,66) (68,60,54) (68,61,69)
(68,69,72) (69,62,70) (69,70,72) (71,72,70)
Vertex Permutation Groups
(1,72)(2,70)(3,71)(4,65)(5,66)(6,67)(7,68)(8,69)(9,62)(10,63)(11,64)(12,58)
(13,59)(14,60)(15,61)(16,49)(17,50)(18,44)(19,45)(20,46)(21,47)(22,48)(23,56)(24,57)
(25,51)(26,52)(27,53)(28,54)(29,55)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(36,43)
Table A13. R7.1 with C3 Symmetry
Table A13. R7.1 with C3 Symmetry
Vertex X Y Z Vertex X Y Z Triangles
1 -7.56801 10.70538 5.21656 37 -8.08031 1.28652 13.15790 (1,2,3) (1,2,4) (1,3,5) (1,4,7)
2 -20.81640 20.48934 -0.01571 38 8.38186 -2.47831 -7.09248 (1,5,8) (1,7,12) (1,8,12) (2,3,6)
3 -24.55717 15.79025 -11.94582 39 -1.13204 -10.49296 1.61630 (2,4,10) (2,6,11) (2,10,18) (2,11,18)
4 5.08631 0.37848 -2.07012 40 -9.68365 -23.53667 -1.22782 (3,5,9) (3,6,13) (3,9,16) (3,13,16)
5 -7.29889 9.52212 8.19785 41 11.89584 1.55996 8.19785 (4,7,15) (4,10,17) (4,15,26) (4,17,26)
6 -8.13559 -22.80113 -17.04527 42 -0.29098 25.70097 8.86883 (5,8,14) (5,9,19) (5,14,24) (5,19,24)
7 4.05356 3.57506 -6.10364 43 -9.62736 18.72593 23.87503 (6,11,22) (6,13,20) (6,20,34) (6,22,34)
8 -4.68011 -0.83056 16.84014 44 4.66235 1.38416 13.35325 (7,12,23) (7,15,25) (7,23,38) (7,25,38)
9 -8.52114 6.22686 1.61630 45 21.50829 9.85368 25.64286 (8,12,21) (8,14,27) (8,21,35) (8,27,35)
10 -2.87093 4.21563 -2.07012 46 13.05513 1.20140 5.21656 (9,16,31) (9,19,28) (9,28,47) (9,31,47)
11 -22.11221 -13.10248 8.86883 47 2.92600 -7.64101 13.15790 (10,17,32) (10,18,29) (10,29,48) (10,32,48)
12 -3.52990 3.34564 13.35325 48 -5.48712 -11.90677 5.21656 (11,18,33) (11,22,36) (11,33,53) (11,36,53)
13 1.27231 -12.11945 -21.10028 49 -1.39617 -29.16226 -11.94582 (12,21,40) (12,23,37) (12,40,37) (13,16,30)
14 1.62077 4.46838 16.84014 50 -15.67856 18.44619 -17.04527 (13,20,39) (13,30,49) (13,39,49) (14,24,44)
15 34.45072 6.38996 0.12212 51 -11.69149 -33.03018 0.12212 (14,27,41) (14,41,46) (14,44,46) (15,25,45)
16 -11.13191 4.95787 -21.10028 52 -19.28768 13.69988 25.64286 (15,26,42) (15,42,43) (15,45,43) (16,30,56)
17 -2.21538 -4.59411 -2.07012 53 4.40467 -10.68459 10.20493 (16,31,50) (16,56,50) (17,26,46) (17,32,51)
18 -22.75923 26.64022 0.12212 54 -5.92856 -0.30062 9.70240 (17,46,61) (17,51,61) (18,29,55) (18,33,52)
19 -18.93555 12.65559 4.40191 55 -15.54153 20.15462 -1.22782 (18,55,52) (19,24,43) (19,28,54) (19,43,59)
20 -0.66200 -10.32516 -6.69882 56 25.95334 13.37201 -11.94582 (19,54,59) (20,34,61) (20,39,57) (20,57,44)
21 -10.25955 -19.67105 1.72717 57 5.15431 6.35450 13.15790 (20,61,44) (21,33,58) (21,33,62) (21,35,62)
22 -11.53865 -2.84358 18.63150 58 -2.22060 -23.55356 25.64286 (21,40,58) (22,34,59) (22,36,63) (22,59,42)
23 9.27285 4.58927 -6.69882 59 -11.45546 1.52774 10.20493 (22,63,42) (23,30,60) (23,30,64) (23,37,64)
24 -11.90586 18.72056 1.72717 60 23.81415 4.35494 -17.04527 (23,38,60) (24,43,52) (24,44,55) (24,52,55)
25 25.22518 3.38205 -1.22782 61 1.06931 -5.29802 -6.10364 (25,38,47) (25,45,65) (25,47,68) (25,65,68)
26 28.15249 7.78286 -0.01571 62 -1.49228 -22.72646 4.40191 (26,42,50) (26,46,56) (26,50,56) (27,35,48)
27 3.05935 -3.63782 16.84014 63 3.30671 11.41455 18.63150 (27,41,65) (27,48,68) (27,65,68) (28,47,53)
28 3.22463 -4.98398 9.70240 64 9.65319 4.26610 1.61630 (28,53,62) (28,54,66) (28,62,66) (29,31,67)
29 -5.12287 1.72296 -6.10364 65 22.16541 0.95049 1.72717 (29,31,68) (29,48,68) (29,55,67) (30,49,60)
30 9.85960 7.16158 -21.10028 66 2.70393 5.28460 9.70240 (30,56,64) (31,47,68) (31,50,67) (32,48,49)
31 -8.61085 5.73589 -6.69882 67 -2.04465 8.49806 -7.09248 (32,49,60) (32,51,69) (32,60,69) (33,52,58)
32 -7.33609 -28.27221 -0.01571 68 -1.13246 -4.72980 13.35325 (33,53,62) (34,37,40) (34,59,37) (34,61,40)
33 -11.40346 -17.70050 23.87503 69 22.40318 -12.59849 8.86883 (35,39,49) (35,48,49) (35,62,39) (36,38,60)
34 -6.33721 -6.01975 -7.09248 70 20.42783 10.07087 4.40191 (36,53,38) (36,60,69) (36,63,69) (37,59,54)
35 -4.59695 -11.08208 8.19785 71 21.03082 -1.02543 23.87503 (37,64,54) (38,47,53) (39,57,66) (39,62,66)
36 8.23194 -8.57097 18.63150 72 7.05079 9.15685 10.20493 (40,58,51) (40,61,51) (41,46,56) (41,56,64)
(41,64,70) (41,65,70) (42,43,59) (42,63,50)
(43,45,52) (44,46,61) (44,57,55) (45,52,58)
(45,58,71) (45,65,71) (50,67,63) (51,58,71)
(51,69,71) (54,64,70) (54,66,70) (55,67,57)
(57,66,72) (57,67,72) (63,67,72) (63,69,72)
(65,70,71) (66,70,72) (69,71,72) (70,71,72)
Vertex Permutation Groups
(1,48,46)(2,32,26)(3,49,56)(4,10,17)(5,35,41)(6,60,50)(7,29,61)(8,27,14)
(9,39,64)(11,69,42)(12,68,44)(13,30,16)(15,18,51)(19,62,70)(20,23,31)(21,65,24)
(22,36,63)(25,55,40)(28,66,54)(33,71,43)(34,38,67)(37,47,57)(45,52,58)(53,72,59)
Table A14. R7.1’ with C2 Symmetry
Table A14. R7.1’ with C2 Symmetry
Vertex X Y Z Vertex X Y Z Polygons
1 -0.77228 -2.89729 35.97290 85 24.28991 13.49551 0.78380 (1,2,10,23,30,16,9)
2 0.77228 2.89729 35.97290 86 -52.70324 43.45797 167.66333 (1,7,6,5,4,3,2)
3 -23.96945 -5.27541 10.77695 87 -60.68767 -14.97272 -38.97069 (1,7,8,15,29,22,9)
4 -25.77635 -3.46354 8.21991 88 21.02101 9.79577 -3.24991 (2,3,11,24,31,17,10)
5 -23.37394 12.51777 6.14574 89 -18.71064 10.40841 3.84855 (3,4,12,25,32,18,11)
6 73.24480 -1.39085 118.17785 90 40.91615 -42.85596 -7.93866 (4,5,13,26,33,19,12)
7 48.91850 -17.87175 95.91875 91 -1.61397 -19.14422 11.99876 (5,6,14,27,34,20,13)
8 50.93260 0.10177 32.90858 92 60.68767 14.97272 -38.97069 (6,7,8,28,35,21,14)
9 23.96945 5.27541 10.77695 93 23.75477 -4.36734 3.29944 (8,15,43,50,57,36,28)
10 -48.91850 17.87175 95.91875 94 -67.66644 40.04232 -57.43208 (9,22,37,58,51,44,16)
11 -17.15787 -7.00599 3.69405 95 85.50433 -47.97673 -79.33041 (10,23,38,59,52,45,17)
12 -24.72954 -2.71453 3.80330 96 -21.02101 -9.79577 -3.24991 (11,24,39,60,53,46,18)
13 -22.49006 14.75382 3.32295 97 81.47538 25.48256 35.81934 (12,25,40,61,54,47,19)
14 37.93365 -42.26521 152.05721 98 -81.47539 -25.48256 35.81934 (13,26,41,62,55,48,20)
15 147.24025 17.12645 -13.08525 99 32.71715 13.79608 -47.99250 (14,27,42,63,56,49,21)
16 25.77635 3.46354 8.21991 100 21.88915 -13.32737 -0.26171 (15,29,64,92,99,106,43)
17 -50.93260 -0.10177 32.90858 101 -22.92542 28.83418 0.45938 (16,30,65,93,100,107,44)
18 -14.63621 -8.87724 5.10708 102 74.80479 -59.26288 -93.28657 (17,31,66,94,101,108,45)
19 -22.76907 5.54786 -0.59071 103 -30.63692 -29.02187 0.23133 (18,32,67,95,102,109,46)
20 0.31618 16.21817 22.03817 104 91.06590 10.89486 32.17862 (19,33,68,96,103,110,47)
21 -29.47967 -60.64068 -16.21246 105 -88.51120 -25.46504 36.73831 (20,34,69,97,104,111,48)
22 17.15787 7.00599 3.69405 106 43.83405 0.37877 -63.37598 (21,35,70,98,105,112,49)
23 -73.24480 1.39085 118.17785 107 22.76907 -5.54786 -0.59071 (22,29,64,71,78,85,37)
24 -83.46900 -18.69271 -27.84975 108 0.06085 33.59378 10.10680 (23,30,65,72,79,86,38)
25 26.14064 -21.56823 -29.65050 109 -11.08264 -13.51310 -2.71609 (24,31,66,73,80,87,39)
26 -23.75477 4.36734 3.29944 110 -27.26375 -29.41883 -1.75801 (25,32,67,74,81,88,40)
27 52.70324 -43.45797 167.66333 111 1.07018 8.93212 19.68921 (26,33,68,75,82,89,41)
28 22.31771 -21.42973 15.10144 112 -63.88404 17.99086 89.72525 (27,34,69,76,83,90,42)
29 83.46900 18.69271 -27.84975 113 8.30972 -2.76753 16.22901 (28,35,70,77,84,91,36)
30 23.37394 -12.51777 6.14574 114 -70.79834 52.51220 -57.49750 (36,57,122,128,134,148,91)
31 -147.24025 -17.12645 -13.08525 115 70.79834 -52.51220 -57.49750 (37,58,123,129,135,149,85)
32 27.68394 -23.17566 -27.27019 116 -18.90873 5.47599 -29.52697 (38,59,124,130,136,150,86)
33 -21.88915 13.32737 -0.26171 117 26.76078 44.16088 4.72524 (39,60,125,131,137,151,87)
34 113.29918 61.87540 52.23039 118 -91.06589 -10.89486 32.17861 (40,61,126,132,138,152,88)
35 3.99798 -36.88117 10.20856 119 -15.48267 -13.41034 -42.14531 (41,62,120,133,139,153,89)
36 -0.06085 -33.59378 10.10680 120 1.52311 -13.27359 20.80703 (42,63,121,127,140,154,90)
37 14.63621 8.87724 5.10708 121 -84.16370 -44.94635 -39.95758 (43,50,115,130,136,143,106)
38 -37.93365 42.26521 152.05721 122 15.61599 -12.63363 5.01436 (44,51,116,131,137,144,107)
39 -70.04882 -26.66724 -20.51257 123 -28.22441 12.97841 -12.26003 (45,52,117,132,138,145,108)
40 18.90873 -5.47599 -29.52698 124 118.67790 12.13467 57.79802 (46,53,118,133,139,146,109)
41 -8.30972 2.76753 16.22901 125 -25.67421 -9.29414 -24.20695 (47,54,119,127,140,147,110)
42 10.62177 -84.19041 -56.58475 126 25.67421 9.29414 -24.20695 (48,55,113,128,134,141,111)
43 146.46402 15.58591 -15.39566 127 -46.64407 -42.53370 -28.56465 (49,56,114,129,135,142,112)
44 24.72954 2.71453 3.80330 128 18.71064 -10.40841 3.84855 (50,57,122,74,67,95,115)
45 -22.31771 21.42973 15.10144 129 -85.50433 47.97673 -79.33041 (51,58,123,75,68,96,116)
46 -24.28991 -13.49551 0.78380 130 153.01996 17.63692 -12.20300 (52,59,124,76,69,97,117)
47 -0.82271 -4.55665 -14.34265 131 -25.48331 -3.11637 -37.65998 (53,60,125,77,70,98,118)
48 -1.52311 13.27359 20.80703 132 33.81064 36.84145 4.78407 (54,61,126,71,64,92,119)
49 -118.67792 -12.13467 57.79802 133 -1.07018 -8.93212 19.68921 (55,62,120,72,65,93,113)
50 67.66644 -40.04232 -57.43208 134 13.84846 -3.06746 6.59005 (56,63,121,73,66,94,114)
51 -26.14064 21.56823 -29.65050 135 -74.80478 59.26288 -93.28657 (71,78,104,97,117,132,126)
52 -3.99798 36.88117 10.20856 136 68.16949 54.79069 -45.99051 (72,79,105,98,118,133,120)
53 -40.21312 -15.64774 -6.85107 137 -6.64113 -3.16744 -22.87441 (73,80,99,92,119,127,121)
54 6.64113 3.16744 -22.87441 138 26.78432 25.07733 7.51519 (74,81,100,93,113,128,122)
55 0.63497 5.33467 23.37304 139 -8.10494 -12.02365 4.64034 (75,82,101,94,114,129,123)
56 -153.01996 -17.63692 -12.20300 140 -33.04987 -32.54760 -15.31074 (76,83,102,95,115,130,124)
57 22.92542 -28.83418 0.45938 141 8.10494 12.02365 4.64034 (77,84,103,96,116,131,125)
58 -27.68394 23.17566 -27.27019 142 -42.68237 45.53736 42.70621 (78,85,149,155,141,111,104)
59 29.47967 60.64068 -16.21246 143 84.16370 44.94635 -39.95758 (79,86,150,156,142,112,105)
60 -36.75237 -22.14047 -4.54998 144 0.82271 4.55665 -14.34265 (80,87,151,157,143,106,99)
61 25.48331 3.11637 -37.65998 145 1.61397 19.14422 11.99876 (81,88,152,158,144,107,100)
62 -0.63497 -5.33467 23.37305 146 -13.68730 -12.27985 4.68166 (82,89,153,159,145,108,101)
63 -68.16949 -54.79071 -45.99051 147 -46.60689 -43.02608 -24.86275 (83,90,154,160,146,109,102)
64 70.04882 26.66724 -20.51257 148 6.23564 -19.53143 8.53529 (84,91,148,161,147,110,103)
65 22.49006 -14.75382 3.32295 149 11.08264 13.51310 -2.71609 (134,141,155,162,168,161,148)
66 -146.46400 -15.58591 -15.39566 150 -10.62177 84.19041 -56.58475 (135,142,156,163,162,155,149)
67 28.22441 -12.97841 -12.26003 151 15.48267 13.41034 -42.14531 (136,143,157,164,163,156,150)
68 -27.79708 1.31883 1.85603 152 30.63692 29.02187 0.23133 (137,144,158,165,164,157,151)
69 88.51120 25.46504 36.73831 153 -13.84846 3.06746 6.59005 (138,145,159,166,165,158,152)
70 -26.76078 -44.16088 4.72524 154 -3.47818 -18.12546 6.20864 (139,146,160,167,166,159,153)
71 36.75237 22.14047 -4.54998 155 13.68730 12.27985 4.68166 (140,147,161,168,167,160,154)
72 -0.31618 -16.21817 22.03817 156 -40.91615 42.85596 -7.93866 (162,168,167,166,165,164,163)
73 -43.83405 -0.37877 -63.37598 157 46.64407 42.53370 -28.56465
74 32.41477 -23.82625 -14.33892 158 27.26375 29.41883 -1.75801
75 -32.41477 23.82625 -14.33892 159 -6.23564 19.53143 8.53529
76 63.88404 -17.99086 89.72525 160 -6.12312 -16.55262 4.05183
77 -33.81063 -36.84145 4.78407 161 -0.65333 -20.57255 8.57434
78 40.21312 15.64774 -6.85107 162 6.12312 16.55262 4.05183
79 -113.29918 -61.87540 52.23039 163 3.47818 18.12546 6.20864
80 -32.71715 -13.79608 -47.99250 164 33.04987 32.54760 -15.31074
81 27.79708 -1.31883 1.85603 165 46.60689 43.02608 -24.86275
82 -15.61599 12.63363 5.01436 166 0.65333 20.57255 8.57434
83 42.68237 -45.53736 42.70619 167 1.18737 11.23758 7.40785
84 -26.78432 -25.07733 7.51519 168 -1.18737 -11.23758 7.40785
Face Permutation Groups
(1,3)(2,4)(5,10)(6,24)(7,17)(8,11)(9,25)(12,16)(13,47)(14,30)(15,53)(18,23)
(19,33)(20,38)(21,59)(22,48)(26,52)(27,61)(28,43)(29,34)(31,46)(32,39)(35,42)(36,54)
(37,60)(40,45)(41,55)(44,56)(49,58)(50,68)(51,62)(57,67)(63,66)(64,69)(65,70)(71,72)
Table A15. R7.1’ with C3 Symmetry
Table A15. R7.1’ with C3 Symmetry
Vertex X Y Z Vertex X Y Z Polygons
1 -11.66809 2.49525 4.08575 85 16.46599 56.92002 8.46202 (1,2,9,11,12,10,8)
2 -18.45931 10.01290 -4.68825 86 55.43167 -8.22392 32.09068 (1,3,5,7,6,4,2)
3 -28.24467 11.32991 -8.45819 87 0 0 47.85097 (1,8,14,16,15,13,3)
4 -6.54753 12.68733 -4.08775 88 31.13094 -57.31091 25.77840 (2,4,17,19,20,18,9)
5 19.70385 32.62620 -15.86063 89 -10.80701 -39.12773 40.70345 (3,13,22,24,23,21,5)
6 26.34879 34.11556 -15.52326 90 14.74078 6.16394 8.21624 (4,6,29,31,32,30,17)
7 8.16186 36.83691 -22.78513 91 38.49994 13.96717 -7.56511 (5,21,34,36,35,33,7)
8 -11.47521 -12.91115 7.11907 92 23.50046 34.67405 -6.87747 (6,7,33,49,51,50,29)
9 -21.47845 7.49906 -7.51574 93 16.69732 10.07417 5.73427 (8,10,25,28,27,26,14)
10 20.97795 6.43444 38.91895 94 37.45202 -49.28170 5.82672 (9,18,41,44,43,42,11)
11 -12.29819 -18.37750 7.22446 95 31.03196 -52.83044 -4.11475 (10,12,45,47,48,46,25)
12 21.39051 3.41731 39.92117 96 41.06120 -42.71998 8.46202 (11,42,71,73,72,45,12)
13 -32.52810 6.64744 -10.38541 97 -50.21369 18.66139 -10.80719 (13,15,37,40,39,38,22)
14 -1.34547 -10.74567 13.35736 98 -57.52719 -14.20004 8.46202 (14,26,53,55,54,52,16)
15 -27.70766 21.46598 -10.01821 99 -51.27690 14.42504 -8.40311 (15,16,52,64,66,65,37)
16 0.83487 -4.24459 13.56147 100 -61.26849 -0.45924 -4.11475 (17,30,60,63,62,61,19)
17 -9.76829 14.68989 -0.27841 101 -4.91659 -21.38465 38.91894 (18,20,67,69,70,68,41)
18 0 0 -24.38698 102 7.99500 8.85724 4.08575 (19,61,101,103,102,67,20)
19 -9.76628 19.83930 7.22447 103 -5.44378 16.39341 7.11907 (21,23,56,59,58,57,34)
20 17.23360 14.85135 -7.51574 104 -38.10704 0.75093 -15.86063 (22,38,75,77,76,74,24)
21 26.08258 -4.97616 -54.49568 105 -16.71866 -13.92984 -53.64426 (23,24,74,94,96,95,56)
22 17.22153 14.62318 -31.21380 106 -35.98262 -11.35010 -22.78514 (25,46,87,89,88,86,28)
23 20.42293 -7.51387 -53.64426 107 -36.46960 -14.52402 -22.97034 (26,27,78,81,80,79,53)
24 22.77604 -3.82443 -51.54537 108 -1.15610 17.41107 -29.86531 (27,28,86,127,126,128,78)
25 31.29230 4.38350 41.21877 109 -5.06434 31.72013 -5.23190 (29,50,92,91,90,93,31)
26 -2.03227 -15.84786 8.21625 110 0 0 -63.53915 (30,32,97,99,100,98,60)
27 0.37582 -19.49739 5.73427 111 -11.91701 18.47532 -38.79691 (31,93,133,132,138,97,32)
28 49.78823 -13.00933 32.28438 112 -20.28708 -28.84959 15.00294 (33,35,84,83,82,85,49)
29 27.27638 41.49163 -11.40372 113 -49.57100 2.87622 -11.40373 (34,57,105,107,106,104,36)
30 -10.00394 28.30738 8.83657 114 -42.71934 5.76094 -15.52326 (35,36,104,131,129,130,84)
31 -14.84093 31.99392 15.00294 115 -15.25329 -23.87951 9.12835 (37,65,119,112,113,118,40)
32 -13.05362 25.14949 9.12836 116 9.97876 4.20762 13.35736 (38,39,108,109,111,110,75)
33 5.65664 38.84562 -22.97032 117 32.44392 13.26254 -10.01821 (39,40,118,99,97,138,108)
34 0 0 -75.60766 118 -44.33855 17.39310 -12.56723 (41,68,122,123,121,120,44)
35 -3.70425 21.44370 -53.64426 119 -17.07315 9.42322 5.73427 (42,43,114,113,112,115,71)
36 -8.73181 25.07626 -54.49568 120 3.67309 -11.35248 4.08575 (43,44,120,131,104,106,114)
37 -31.34590 26.35835 -7.56511 121 16.91899 -3.48224 7.11907 (45,72,124,82,83,125,47)
38 21.43705 3.23293 -35.02782 122 -13.65472 16.81607 39.92115 (46,48,132,133,134,135,87)
39 16.52827 7.18121 -32.16852 123 -16.06135 14.95022 38.91894 (47,125,109,108,138,132,48)
40 -41.77884 3.01498 -6.87747 124 8.14308 -1.65676 34.09456 (49,85,141,142,128,126,51)
41 4.24484 -22.35041 -7.51574 125 7.82292 52.34404 26.16505 (50,51,126,127,136,137,92)
42 -7.83767 -15.80453 -0.27840 126 41.26808 34.15564 -10.80719 (52,54,116,90,91,117,64)
43 -7.71379 -12.01399 -4.08775 127 47.33844 37.88400 -9.88364 (53,79,139,140,130,129,55)
44 0.55823 -20.99269 -4.68825 128 28.30691 -1.26998 9.12835 (54,55,129,131,120,121,116)
45 3.64823 -7.59125 40.47314 129 10.50718 -31.49387 -10.38541 (56,95,151,80,81,150,59)
46 39.28909 10.20470 40.70346 130 -21.27481 7.60270 -31.21380 (57,58,143,144,145,146,105)
47 10.28827 50.99398 23.37592 131 4.31035 -30.12555 -8.45819 (58,59,150,69,67,102,143)
48 34.06721 55.61563 25.77840 132 -20.59369 52.11719 32.09068 (60,98,154,153,152,149,63)
49 30.23653 53.28968 -4.11475 133 -13.62771 49.62254 32.28438 (61,62,147,88,89,148,101)
50 37.23215 29.70176 -12.56723 134 -19.44236 24.90819 41.21877 (62,63,149,94,74,76,147)
51 38.13091 37.19458 -8.40311 135 -28.48206 28.92301 40.70346 (64,117,144,143,102,103,66)
52 0 0 24.67595 136 15.65648 -7.70432 -29.86531 (65,66,103,101,148,155,119)
53 -7.15405 -40.32552 -7.56511 137 -2.04502 -17.90451 -32.16852 (68,70,142,141,156,157,122)
54 3.25848 2.84532 13.56147 138 -56.47773 22.05429 -9.88364 (69,150,81,78,128,142,70)
55 -4.73626 -34.72852 -10.01821 139 -14.48324 10.72329 -32.16853 (71,115,160,151,95,96,73)
56 30.81298 -24.32162 -22.97033 140 -13.51832 16.94857 -35.02782 (72,73,96,94,149,152,124)
57 -17.35077 -20.10010 -54.49568 141 2.45729 8.39389 32.14307 (75,110,159,158,137,136,77)
58 18.40319 -33.37714 -15.86063 142 29.51688 -5.49003 8.83657 (76,77,136,127,86,88,147)
59 27.82077 -25.48685 -22.78513 143 23.93432 18.79565 -8.45819 (79,80,151,160,162,161,139)
60 -8.49797 -2.06886 32.14307 144 22.02090 24.84643 -10.38540 (82,124,152,153,156,141,85)
61 -7.73578 -20.23337 39.92115 145 4.05328 -22.22587 -31.21379 (83,84,130,140,111,109,125)
62 -8.39833 0.63616 40.47312 146 -14.70007 -17.81242 -51.54537 (87,135,164,163,155,148,89)
63 -8.34952 -6.30249 32.65667 147 39.01795 -34.40689 23.37591 (90,116,121,123,134,133,93)
64 -4.09336 1.39927 13.56146 148 -11.84993 -29.29166 41.21876 (91,92,137,158,145,144,117)
65 -12.70852 9.68392 8.21625 149 -5.50633 -6.22374 34.09457 (98,100,107,105,146,165,154)
66 -8.63329 6.53805 13.35736 150 16.37055 -39.87651 -15.52326 (99,118,113,114,106,107,100)
67 17.90109 10.97978 -4.68825 151 13.14600 -51.61961 -8.40311 (110,111,140,139,161,166,159)
68 22.06448 -1.46180 7.22447 152 0 0 36.25107 (112,119,155,163,162,160,115)
69 14.26131 -0.67334 -4.08775 153 -2.63675 7.88049 34.09457 (122,157,167,164,135,134,123)
70 17.60596 1.11464 -0.27841 154 -61.40520 -7.79354 5.82673 (145,158,159,166,168,165,146)
71 -19.51295 -22.81736 8.83657 155 -36.16052 -36.61320 32.28437 (153,154,165,168,167,157,156)
72 9.63288 -4.07964 32.65667 156 -1.28336 10.38214 32.65667 (161,162,163,164,167,168,166)
73 6.04069 -6.32503 32.14307 157 4.75009 6.95509 40.47312
74 44.69453 -43.44576 15.85656 158 -7.91873 -20.18149 -35.02782
75 21.95861 1.08277 -38.79692 159 -10.04160 -19.55810 -38.79691
76 41.41981 -32.94687 26.16506 160 8.94561 -52.81702 -10.80719
77 30.00261 -11.47423 -5.23191 161 -14.50038 -9.70675 -29.86531
78 35.12801 -3.14433 15.00294 162 9.13930 -59.93830 -9.88364
79 18.27838 -37.68902 -6.87747 163 -34.83796 -43.89327 32.09066
80 7.10640 -47.09486 -12.56723 164 -65.19814 1.69525 25.77840
81 22.29462 -44.36786 -11.40373 165 -59.97240 -16.98372 15.85657
82 23.95319 57.07524 5.82673 166 -24.93826 -20.24592 -5.23191
83 15.27787 60.42947 15.85656 167 -49.30622 -16.58709 23.37591
84 -8.07597 21.63684 -51.54537 168 -49.24272 -19.39717 26.16505
Face Permutation Groups
(1,48,46)(2,32,26)(3,49,56)(4,10,17)(5,35,41)(6,60,50)(7,29,61)(8,27,14)
(9,39,64)(11,69,42)(12,68,44)(13,30,16)(15,18,51)(19,62,70)(20,23,31)(21,65,24)
(22,36,63)(25,55,40)(28,66,54)(33,71,43)(34,38,67)(37,47,57)(45,52,58)(53,72,59)
Table A16. R8.1 with S2 Symmetry
Table A16. R8.1 with S2 Symmetry
Vertex X Y Z Triangles
1 5 8 17 (1,2,4) (1,3,2) (1,4,7)
2 -16 -40 -4 (1,5,3) (1,7,12) (1,8,5)
3 6 -20 11 (1,12,14) (1,14,8) (2,3,6)
4 -7 -24 -1 (2,6,11) (2,10,4) (2,11,19)
5 9 33 38 (2,19,20) (2,20,10) (3,5,9)
6 19 -1 -11 (3,9,17) (3,13,6) (3,17,21)
7 8 13 16 (3,21,13) (4,10,18) (4,16,7)
8 41 43 15 (4,18,25) (4,25,26) (4,26,16)
9 -8 22 53 (5,8,15) (5,15,24) (5,18,9)
10 -8 -3 -6 (5,24,27) (5,27,18) (6,13,16)
11 28 3 -13 (6,15,11) (6,16,30) (6,30,33)
12 9 26 20 (6,33,15) (7,13,32) (7,16,13)
13 -1 -17 -21 (7,23,12) (7,31,23) (7,32,31)
14 30 46 13 (8,11,15) (8,14,22) (8,22,31)
15 0 61 -1 (8,31,34) (8,34,11) (9,10,37)
16 -3 -2 6 (9,18,10) (9,22,17) (9,37,39)
17 17 0 11 (9,39,22) (10,20,23) (10,23,38)
18 -3 -4 0 (10,38,37) (11,28,19) (11,34,38)
19 -30 -46 -13 (11,38,28) (12,20,40) (12,23,20)
20 -17 0 -11 (12,24,29) (12,29,14) (12,40,24)
21 -9 -26 -20 (13,21,28) (13,28,39) (13,39,32)
22 50 1 13 (14,17,22) (14,26,41) (14,29,26)
23 4 10 0 (14,41,17) (15,29,24) (15,33,36)
24 1 17 21 (15,36,29) (16,26,29) (16,29,35)
25 -41 -43 -15 (16,35,30) (17,30,35) (17,35,21)
26 -28 -3 13 (17,41,30) (18,27,35) (18,35,36)
27 -8 -13 -16 (18,36,25) (19,21,42) (19,25,36)
28 53 7 -3 (19,28,21) (19,36,20) (19,42,25)
29 -53 -7 3 (20,33,40) (20,36,33) (21,27,42)
30 8 3 6 (21,35,27) (22,23,31) (22,28,23)
31 3 4 0 (22,39,28) (23,28,38) (24,37,38)
32 -9 -33 -38 (24,38,27) (24,40,37) (25,32,39)
33 8 -22 -53 (25,39,26) (25,42,32) (26,37,41)
34 7 24 1 (26,39,37) (27,34,42) (27,38,34)
35 -4 -10 0 (29,36,35) (30,31,33) (30,34,31)
36 -50 -1 -13 (30,41,34) (31,32,33) (32,40,33)
37 -19 1 11 (32,42,40) (34,41,42) (37,40,41)
38 3 2 -6 (40,42,41)
39 0 -61 1
40 -6 20 -11
41 16 40 4
42 -5 -8 -17
Vertex Permutation Groups
(1,42)(2,41)(3,40)(4,34)(5,32)(6,37)(7,27)
(8,25)(9,33)(10,30)(11,26)(12,21)(13,24)(14,19)
(15,39)(16,38)(17,20)(18,31)(22,36)(23,35)(28,29)
Table A17. R8.1 with C3 Symmetry
Table A17. R8.1 with C3 Symmetry
Vertex X Y Z Triangles
1 -2.20394 -3.33551 -11.69687 (1,2,3) (1,3,5) (1,4,2)
2 17.78823 -3.93397 12.12479 (1,5,8) (1,7,4) (1,8,14)
3 6.06313 -5.63495 3.91730 (1,12,7) (1,14,12) (2,4,10)
4 17.52774 -0.64880 9.89485 (2,6,3) (2,10,20) (2,11,6)
5 -4.80849 -4.53634 -18.63129 (2,19,11) (2,20,19) (3,6,13)
6 9.25037 -2.26494 -18.86588 (3,9,5) (3,13,21) (3,17,9)
7 3.99060 -0.24091 -11.69687 (3,21,17) (4,7,16) (4,16,26)
8 -4.92751 -25.57663 -1.02392 (4,18,10) (4,25,18) (4,26,25)
9 -0.74958 -4.70524 -15.12677 (5,9,18) (5,15,8) (5,18,27)
10 -9.81494 4.80626 -0.23560 (5,24,15) (5,27,24) (6,11,15)
11 -0.52731 -21.65107 -10.27507 (6,15,33) (6,16,13) (6,30,16)
12 -1.78667 3.57642 -11.69687 (6,33,30) (7,12,23) (7,13,16)
13 6.33283 -1.89610 -18.63129 (7,23,31) (7,31,32) (7,32,13)
14 -9.32575 -14.85507 9.89485 (8,11,34) (8,15,11) (8,22,14)
15 -6.58668 -6.87859 -18.86588 (8,31,22) (8,34,31) (9,10,18)
16 24.61376 8.52097 -1.02392 (9,17,22) (9,22,39) (9,37,10)
17 1.16061 -10.87326 10.05103 (9,39,37) (10,23,20) (10,37,38)
18 -14.92760 7.96358 -9.57584 (10,38,23) (11,19,28) (11,28,38)
19 16.34658 -0.10121 15.41202 (11,38,34) (12,14,29) (12,20,23)
20 -19.68626 17.05566 -1.02392 (12,24,40) (12,29,24) (12,40,20)
21 1.21049 -17.08186 17.65667 (13,28,21) (13,32,39) (13,39,28)
22 0.74512 -10.90311 -0.23560 (14,17,41) (14,22,17) (14,26,29)
23 -8.20199 15.50387 9.89485 (14,41,26) (15,24,29) (15,29,36)
24 -7.91158 -2.43335 3.91730 (15,36,33) (16,29,26) (16,30,35)
25 8.83621 6.44175 10.05103 (16,35,29) (17,21,35) (17,30,41)
26 9.06981 6.09685 -0.23560 (17,35,30) (18,25,36) (18,35,27)
27 -15.39857 7.49262 17.65667 (18,36,35) (19,20,36) (19,21,28)
28 0.56714 -16.90947 -9.57584 (19,25,42) (19,36,25) (19,42,21)
29 -12.30103 -13.43807 12.12479 (20,33,36) (20,40,33) (21,27,35)
30 19.01403 10.36887 -10.27507 (21,42,27) (22,23,28) (22,28,39)
31 -5.48720 17.37204 12.12479 (22,31,23) (23,38,28) (24,27,38)
32 1.84845 8.06830 3.91730 (24,37,40) (24,38,37) (25,26,39)
33 -2.66369 9.14353 -18.86588 (25,32,42) (25,39,32) (26,37,39)
34 -8.08564 14.20716 15.41202 (26,41,37) (27,34,38) (27,42,34)
35 -8.26094 -14.10595 15.41202 (29,35,36) (30,31,34) (30,33,31)
36 -18.48672 11.28220 -10.27507 (30,34,41) (31,33,32) (32,33,40)
37 -3.70007 3.00177 -15.12677 (32,40,42) (34,42,41) (37,41,40)
38 -9.99683 4.43151 10.05103 (40,41,42)
39 4.44964 1.70347 -15.12677
40 -1.52434 6.43244 -18.63129
41 14.36046 8.94589 -9.57584
42 14.18808 9.58924 17.65667
Vertex Permutation Groups
(1,7,12)(2,31,29)(3,32,24)(4,23,14)(5,13,40)(6,33,15)(8,16,20)
(9,39,37)(10,22,26)(11,30,36)(17,25,38)(18,28,41)(19,34,35)(21,42,27)
Table A18. R8.1 with D2 Symmetry
Table A18. R8.1 with D2 Symmetry
Vertex X Y Z Triangles
1 -35 4 132 (1,2,3) (1,3,5) (1,4,2)
2 -43 -54 36 (1,5,8) (1,7,4) (1,8,14)
3 -21 -57 -93 (1,12,7) (1,14,12) (2,4,10)
4 -102 80 53 (2,6,3) (2,10,20) (2,11,6)
5 -29 -40 -48 (2,19,11) (2,20,19) (3,6,13)
6 5 -16 -26 (3,9,5) (3,13,21) (3,17,9)
7 91 78 4 (3,21,17) (4,7,16) (4,16,26)
8 -1 -22 11 (4,18,10) (4,25,18) (4,26,25)
9 -38 4 -21 (5,9,18) (5,15,8) (5,18,27)
10 -91 -78 4 (5,24,15) (5,27,24) (6,11,15)
11 -4 -38 21 (6,15,33) (6,16,13) (6,30,16)
12 43 54 36 (6,33,30) (7,12,23) (7,13,16)
13 22 -1 -11 (7,23,31) (7,31,32) (7,32,13)
14 -57 21 93 (8,11,34) (8,15,11) (8,22,14)
15 0 0 -31 (8,31,22) (8,34,31) (9,10,18)
16 84 102 -10 (9,17,22) (9,22,39) (9,37,10)
17 -54 43 -36 (9,39,37) (10,23,20) (10,37,38)
18 -102 84 10 (10,38,23) (11,19,28) (11,28,38)
19 57 -21 93 (11,38,34) (12,14,29) (12,20,23)
20 35 -4 132 (12,24,40) (12,29,24) (12,40,20)
21 -4 -35 -132 (13,28,21) (13,32,39) (13,39,28)
22 -16 -5 26 (14,17,41) (14,22,17) (14,26,29)
23 102 -80 53 (14,41,26) (15,24,29) (15,29,36)
24 -5 16 -26 (15,36,33) (16,29,26) (16,30,35)
25 16 5 26 (16,35,29) (17,21,35) (17,30,41)
26 -40 29 48 (17,35,30) (18,25,36) (18,35,27)
27 -80 -102 -53 (18,36,35) (19,20,36) (19,21,28)
28 40 -29 48 (19,25,42) (19,36,25) (19,42,21)
29 4 38 21 (20,33,36) (20,40,33) (21,27,35)
30 80 102 -53 (21,42,27) (22,23,28) (22,28,39)
31 102 -84 10 (22,31,23) (23,38,28) (24,27,38)
32 38 -4 -21 (24,37,40) (24,38,37) (25,26,39)
33 29 40 -48 (25,32,42) (25,39,32) (26,37,39)
34 78 -91 -4 (26,41,37) (27,34,38) (27,42,34)
35 -78 91 -4 (29,35,36) (30,31,34) (30,33,31)
36 1 22 11 (30,34,41) (31,33,32) (32,33,40)
37 -22 1 -11 (32,40,42) (34,42,41) (37,41,40)
38 -84 -102 -10 (40,41,42)
39 0 0 31
40 21 57 -93
41 4 35 -132
42 54 -43 -36
Vertex Permutation Groups
(1,21,20,41)(2,42,12,17)(3,19,40,14)(4,27,23,30)
(5,28,33,26)(6,25,24,22)(7,35,10,34)(8,13,36,37)
(9,11,32,29)(15,39)(16,18,38,31)
Table A19. R8.1 with C4 Symmetry
Table A19. R8.1 with C4 Symmetry
Vertex X Y Z Triangles
1 21 1 22 (1,2,4) (1,3,2) (1,4,7)
2 31 18 -29 (1,5,3) (1,7,12) (1,8,5)
3 -1 21 22 (1,12,14) (1,14,8) (2,3,6)
4 18 -31 -29 (2,6,11) (2,10,4) (2,11,19)
5 31 0 42 (2,19,20) (2,20,10) (3,5,9)
6 -18 31 -29 (3,9,17) (3,13,6) (3,17,21)
7 1 -21 22 (3,21,13) (4,10,18) (4,16,7)
8 -5 -7 3 (4,18,25) (4,25,26) (4,26,16)
9 3 8 10 (5,8,15) (5,15,24) (5,18,9)
10 27 7 -43 (5,24,27) (5,27,18) (6,13,16)
11 -7 27 -43 (6,15,11) (6,16,30) (6,30,33)
12 0 -31 42 (6,33,15) (7,13,32) (7,16,13)
13 -21 -1 22 (7,23,12) (7,31,23) (7,32,31)
14 8 -3 10 (8,11,15) (8,14,22) (8,22,31)
15 -2 -5 -1 (8,31,34) (8,34,11) (9,10,37)
16 -31 -18 -29 (9,18,10) (9,22,17) (9,37,39)
17 7 -5 3 (9,39,22) (10,20,23) (10,23,38)
18 11 -1 13 (10,38,37) (11,28,19) (11,34,38)
19 1 11 13 (11,38,28) (12,20,40) (12,23,20)
20 -5 2 -1 (12,24,29) (12,29,14) (12,40,24)
21 0 31 42 (13,21,28) (13,28,39) (13,39,32)
22 0 0 4 (14,17,22) (14,26,41) (14,29,26)
23 -7 5 3 (14,41,17) (15,29,24) (15,33,36)
24 36 1 45 (15,36,29) (16,26,29) (16,29,35)
25 2 5 -1 (16,35,30) (17,30,35) (17,35,21)
26 7 -27 -43 (17,41,30) (18,27,35) (18,35,36)
27 -1 36 45 (18,36,25) (19,21,42) (19,25,36)
28 -8 3 10 (19,28,21) (19,36,20) (19,42,25)
29 -1 -11 13 (20,33,40) (20,36,33) (21,27,42)
30 -27 -7 -43 (21,35,27) (22,23,31) (22,28,23)
31 -3 -8 10 (22,39,28) (23,28,38) (24,37,38)
32 -31 0 42 (24,38,27) (24,40,37) (25,32,39)
33 -11 1 13 (25,39,26) (25,42,32) (26,37,41)
34 -21 31 -38 (26,39,37) (27,34,42) (27,38,34)
35 5 -2 -1 (29,36,35) (30,31,33) (30,34,31)
36 0 0 -11 (30,41,34) (31,32,33) (32,40,33)
37 21 -31 -38 (32,42,40) (34,41,42) (37,40,41)
38 31 21 -38 (40,42,41)
39 5 7 3
40 1 -36 45
41 -31 -21 -38
42 -36 -1 45
Vertex Permutation Groups
(1,3,13,7)(2,6,16,4)(5,21,32,12)(8,17,39,23)
(9,28,31,14)(10,11,30,26)(15,35,25,20)(18,19,33,29)
(24,27,42,40)(34,41,37,38)
Table A20. R8.2 with C3 Symmetry
Table A20. R8.2 with C3 Symmetry
Vertex X Y Z Triangles
1 14.16807 5.08777 -8.95402 (1,2,6) (1,6,13) (1,8,17)
2 3.78487 8.02386 0.86412 (1,12,2) (1,13,25) (1,17,19)
3 2.19958 -0.19126 4.98653 (1,19,12) (1,25,8) (2,10,20)
4 -1.26543 -1.80926 4.98653 (2,12,26) (2,14,10) (2,18,6)
5 2.11976 -4.30032 8.94061 (2,20,18) (2,26,14) (3,4,18)
6 14.11143 12.53091 -0.51153 (3,5,4) (3,12,5) (3,18,32)
7 -12.55265 -0.06217 4.39903 (3,21,34) (3,29,21) (3,32,29)
8 -2.67789 -14.81380 -8.95402 (3,34,12) (4,5,13) (4,13,35)
9 -3.16223 11.87491 -6.27571 (4,22,36) (4,23,22) (4,35,23)
10 -6.11647 -1.97390 -0.39480 (4,36,18) (5,12,31) (5,24,28)
11 12.18826 16.06597 1.10914 (5,28,33) (5,31,24) (5,33,13)
12 2.34960 1.11712 -0.96729 (6,7,11) (6,11,27) (6,18,30)
13 10.66116 -14.61757 6.85814 (6,27,13) (6,30,7) (7,9,11)
14 -2.50975 2.03888 2.22025 (7,21,33) (7,26,9) (7,28,26)
15 -15.92490 -1.64829 -11.19981 (7,30,21) (7,33,28) (8,15,17)
16 -8.70286 -8.67603 -6.27571 (8,21,30) (8,22,34) (8,25,22)
17 -11.49018 9.72602 -8.95402 (8,30,15) (8,34,21) (9,15,16)
18 -0.93415 2.00052 4.98653 (9,16,37) (9,19,11) (9,26,38)
19 6.53499 14.61551 -11.19981 (9,37,19) (9,38,15) (10,14,16)
20 -2.14225 1.47625 -0.96729 (10,16,27) (10,23,20) (10,24,31)
21 3.79637 -18.48632 -0.51153 (10,27,24) (10,31,23) (11,19,29)
22 -0.20735 -2.59337 -0.96729 (11,24,27) (11,29,32) (11,32,24)
23 -8.84130 -0.73414 0.86412 (12,19,31) (12,34,26) (13,27,35)
24 11.14989 -9.99959 10.89373 (13,33,25) (14,22,25) (14,25,16)
25 9.38991 -12.96722 -11.19981 (14,26,28) (14,28,36) (14,36,22)
26 1.34879 6.28397 -0.39480 (15,20,17) (15,30,39) (15,38,20)
27 6.33016 -10.83983 4.39903 (15,39,16) (16,25,37) (16,39,27)
28 -14.23484 -4.65630 10.89373 (17,20,23) (17,23,35) (17,29,19)
29 7.32861 16.54162 6.85814 (17,35,29) (18,20,32) (18,36,30)
30 -17.98977 -1.92405 6.85814 (19,37,31) (20,38,32) (21,29,41)
31 -0.51085 -3.19295 2.22025 (21,41,33) (22,23,42) (22,42,34)
32 2.66430 3.98593 8.94061 (23,31,42) (24,32,40) (24,40,28)
33 7.81941 -18.58833 1.10914 (25,33,37) (26,34,38) (27,39,35)
34 5.05643 -7.28972 0.86412 (28,40,36) (29,35,41) (30,36,39)
35 -17.90781 5.95540 -0.51153 (31,37,42) (32,38,40) (33,41,37)
36 -4.78406 0.31439 8.94061 (34,42,38) (35,39,41) (36,40,39)
37 11.86509 -3.19889 -6.27571 (37,41,42) (38,42,40) (39,40,41)
38 3.02060 1.15407 2.22025 (40,42,41)
39 -20.00767 2.52236 1.10914
40 3.08495 14.65588 10.89373
41 6.22249 10.90200 4.39903
42 4.76768 -4.31007 -0.39480
Vertex Permutation Groups
(1,17,8)(2,23,34)(3,18,4)(5,32,36)(6,35,21)(7,27,41)(9,16,37)
(10,42,26)(11,39,33)(12,20,22)(13,29,30)(14,31,38)(15,25,19)(24,40,28)
Table A21. R8.2 with D2 Symmetry
Table A21. R8.2 with D2 Symmetry
Vertex X Y Z Triangles
1 29 9 -49 (1,2,12) (1,6,2) (1,8,25)
2 29 6 -65 (1,12,19) (1,13,6) (1,17,8)
3 6 -29 65 (1,19,17) (1,25,13) (2,6,18)
4 9 -29 49 (2,10,14) (2,14,26) (2,18,20)
5 -80 -9 13 (2,20,10) (2,26,12) (3,4,5)
6 -3 6 -15 (3,5,12) (3,12,34) (3,18,4)
7 -6 29 65 (3,21,29) (3,29,32) (3,32,18)
8 16 32 5 (3,34,21) (4,13,5) (4,18,36)
9 -9 29 49 (4,22,23) (4,23,35) (4,35,13)
10 0 0 -47 (4,36,22) (5,13,33) (5,24,31)
11 -6 -3 15 (5,28,24) (5,31,12) (5,33,28)
12 9 -80 -13 (6,7,30) (6,11,7) (6,13,27)
13 -54 1 18 (6,27,11) (6,30,18) (7,9,26)
14 -2 28 -40 (7,11,9) (7,21,30) (7,26,28)
15 20 39 19 (7,28,33) (7,33,21) (8,15,30)
16 -32 16 -5 (8,17,15) (8,21,34) (8,22,25)
17 39 -20 -19 (8,30,21) (8,34,22) (9,11,19)
18 6 3 15 (9,15,38) (9,16,15) (9,19,37)
19 -1 -54 -18 (9,37,16) (9,38,26) (10,16,14)
20 17 0 -13 (10,20,23) (10,23,31) (10,24,27)
21 0 0 47 (10,27,16) (10,31,24) (11,24,32)
22 20 -7 31 (11,27,24) (11,29,19) (11,32,29)
23 32 -16 -5 (12,26,34) (12,31,19) (13,25,33)
24 -29 -6 -65 (13,35,27) (14,16,25) (14,22,36)
25 7 20 -31 (14,25,22) (14,28,26) (14,36,28)
26 80 9 13 (15,16,39) (15,17,20) (15,20,38)
27 -17 0 -13 (15,39,30) (16,27,39) (16,37,25)
28 -9 80 -13 (17,19,29) (17,23,20) (17,29,35)
29 0 -17 13 (17,35,23) (18,30,36) (18,32,20)
30 0 17 13 (19,31,37) (20,32,38) (21,33,41)
31 2 -28 -40 (21,41,29) (22,34,42) (22,42,23)
32 3 -6 -15 (23,42,31) (24,28,40) (24,40,32)
33 -28 -2 40 (25,37,33) (26,38,34) (27,35,39)
34 28 2 40 (28,36,40) (29,41,35) (30,39,36)
35 -20 -39 19 (31,42,37) (32,40,38) (33,37,41)
36 1 54 -18 (34,38,42) (35,41,39) (36,39,40)
37 -20 7 31 (37,42,41) (38,40,42) (39,41,40)
38 54 -1 18 (40,41,42)
39 -39 20 -19
40 -29 -9 -49
41 -16 -32 5
42 -7 -20 -31
Vertex Permutation Groups
(1,9,40,4)(2,7,24,3)(5,12,26,28)(6,11,32,18)
(8,16,41,23)(10,21)(13,19,38,36)(14,33,31,34)
(15,39,35,17)(20,30,27,29)(22,25,37,42)
Table A22. R8.2 with C4 Symmetry
Table A22. R8.2 with C4 Symmetry
Vertex X Y Z Triangles
1 0 0 -63 (1,2,6) (1,6,13) (1,8,17)
2 42 -27 -52 (1,12,2) (1,13,25) (1,17,19)
3 -3 65 31 (1,19,12) (1,25,8) (2,10,20)
4 -41 -44 -41 (2,12,26) (2,14,10) (2,18,6)
5 18 38 25 (2,20,18) (2,26,14) (3,4,18)
6 14 -55 -26 (3,5,4) (3,12,5) (3,18,32)
7 65 3 31 (3,21,34) (3,29,21) (3,32,29)
8 -42 27 -52 (3,34,12) (4,5,13) (4,13,35)
9 41 44 -41 (4,22,36) (4,23,22) (4,35,23)
10 44 -41 -41 (4,36,18) (5,12,31) (5,24,28)
11 45 61 26 (5,28,33) (5,31,24) (5,33,13)
12 55 14 -26 (6,7,11) (6,11,27) (6,18,30)
13 -27 -42 -52 (6,27,13) (6,30,7) (7,9,11)
14 61 -45 26 (7,21,33) (7,26,9) (7,28,26)
15 14 41 -28 (7,30,21) (7,33,28) (8,15,17)
16 3 -65 31 (8,21,30) (8,22,34) (8,25,22)
17 -14 55 -26 (8,30,15) (8,34,21) (9,15,16)
18 -14 -41 -28 (9,16,37) (9,19,11) (9,26,38)
19 27 42 -52 (9,37,19) (9,38,15) (10,14,16)
20 -38 18 25 (10,16,27) (10,23,20) (10,24,31)
21 -44 41 -41 (10,27,24) (10,31,23) (11,19,29)
22 -57 -27 -31 (11,24,27) (11,29,32) (11,32,24)
23 -65 -3 31 (12,19,31) (12,34,26) (13,27,35)
24 30 66 32 (13,33,25) (14,22,25) (14,25,16)
25 -55 -14 -26 (14,26,28) (14,28,36) (14,36,22)
26 57 27 -31 (15,20,17) (15,30,39) (15,38,20)
27 27 -57 -31 (15,39,16) (16,25,37) (16,39,27)
28 70 19 38 (17,20,23) (17,23,35) (17,29,19)
29 -27 57 -31 (17,35,29) (18,20,32) (18,36,30)
30 38 -18 25 (19,37,31) (20,38,32) (21,29,41)
31 41 -14 -28 (21,41,33) (22,23,42) (22,42,34)
32 -19 70 38 (23,31,42) (24,32,40) (24,40,28)
33 -41 14 -28 (25,33,37) (26,34,38) (27,39,35)
34 -61 45 26 (28,40,36) (29,35,41) (30,36,39)
35 -45 -61 26 (31,37,42) (32,38,40) (33,41,37)
36 66 -30 32 (34,42,38) (35,39,41) (36,40,39)
37 -18 -38 25 (37,41,42) (38,42,40) (39,40,41)
38 -66 30 32 (40,42,41)
39 19 -70 38
40 0 0 88
41 -30 -66 32
42 -70 -19 38
Vertex Permutation Groups
(2,19,8,13)(3,23,16,7)(4,10,9,21)(5,20,37,30)
(6,12,17,25)(11,34,35,14)(15,33,18,31)(22,27,26,29)
(24,38,41,36)(28,32,42,39)
Table A23. R10.1 with D2 Symmetry
Table A23. R10.1 with D2 Symmetry
Vertex X Y Z Triangles
1 18 -26 -16 (1,2,3) (1,3,5) (1,4,2)
2 41 -45 -11 (1,5,8) (1,7,4) (1,8,14)
3 -4 0 -18 (1,12,7) (1,14,20) (1,20,12)
4 26 18 16 (2,4,10) (2,6,3) (2,10,22)
5 -34 19 -57 (2,11,6) (2,19,11) (2,22,29)
6 4 0 -18 (2,29,19) (3,6,13) (3,9,5)
7 37 49 40 (3,13,23) (3,17,9) (3,23,28)
8 49 -37 -40 (3,28,17) (4,7,16) (4,16,21)
9 -1 -1 -2 (4,18,10) (4,21,34) (4,24,18)
10 14 19 11 (4,34,24) (5,9,21) (5,15,8)
11 49 -40 -37 (5,18,15) (5,21,26) (5,26,33)
12 19 -14 -11 (5,33,18) (6,11,26) (6,15,24)
13 -41 45 -11 (6,16,36) (6,24,13) (6,26,16)
14 -26 -18 16 (6,36,15) (7,12,27) (7,13,33)
15 34 -19 -57 (7,17,16) (7,27,13) (7,30,17)
16 -19 -34 57 (7,33,30) (8,11,25) (8,15,22)
17 19 34 57 (8,22,30) (8,25,14) (8,30,34)
18 -49 37 -40 (8,34,11) (9,10,36) (9,17,30)
19 -40 -49 37 (9,19,21) (9,25,19) (9,30,10)
20 -45 -41 11 (9,36,25) (10,18,23) (10,23,27)
21 0 -4 18 (10,27,36) (10,30,22) (11,12,26)
22 11 -4 0 (11,19,25) (11,27,12) (11,34,27)
23 -49 40 -37 (12,20,32) (12,22,28) (12,28,26)
24 -18 26 -16 (12,32,22) (13,14,25) (13,24,14)
25 -14 -19 11 (13,25,33) (13,27,23) (14,17,31)
26 1 -1 2 (14,24,29) (14,29,17) (14,31,20)
27 40 49 37 (15,18,24) (15,28,22) (15,31,28)
28 -1 1 2 (15,36,31) (16,17,29) (16,26,21)
29 -37 -49 40 (16,29,32) (16,32,36) (17,28,31)
30 4 11 0 (18,20,23) (18,32,20) (18,33,32)
31 0 4 18 (19,20,21) (19,23,20) (19,29,35)
32 -4 -11 0 (19,35,23) (20,31,21) (21,31,34)
33 -11 4 0 (22,32,29) (23,35,28) (24,34,35)
34 45 41 11 (24,35,29) (25,32,33) (25,36,32)
35 -19 14 -11 (26,28,35) (26,35,33) (27,31,36)
36 1 1 -2 (27,34,31) (30,33,35) (30,35,34)
Vertex Permutation Groups
(1,4,24,14)(2,34,13,20)(3,21,6,31)(5,16,15,17)(7,18,29,8)
(9,26,36,28)(10,35,25,12)(11,27,23,19)(22,30,33,32)
Table A24. R10.2 with C2 Symmetry
Table A24. R10.2 with C2 Symmetry
Vertex X Y Z Triangles
1 -29 -83 -105 (1,2,3) (1,3,5) (1,4,2)
2 -2 -20 -42 (1,5,8) (1,7,4) (1,8,11)
3 76 34 18 (1,10,7) (1,11,14) (1,13,10)
4 -41 -19 7 (1,14,17) (1,16,13) (1,17,16)
5 6 -26 -9 (2,4,9) (2,6,3) (2,8,6)
6 29 83 -105 (2,9,10) (2,10,15) (2,12,8)
7 3 31 -30 (2,14,12) (2,15,16) (2,16,18)
8 15 -7 0 (2,18,14) (3,6,7) (3,7,12)
9 -26 -37 -1 (3,9,5) (3,11,9) (3,12,13)
10 -6 26 -9 (3,13,18) (3,15,11) (3,17,15)
11 41 19 7 (3,18,17) (4,5,9) (4,6,13)
12 26 37 -1 (4,7,6) (4,11,15) (4,12,17)
13 -15 7 0 (4,13,12) (4,15,5) (4,17,18)
14 -3 -31 -30 (4,18,11) (5,6,8) (5,10,18)
15 -7 -7 2 (5,12,14) (5,14,6) (5,15,10)
16 2 20 -42 (5,16,12) (5,18,16) (6,10,13)
17 -76 -34 18 (6,11,16) (6,14,11) (6,16,17)
18 7 7 2 (6,17,10) (7,8,12) (7,9,16)
(7,10,9) (7,14,18) (7,15,14)
(7,16,15) (7,18,8) (8,9,11)
(8,13,15) (8,15,17) (8,17,9)
(8,18,13) (9,13,16) (9,14,13)
(9,17,14) (10,11,18) (10,12,11)
(10,17,12) (11,12,16) (13,14,15)
Vertex Permutation Groups
(1,6)(2,16)(3,17)(4,11)(5,10)(7,14)(8,13)(9,12)(15,18)
Table A25. R13.1 with C2 Symmetry
Table A25. R13.1 with C2 Symmetry
Vertex X Y Z Triangles
1 -18 27 8 (1,2,3) (1,3,5) (1,4,2) (1,5,8)
2 79 -80 -125 (1,7,4) (1,8,14) (1,12,7) (1,14,24)
3 12 10 -5 (1,20,12) (1,24,20) (2,4,10) (2,6,3)
4 5 4 -6 (2,10,22) (2,11,6) (2,19,11) (2,22,32)
5 -1 99 -61 (2,30,19) (2,32,30) (3,6,13) (3,9,5)
6 27 23 5 (3,13,23) (3,17,9) (3,23,33) (3,28,17)
7 -38 77 57 (3,33,28) (4,7,16) (4,16,31) (4,18,10)
8 -5 -4 -6 (4,28,33) (4,29,18) (4,31,28) (4,33,29)
9 -47 -13 -81 (5,9,21) (5,15,8) (5,21,29) (5,27,15)
10 1 -99 -61 (5,29,30) (5,30,32) (5,32,27) (6,11,26)
11 42 25 -13 (6,20,24) (6,24,31) (6,25,13) (6,26,27)
12 -42 -25 -13 (6,27,20) (6,31,25) (7,12,15) (7,15,35)
13 -27 -23 5 (7,19,30) (7,21,16) (7,23,21) (7,30,23)
14 -72 -17 42 (7,35,19) (8,15,18) (8,16,14) (8,18,19)
15 -79 80 -125 (8,19,33) (8,23,34) (8,33,23) (8,34,16)
16 14 13 -4 (9,12,20) (9,17,25) (9,20,22) (9,22,26)
17 47 13 -81 (9,25,34) (9,26,21) (9,34,12) (10,14,35)
18 18 -27 8 (10,17,24) (10,18,25) (10,24,14) (10,25,17)
19 38 -77 57 (10,26,22) (10,35,26) (11,14,16) (11,16,26)
20 -49 -31 2 (11,17,28) (11,18,36) (11,19,18) (11,28,14)
21 52 44 20 (11,36,17) (12,13,15) (12,29,33) (12,32,13)
22 -82 -61 10 (12,33,32) (12,34,29) (13,21,23) (13,22,36)
23 37 29 9 (13,25,15) (13,32,22) (13,36,21) (14,28,30)
24 -52 -44 20 (14,29,35) (14,30,29) (15,25,18) (15,26,35)
25 -12 -10 -5 (15,27,26) (16,21,26) (16,25,31) (16,34,25)
26 -49 -9 -123 (17,27,32) (17,32,24) (17,36,27) (18,21,36)
27 82 61 10 (18,29,21) (19,24,33) (19,31,24) (19,35,31)
28 16 14 -3 (20,23,30) (20,27,23) (20,28,22) (20,30,28)
29 72 17 42 (22,28,31) (22,31,36) (23,27,34) (24,32,33)
30 94 97 73 (27,36,34) (29,34,35) (31,35,36) (34,36,35)
31 -37 -29 9
32 49 9 -123
33 -14 -13 -4
34 -16 -14 -3
35 -94 -97 73
36 49 31 2
Vertex Permutation Groups
(1,18)(2,15)(3,25)(4,8)(5,10)(6,13)(7,19)(9,17)(11,12)
(14,29)(16,33)(20,36)(21,24)(22,27)(23,31)(26,32)(28,34)(30,35)
Table A26. R13.1 with C3 Symmetry
Table A26. R13.1 with C3 Symmetry
Vertex X Y Z Triangles
1 -29.01689 -20.72304 4.74648 (1,2,3) (1,2,4) (1,3,5) (1,4,7)
2 6.54041 -0.52815 4.75682 (1,5,8) (1,7,12) (1,8,14) (1,12,20)
3 0.01759 -8.95913 4.72149 (1,14,24) (1,20,24) (2,3,6) (2,4,10)
4 21.20078 -19.86469 23.14094 (2,6,11) (2,10,22) (2,11,19) (2,19,30)
5 0.51110 -1.53234 -0.04966 (2,22,32) (2,30,32) (3,5,9) (3,6,13)
6 2.28051 5.20475 4.44815 (3,9,17) (3,13,23) (3,17,28) (3,23,33)
7 -26.13677 7.45144 -11.59738 (3,28,33) (4,7,16) (4,10,18) (4,16,31)
8 -3.72759 -5.40009 4.75682 (4,18,29) (4,28,33) (4,29,33) (4,31,28)
9 6.07036 -5.06800 -6.16980 (5,8,15) (5,9,21) (5,15,27) (5,21,29)
10 0.51354 -0.95603 -1.14829 (5,27,32) (5,29,30) (5,32,30) (6,11,26)
11 -2.64214 0.41735 1.85202 (6,13,25) (6,20,24) (6,20,27) (6,24,31)
12 1.35383 7.79109 -6.16980 (6,25,31) (6,26,27) (7,12,15) (7,15,35)
13 7.75004 4.49480 4.72149 (7,16,21) (7,19,30) (7,21,23) (7,30,23)
14 -1.08471 0.03327 -1.14829 (7,35,19) (8,14,16) (8,15,18) (8,16,34)
15 1.53282 -0.40228 -0.82216 (8,18,19) (8,19,33) (8,33,23) (8,34,23)
16 -27.80371 -8.42807 23.14094 (9,12,20) (9,12,34) (9,17,25) (9,20,22)
17 -1.11479 -1.12632 -0.82216 (9,21,26) (9,22,26) (9,34,25) (10,14,24)
18 0.95963 -2.49683 1.85202 (10,14,35) (10,17,25) (10,18,25) (10,22,26)
19 1.68250 2.07948 1.85202 (10,24,17) (10,35,26) (11,14,16) (11,14,28)
20 -7.42419 -2.72309 -6.16980 (11,17,36) (11,19,18) (11,26,16) (11,28,17)
21 -5.64770 -0.62739 4.44815 (11,36,18) (12,13,32) (12,15,13) (12,29,33)
22 32.45512 -14.76784 4.74648 (12,32,33) (12,34,29) (13,21,36) (13,23,21)
23 -7.76763 4.46433 4.72149 (13,25,15) (13,32,22) (13,36,22) (14,28,30)
24 -0.63254 1.02010 -0.26769 (14,30,29) (14,35,29) (15,18,25) (15,27,26)
25 19.52152 18.90939 -11.59738 (15,35,26) (16,21,26) (16,31,25) (16,34,25)
26 -0.56716 -1.05785 -0.26769 (17,24,32) (17,32,27) (17,36,27) (18,29,21)
27 -1.58260 0.32354 -0.04966 (18,36,21) (19,24,31) (19,33,24) (19,35,31)
28 6.61525 -26.36083 -11.59738 (20,22,28) (20,23,30) (20,27,23) (20,28,30)
29 1.19971 0.03775 -0.26769 (22,28,31) (22,36,31) (23,34,27) (24,32,33)
30 -0.41803 1.52860 -0.82216 (27,36,34) (29,34,35) (31,35,36) (34,36,35)
31 6.60293 28.29276 23.14094
32 1.07150 1.20880 -0.04966
33 3.36719 -4.57736 4.44815
34 -3.43823 35.49088 4.74648
35 0.57117 0.92275 -1.14829
36 -2.81282 5.92824 4.75682
Vertex Permutation Groups
(1,22,34)(2,36,8)(3,13,23)(4,31,16)(5,32,27)(6,21,33)
(7,28,25)(9,12,20)(10,35,14)(11,18,19)(15,30,17)(24,26,29)
Table A27. R14.1 with D2 Symmetry
Table A27. R14.1 with D2 Symmetry
Vertex X Y Z Vertex X Y Z Triangles
1 2 67 -15 79 82 -58 -9 (1,2,3) (1,3,5) (1,4,2) (1,5,8)
2 -87 28 13 80 3 0 -37 (1,7,4) (1,8,12) (1,12,7) (2,4,10)
3 -2 55 1 81 -80 58 -45 (2,6,3) (2,10,18) (2,11,6) (2,18,11)
4 -84 39 4 82 -67 62 22 (3,6,13) (3,9,5) (3,13,16) (3,16,9)
5 36 46 54 83 -13 -7 69 (4,7,15) (4,15,26) (4,17,10) (4,26,17)
6 -43 85 -10 84 55 2 -1 (5,9,19) (5,14,8) (5,19,24) (5,24,14)
7 -15 51 -12 85 -57 -5 25 (6,11,22) (6,20,13) (6,22,34) (6,34,20)
8 34 62 4 86 -13 67 -47 (7,12,23) (7,23,38) (7,25,15) (7,38,25)
9 40 67 38 87 84 -39 4 (8,14,27) (8,21,12) (8,27,35) (8,35,21)
10 -58 -82 9 88 57 -23 -86 (9,16,31) (9,28,19) (9,31,47) (9,47,28)
11 -82 58 -9 89 12 22 -41 (10,17,32) (10,29,18) (10,32,48) (10,48,29)
12 -5 57 -25 90 87 -28 13 (11,18,33) (11,33,53) (11,36,22) (11,53,36)
13 -18 39 23 91 28 -35 82 (12,21,40) (12,37,23) (12,40,37) (13,20,39)
14 57 5 25 92 17 -19 0 (13,30,16) (13,39,49) (13,49,30) (14,24,44)
15 -67 -13 47 93 -56 -6 57 (14,41,27) (14,44,64) (14,64,41) (15,25,45)
16 -7 70 73 94 -14 -54 -90 (15,42,26) (15,45,65) (15,65,42) (16,30,55)
17 -42 -96 29 95 62 -86 6 (16,50,31) (16,55,50) (17,26,46) (17,46,69)
18 -85 -43 10 96 -70 -7 -73 (17,51,32) (17,69,51) (18,29,54) (18,52,33)
19 56 6 57 97 0 3 37 (18,54,52) (19,28,51) (19,43,24) (19,51,66)
20 -49 57 33 98 46 -36 -54 (19,66,43) (20,34,60) (20,45,39) (20,60,82)
21 13 7 69 99 7 -70 73 (20,82,45) (21,35,61) (21,56,40) (21,61,83)
22 28 87 -13 100 22 -12 41 (21,83,56) (22,36,41) (22,41,84) (22,57,34)
23 -62 34 -4 101 6 -25 0 (22,84,57) (23,37,62) (23,58,38) (23,62,85)
24 24 -4 -13 102 -39 -84 -4 (23,85,58) (24,43,71) (24,67,44) (24,71,67)
25 -18 16 5 103 -22 12 41 (25,38,63) (25,39,45) (25,63,89) (25,89,39)
26 -58 -80 45 104 23 57 86 (26,42,70) (26,68,46) (26,70,68) (27,36,86)
27 51 15 12 105 -14 -57 -45 (27,41,36) (27,59,35) (27,86,59) (28,32,51)
28 57 -14 45 106 10 14 -4 (28,47,78) (28,78,101) (28,101,32) (29,48,79)
29 -28 -87 -13 107 15 -51 -12 (29,62,54) (29,79,102) (29,102,62) (30,49,80)
30 -6 6 -2 108 -62 86 6 (30,72,55) (30,80,103) (30,103,72) (31,50,56)
31 -5 66 78 109 -67 40 -38 (31,56,104) (31,73,47) (31,104,73) (32,74,48)
32 49 -57 33 110 2 -55 1 (32,101,74) (33,52,72) (33,72,105) (33,75,53)
33 -57 -49 -33 111 70 7 -73 (33,105,75) (34,57,90) (34,87,60) (34,90,87)
34 58 82 9 112 13 104 -14 (35,59,91) (35,70,61) (35,91,70) (36,53,81)
35 19 17 0 113 -4 -24 13 (36,81,86) (37,40,77) (37,54,62) (37,77,109)
36 39 84 -4 114 -51 -15 12 (37,109,54) (38,58,67) (38,67,88) (38,88,63)
37 -46 36 -54 115 49 41 -52 (39,76,49) (39,89,76) (40,50,106) (40,56,50)
38 -17 19 0 116 -54 14 90 (40,106,77) (41,64,98) (41,98,84) (42,61,70)
39 -6 25 0 117 66 5 -78 (42,65,99) (42,99,122) (42,122,61) (43,66,100)
40 4 24 13 118 -19 -17 0 (43,80,71) (43,100,123) (43,123,80) (44,58,124)
41 67 -2 15 119 39 18 -23 (44,67,58) (44,92,64) (44,124,92) (45,82,93)
42 5 -66 78 120 -24 4 -13 (45,93,65) (46,68,75) (46,75,125) (46,94,69)
43 14 -10 4 121 14 57 -45 (46,125,94) (47,73,87) (47,87,107) (47,107,78)
44 7 -13 -69 122 -2 -18 2 (48,74,110) (48,90,79) (48,110,90) (49,71,80)
45 -57 14 45 123 -3 0 -37 (49,76,111) (49,111,71) (50,55,97) (50,97,106)
46 -86 -62 -6 124 -10 0 -32 (51,69,95) (51,95,66) (52,54,96) (52,55,72)
47 67 13 47 125 -49 -41 -52 (52,96,126) (52,126,55) (53,68,108) (53,75,68)
48 43 -85 -10 126 -6 -6 2 (53,108,81) (54,109,96) (55,126,97) (56,83,118)
49 0 7 -17 127 5 -57 -25 (56,118,104) (57,79,90) (57,84,119) (57,119,141)
50 2 18 2 128 80 -58 -45 (57,141,79) (58,85,120) (58,120,124) (59,86,121)
51 67 -62 22 129 -36 -46 54 (59,100,91) (59,121,142) (59,142,100) (60,73,143)
52 -39 -18 -23 130 54 -14 90 (60,87,73) (60,112,82) (60,143,112) (61,113,83)
53 -96 42 -29 131 -12 -22 -41 (61,122,113) (62,102,114) (62,114,85) (63,88,94)
54 -55 -2 -1 132 96 -42 -29 (63,94,144) (63,115,89) (63,144,115) (64,92,107)
55 -7 0 17 133 -14 10 4 (64,107,127) (64,127,98) (65,93,129) (65,110,99)
56 0 10 32 134 -16 -18 -5 (65,129,110) (66,91,100) (66,95,130) (66,130,91)
57 85 43 10 135 -66 -5 -78 (67,71,117) (67,117,88) (68,70,116) (68,116,108)
58 -7 13 -69 136 -2 -67 -15 (69,88,128) (69,94,88) (69,128,95) (70,91,116)
59 16 18 -5 137 104 -13 14 (71,111,117) (72,103,134) (72,134,105) (73,104,137)
60 42 96 29 138 0 -7 -17 (73,137,143) (74,99,110) (74,101,138) (74,138,149)
61 0 -10 32 139 6 -56 -57 (74,149,99) (75,105,139) (75,139,125) (76,89,140)
62 -67 2 15 140 0 -3 37 (76,119,111) (76,140,148) (76,148,119) (77,106,115)
63 35 28 -82 141 57 49 -33 (77,115,152) (77,121,109) (77,152,121) (78,92,151)
64 62 -34 -4 142 25 6 0 (78,107,92) (78,131,101) (78,151,131) (79,132,102)
65 -40 -67 38 143 86 62 -6 (79,141,132) (80,123,133) (80,133,103) (81,108,112)
66 41 -49 52 144 14 54 -90 (81,112,150) (81,135,86) (81,150,135) (82,108,145)
67 10 0 -32 145 -41 49 52 (82,112,108) (82,145,93) (83,113,127) (83,127,146)
68 -104 13 14 146 -34 -62 4 (83,146,118) (84,98,147) (84,111,119) (84,147,111)
69 -13 -104 -14 147 67 -40 -38 (85,114,146) (85,129,120) (85,146,129) (86,109,121)
70 -23 -57 86 148 7 0 17 (86,135,109) (87,90,136) (87,136,107) (88,117,128)
71 18 -2 -2 149 6 -6 -2 (89,106,140) (89,115,106) (90,110,136) (91,130,116)
72 -25 -6 0 150 -57 23 -86 (92,124,150) (92,150,151) (93,120,129) (93,133,120)
73 58 80 45 151 -35 -28 -82 (93,145,133) (94,125,151) (94,151,144) (95,128,132)
74 18 -39 23 152 62 67 -22 (95,132,137) (95,137,130) (96,109,135) (96,135,155)
75 -62 -67 -22 153 13 -67 -47 (96,138,126) (96,155,138) (97,126,131) (97,131,156)
76 6 6 2 154 -28 35 82 (97,140,106) (97,156,140) (98,113,139) (98,127,113)
77 -6 56 -57 155 -18 2 -2 (98,139,147) (99,148,122) (99,149,148) (100,142,149)
78 18 -16 5 156 -10 -14 -4 (100,149,123) (101,126,138) (101,131,126) (102,128,153)
(102,132,128) (102,153,114) (103,133,145) (103,145,154)
(103,154,134) (104,118,154) (104,130,137) (104,154,130)
(105,134,153) (105,147,139) (105,153,147) (107,136,127)
(108,116,145) (110,129,136) (111,147,117) (112,143,144)
(112,144,150) (113,122,156) (113,156,139) (114,118,146)
(114,134,118) (114,153,134) (115,143,152) (115,144,143)
(116,130,154) (116,154,145) (117,147,153) (117,153,128)
(118,134,154) (119,142,141) (119,148,142) (120,133,155)
(120,155,124) (121,141,142) (121,152,141) (122,140,156)
(122,148,140) (123,138,155) (123,149,138) (123,155,133)
(124,135,150) (124,155,135) (125,131,151) (125,139,156)
(125,156,131) (127,136,146) (129,146,136) (132,141,152)
(132,152,137) (137,152,143) (142,148,149) (144,151,150)
Vertex Permutation Groups
(1,62,136,41)(2,29,90,22)(3,54,110,84)(4,102,87,36)(5,37,129,98)(6,18,48,57)
(7,114,107,27)(8,23,146,64)(9,109,65,147)(10,79,34,11)(12,85,127,14)(13,52,74,119)
(15,153,47,86)(16,96,99,111)(17,132,60,53)(19,77,93,139)(20,33,32,141)(21,58,83,44)
(24,40,120,113)(25,134,78,59)(26,128,73,81)(28,121,45,105)(30,126,149,76)(31,135,42,117)
(35,38,118,92)(39,72,101,142)(43,106,133,156)(46,95,143,108)(49,55,138,148)(50,155,122,71)
(51,152,82,75)(56,124,61,67)(63,154,151,91)(66,115,145,125)(68,69,137,112)(70,88,104,150)
(80,97,123,140)(89,103,131,100)(94,130,144,116)
Table A28. R14.2 with C2 Symmetry
Table A28. R14.2 with C2 Symmetry
Vertex X Y Z Vertex X Y Z Triangles
1 -68 2 -198 79 74 41 -91 (1,2,3) (1,3,5) (1,4,2) (1,5,13)
2 20 9 -15 80 61 -69 -13 (1,8,10) (1,10,4) (1,13,8) (2,4,14)
3 21 8 3 81 -173 -67 -60 (2,6,11) (2,9,3) (2,11,9) (2,14,6)
4 14 34 -118 82 -61 69 -13 (3,7,15) (3,9,18) (3,15,5) (3,18,7)
5 -25 27 -98 83 212 60 -118 (4,10,21) (4,12,30) (4,21,12) (4,30,14)
6 -38 30 31 84 -143 140 -172 (5,15,31) (5,16,36) (5,31,16) (5,36,13)
7 -21 24 5 85 -20 -90 142 (6,14,43) (6,28,49) (6,32,28) (6,43,32)
8 -21 -88 0 86 -41 51 166 (6,49,11) (7,18,55) (7,19,29) (7,29,60)
9 33 33 70 87 47 -72 113 (7,55,19) (7,60,15) (8,13,42) (8,20,38)
10 -14 -34 -118 88 27 183 91 (8,38,48) (8,42,20) (8,48,10) (9,11,33)
11 15 29 11 89 -101 4 118 (9,17,39) (9,33,17) (9,39,18) (10,22,40)
12 21 88 0 90 41 -51 166 (10,40,21) (10,48,22) (11,23,41) (11,41,33)
13 -74 -41 -91 91 80 -176 98 (11,49,23) (12,21,79) (12,26,68) (12,27,26)
14 15 21 0 92 -116 -156 1 (12,68,30) (12,79,27) (13,24,42) (13,36,51)
15 -29 -4 -24 93 -66 125 103 (13,51,24) (14,25,43) (14,30,52) (14,52,25)
16 50 155 -105 94 69 -114 -19 (15,34,53) (15,53,31) (15,60,34) (16,26,37)
17 -2 89 90 95 152 21 14 (16,31,78) (16,37,88) (16,78,26) (16,88,36)
18 39 0 22 96 8 2 45 (17,27,69) (17,33,93) (17,37,27) (17,69,39)
19 54 -57 18 97 -33 -33 70 (17,93,37) (18,35,55) (18,39,63) (18,63,35)
20 7 -94 -56 98 29 4 -24 (19,22,50) (19,50,29) (19,55,77) (19,66,22)
21 68 -2 -198 99 77 -15 124 (19,77,66) (20,23,62) (20,42,92) (20,62,38)
22 -15 -21 0 100 -27 -183 91 (20,67,23) (20,92,67) (21,40,64) (21,45,79)
23 69 3 -40 101 9 -65 -17 (21,64,45) (22,48,101) (22,66,40) (22,101,50)
24 -150 -81 -31 102 60 26 -34 (23,49,102) (23,67,41) (23,102,62) (24,28,54)
25 -26 29 13 103 -90 -30 -36 (24,51,81) (24,54,107) (24,81,28) (24,107,42)
26 -7 94 -56 104 136 88 -49 (25,29,50) (25,50,108) (25,52,82) (25,82,29)
27 159 147 -68 105 -60 -26 -34 (25,108,43) (26,27,37) (26,59,68) (26,78,59)
28 -77 15 124 106 23 -116 -152 (27,56,69) (27,79,56) (28,32,54) (28,81,89)
29 -21 29 9 107 -19 -74 70 (28,89,49) (29,70,60) (29,82,70) (30,46,84)
30 0 74 4 108 21 -29 9 (30,68,46) (30,84,52) (31,44,78) (31,53,85)
31 -32 -6 -32 109 -170 -88 21 (31,85,44) (32,34,54) (32,43,76) (32,76,86)
32 -38 46 143 110 -69 114 -19 (32,86,34) (33,41,65) (33,57,93) (33,65,57)
33 20 90 142 111 140 -54 -209 (34,60,115) (34,86,53) (34,115,54) (35,38,62)
34 -66 -57 52 112 -75 137 39 (35,62,118) (35,63,95) (35,95,38) (35,118,55)
35 90 30 -36 113 -17 -47 174 (36,58,83) (36,83,51) (36,88,58) (37,61,88)
36 4 214 -148 114 -90 44 14 (37,93,61) (38,71,48) (38,95,71) (39,47,96)
37 116 156 1 115 69 -93 85 (39,69,47) (39,96,63) (40,44,97) (40,66,44)
38 12 -135 -113 116 32 -57 216 (40,97,64) (41,45,98) (41,67,45) (41,98,65)
39 5 3 77 117 -177 40 122 (42,72,92) (42,107,72) (43,73,76) (43,108,73)
40 -20 -9 -15 118 90 -44 14 (44,66,123) (44,85,97) (44,123,78) (45,64,98)
41 32 6 -32 119 173 67 -60 (45,67,124) (45,124,79) (46,51,111) (46,68,127)
42 -159 -147 -68 120 176 -79 3 (46,81,51) (46,111,84) (46,127,81) (47,52,112)
43 -54 57 18 121 -39 0 22 (47,69,128) (47,82,52) (47,112,96) (47,128,82)
44 -15 -29 11 122 66 57 52 (48,71,74) (48,74,101) (49,75,102) (49,89,75)
45 25 -27 -98 123 6 -35 16 (50,80,108) (50,101,80) (51,83,111) (52,84,112)
46 -43 181 -180 124 -4 -214 -148 (53,57,113) (53,86,57) (53,113,85) (54,87,107)
47 -26 28 75 125 26 -28 75 (54,115,87) (55,90,77) (55,118,90) (56,79,106)
48 0 -74 4 126 67 25 -15 (56,99,104) (56,104,69) (56,106,119) (56,119,99)
49 -6 35 16 127 -152 -21 14 (57,65,113) (57,86,132) (57,132,93) (58,63,120)
50 26 -29 13 128 -47 72 113 (58,88,134) (58,95,63) (58,120,83) (58,134,95)
51 -23 116 -152 129 91 -137 82 (59,78,105) (59,103,68) (59,105,110) (59,110,114)
52 -9 65 -17 130 -140 54 -209 (59,114,103) (60,70,91) (60,91,115) (61,93,117)
53 -38 -66 91 131 66 -125 103 (61,100,116) (61,109,100) (61,116,88) (61,117,109)
54 -136 -88 -49 132 -26 56 202 (62,94,118) (62,102,94) (63,96,120) (64,73,98)
55 64 -28 7 133 83 -71 42 (64,97,121) (64,121,73) (65,90,113) (65,98,122)
56 150 81 -31 134 170 88 21 (65,122,90) (66,77,99) (66,99,123) (67,92,100)
57 17 47 174 135 -44 20 55 (67,100,124) (68,103,127) (69,104,128) (70,82,110)
58 194 134 -48 136 -5 -3 77 (70,105,129) (70,110,105) (70,129,91) (71,95,119)
59 -83 56 -36 137 62 24 -6 (71,106,130) (71,119,106) (71,130,74) (72,85,131)
60 -62 -24 -6 138 -194 -134 -48 (72,97,85) (72,107,136) (72,131,92) (72,136,97)
61 -32 57 216 139 75 -137 39 (73,108,137) (73,121,76) (73,137,98) (74,84,111)
62 83 -56 -36 140 -91 137 82 (74,111,139) (74,130,84) (74,139,101) (75,89,135)
63 156 -53 26 141 26 -56 202 (75,96,112) (75,112,140) (75,135,96) (75,140,102)
64 -21 -8 3 142 -83 71 42 (76,103,114) (76,114,86) (76,121,103) (77,90,122)
65 38 66 91 143 101 -4 118 (77,104,99) (77,122,104) (78,123,105) (79,124,106)
66 38 -30 31 144 111 -39 49 (80,87,94) (80,94,126) (80,101,125) (80,125,87)
67 -50 -155 -105 145 -156 53 26 (80,126,108) (81,109,89) (81,127,109) (82,128,110)
68 -12 135 -113 146 -69 93 85 (83,91,129) (83,120,91) (83,129,111) (84,130,112)
69 19 74 70 147 0 -33 18 (85,113,131) (86,114,132) (87,115,133) (87,125,107)
70 -67 -25 -15 148 -212 -60 -118 (87,133,94) (88,116,134) (89,109,117) (89,117,135)
71 43 -181 -180 149 177 -40 122 (90,118,141) (90,141,113) (91,120,144) (91,144,115)
72 2 -89 90 150 -95 34 54 (92,116,100) (92,131,116) (93,132,117) (94,102,126)
73 21 -24 5 151 -8 -2 45 (94,133,118) (95,134,119) (96,135,120) (97,136,121)
74 143 -140 -172 152 -80 176 98 (98,137,122) (99,119,143) (99,143,123) (100,109,138)
75 0 33 18 153 95 -34 54 (100,138,124) (101,139,125) (102,140,126) (103,121,145)
76 -64 28 7 154 -111 39 49 (103,145,127) (104,122,146) (104,146,128) (105,123,147)
77 38 -46 143 155 44 -20 55 (105,147,129) (106,124,148) (106,148,130) (107,125,136)
78 -69 -3 -40 156 -176 79 3 (108,126,137) (109,127,138) (110,128,142) (110,142,114)
(111,129,139) (112,130,140) (113,141,131) (114,142,132)
(115,144,133) (116,131,149) (116,149,134) (117,132,150)
(117,150,135) (118,133,141) (119,134,143) (120,135,144)
(121,136,145) (122,137,146) (123,143,147) (124,138,148)
(125,139,151) (125,151,136) (126,140,152) (126,152,137)
(127,145,138) (128,146,142) (129,147,139) (130,148,140)
(131,141,149) (132,142,150) (133,144,153) (133,153,141)
(134,149,143) (135,150,144) (136,151,145) (137,152,146)
(138,145,156) (138,156,148) (139,147,151) (140,148,152)
(141,153,149) (142,146,154) (142,154,150) (143,149,155)
(143,155,147) (144,150,153) (145,151,156) (146,152,154)
(147,155,151) (148,156,152) (149,153,155) (150,154,153)
(151,155,156) (152,156,154) (153,154,155) (154,156,155)
Vertex Permutation Groups
(1,21)(2,40)(3,64)(4,10)(5,45)(6,66)(7,73)(8,12)(9,97)(11,44)
(13,79)(14,22)(15,98)(16,67)(17,72)(18,121)(19,43)(20,26)(23,78)(24,56)
(25,50)(27,42)(28,99)(29,108)(30,48)(31,41)(32,77)(33,85)(34,122)(35,103)
(36,124)(37,92)(38,68)(39,136)(46,71)(47,125)(49,123)(51,106)(52,101)(53,65)
(54,104)(55,76)(57,113)(58,138)(59,62)(60,137)(61,116)(63,145)(69,107)(70,126)
(74,84)(75,147)(80,82)(81,119)(83,148)(86,90)(87,128)(88,100)(89,143)(91,152)
(93,131)(94,110)(95,127)(96,151)(102,105)(109,134)(111,130)(112,139)(114,118)(115,146)
(117,149)(120,156)(129,140)(132,141)(133,142)(135,155)(144,154)(150,153)
Table A29. R14.3 with D2 Symmetry
Table A29. R14.3 with D2 Symmetry
Vertex X Y Z Vertex X Y Z Triangles
1 35 62 32 79 0 -71 3 (1,2,21) (1,3,2) (1,13,43) (1,20,3)
2 -35 23 35 80 58 1 65 (1,21,51) (1,43,20) (1,51,13) (2,3,30)
3 -58 -1 65 81 -67 -83 -24 (2,6,42) (2,30,34) (2,34,6) (2,42,21)
4 -9 -72 83 82 2 10 4 (3,12,60) (3,20,33) (3,33,12) (3,60,30)
5 -13 3 10 83 77 -74 -44 (4,10,19) (4,12,14) (4,14,10) (4,17,66)
6 -16 24 35 84 -3 -13 -10 (4,19,17) (4,50,12) (4,66,50) (5,6,7)
7 -2 6 20 85 -1 -20 9 (5,7,15) (5,15,29) (5,18,67) (5,29,18)
8 -58 -41 -34 86 -74 -77 44 (5,31,6) (5,67,31) (6,31,42) (6,34,45)
9 -40 -22 -6 87 -53 71 -17 (6,45,7) (7,17,22) (7,22,15) (7,45,80)
10 41 -58 34 88 -41 58 34 (7,80,17) (8,9,11) (8,11,13) (8,13,61)
11 -127 4 -9 89 12 51 -48 (8,16,9) (8,18,16) (8,61,81) (8,81,18)
12 -98 -7 95 90 -27 58 -40 (9,16,38) (9,23,35) (9,25,11) (9,35,25)
13 -74 103 -57 91 13 -3 10 (9,38,23) (10,14,24) (10,24,39) (10,26,36)
14 -103 -74 57 92 -6 -10 16 (10,36,19) (10,39,26) (11,25,27) (11,27,87)
15 -9 -2 -3 93 7 -98 -95 (11,32,13) (11,87,32) (12,33,44) (12,44,14)
16 6 -19 -3 94 -77 74 -44 (12,50,60) (13,32,43) (13,51,61) (14,27,24)
17 51 -12 48 95 -72 -41 28 (14,44,94) (14,94,27) (15,22,57) (15,28,54)
18 -18 -24 -2 96 -30 16 -39 (15,54,29) (15,57,28) (16,18,48) (16,40,38)
19 83 -67 24 97 47 63 -2 (16,48,100) (16,100,40) (17,19,47) (17,47,22)
20 -47 -19 81 98 2 -9 3 (17,80,66) (18,29,48) (18,81,67) (19,36,40)
21 0 71 3 99 -2 9 3 (19,40,109) (19,109,47) (20,41,75) (20,43,72)
22 -1 2 6 100 63 -47 2 (20,72,41) (20,75,33) (21,42,90) (21,52,74)
23 -46 17 -3 101 62 -35 -32 (21,74,51) (21,90,52) (22,47,99) (22,53,57)
24 -4 -127 9 102 -47 -63 -2 (22,99,53) (23,38,70) (23,70,112) (23,76,35)
25 -55 -28 2 103 17 46 3 (23,112,113) (23,113,76) (24,27,63) (24,58,39)
26 19 6 3 104 71 53 17 (24,63,114) (24,114,58) (25,35,53) (25,53,119)
27 -109 6 -2 105 -23 -35 -35 (25,63,27) (25,119,63) (26,39,71) (26,71,120)
28 -2 -1 -6 106 -30 -61 21 (26,77,36) (26,97,77) (26,120,97) (27,94,87)
29 -4 -21 3 107 47 19 81 (28,57,89) (28,89,111) (28,92,54) (28,98,92)
30 2 -6 20 108 10 -6 -16 (28,111,98) (29,54,58) (29,58,110) (29,110,48)
31 -19 14 16 109 16 30 39 (30,59,91) (30,60,73) (30,73,59) (30,91,34)
32 6 109 2 110 53 -71 -17 (31,56,68) (31,67,56) (31,68,103) (31,103,42)
33 -71 0 -3 111 -6 -2 -20 (32,49,69) (32,69,104) (32,87,49) (32,104,43)
34 16 -24 35 112 -43 -27 40 (33,70,105) (33,75,70) (33,105,44) (34,71,106)
35 -20 1 -9 113 -66 15 24 (34,91,71) (34,106,45) (35,76,121) (35,96,53)
36 24 -18 2 114 -6 -109 2 (35,121,96) (36,77,122) (36,84,40) (36,122,84)
37 103 74 57 115 4 21 3 (37,50,66) (37,66,101) (37,69,88) (37,83,128)
38 -14 -19 -16 116 -83 67 24 (37,88,50) (37,101,83) (37,128,69) (38,40,84)
39 22 -40 6 117 72 -9 -83 (38,84,129) (38,129,70) (39,58,85) (39,85,130)
40 44 -29 0 118 -37 64 -55 (39,130,71) (40,100,109) (41,72,107) (41,86,95)
41 -64 -37 55 119 -21 4 -3 (41,95,102) (41,102,75) (41,107,86) (42,76,90)
42 30 61 21 120 29 44 0 (42,103,76) (43,77,72) (43,104,77) (44,62,94)
43 74 77 44 121 15 66 -24 (44,78,62) (44,105,78) (45,55,80) (45,79,55)
44 -62 35 -32 122 21 -4 -3 (45,106,79) (46,61,93) (46,64,108) (46,78,123)
45 35 -23 35 123 6 2 -20 (46,81,61) (46,93,78) (46,108,81) (46,123,64)
46 -12 -51 -48 124 27 -58 -40 (47,64,99) (47,82,64) (47,109,82) (48,65,100)
47 6 10 16 125 71 0 -3 (48,83,65) (48,110,83) (49,68,69) (49,82,127)
48 41 -72 -28 126 30 -16 -39 (49,87,115) (49,115,82) (49,127,68) (50,88,116)
49 -28 55 -2 127 1 20 9 (50,116,60) (51,74,89) (51,89,117) (51,117,61)
50 9 72 83 128 109 -6 -2 (52,65,83) (52,83,101) (52,90,118) (52,101,74)
51 -7 98 -95 129 -24 -16 -35 (52,118,65) (53,96,57) (53,99,119) (54,85,58)
52 -19 47 -81 130 -17 -46 3 (54,92,131) (54,131,85) (55,79,93) (55,86,107)
53 -10 2 -4 131 -16 -30 39 (55,93,132) (55,107,80) (55,132,86) (56,67,102)
54 -2 -10 4 132 74 -103 -57 (56,88,68) (56,95,134) (56,102,95) (56,134,88)
55 -35 -62 32 133 -41 72 -28 (57,96,135) (57,135,89) (58,114,110) (59,64,82)
56 -19 -6 3 134 -24 18 2 (59,73,108) (59,82,115) (59,108,64) (59,115,91)
57 -10 6 -16 135 67 83 -24 (60,92,73) (60,116,92) (61,117,93) (62,65,118)
58 28 -55 -2 136 58 27 40 (62,78,79) (62,79,124) (62,118,94) (62,124,65)
59 9 2 -3 137 10 -2 -4 (63,86,114) (63,95,86) (63,119,95) (64,123,99)
60 -51 12 48 138 66 -15 24 (65,124,100) (66,80,125) (66,125,101) (67,81,126)
61 -72 9 -83 139 23 35 -35 (67,126,102) (68,88,69) (68,127,103) (69,128,104)
62 19 -47 -81 140 -15 -66 -24 (70,75,112) (70,129,105) (71,91,120) (71,130,106)
63 -71 -53 17 141 -63 47 2 (72,77,97) (72,97,136) (72,136,107) (73,92,98)
64 2 1 -6 142 127 -4 -9 (73,98,137) (73,137,108) (74,101,139) (74,111,89)
65 37 -64 -55 143 3 13 -10 (74,139,111) (75,102,140) (75,140,112) (76,103,121)
66 98 7 95 144 18 24 -2 (76,113,90) (77,104,122) (78,93,79) (78,105,123)
67 -29 -44 0 145 43 27 40 (79,106,124) (80,107,125) (81,108,126) (82,109,127)
68 -22 40 6 146 55 28 2 (83,110,128) (84,98,111) (84,111,129) (84,122,98)
69 4 127 9 147 24 16 -35 (85,112,130) (85,113,112) (85,131,113) (86,132,114)
70 -61 30 -21 148 27 -43 -40 (87,94,133) (87,133,115) (88,134,116) (89,135,117)
71 19 -14 16 149 -44 29 0 (90,113,141) (90,141,118) (91,115,144) (91,144,120)
72 64 37 55 150 58 41 -34 (92,116,131) (93,117,132) (94,118,133) (95,119,134)
73 1 -2 6 151 61 -30 -21 (96,97,120) (96,120,135) (96,121,97) (97,121,136)
74 -1 58 -65 152 20 -1 -9 (98,122,137) (99,123,143) (99,143,119) (100,124,138)
75 -58 -27 40 153 -6 19 -3 (100,138,109) (101,125,139) (102,126,140) (103,127,145)
76 -27 43 -40 154 40 22 -6 (103,145,121) (104,128,146) (104,146,122) (105,129,147)
77 72 41 28 155 14 19 -16 (105,147,123) (106,130,148) (106,148,124) (107,136,125)
78 1 -58 -65 156 46 -17 -3 (108,137,126) (109,138,127) (110,114,142) (110,142,128)
(111,139,129) (112,140,130) (113,131,141) (114,132,142)
(115,133,144) (116,134,149) (116,149,131) (117,135,150)
(117,150,132) (118,141,133) (119,143,134) (120,144,135)
(121,145,136) (122,146,137) (123,147,143) (124,148,138)
(125,136,151) (125,151,139) (126,137,152) (126,152,140)
(127,138,145) (128,142,146) (129,139,147) (130,140,148)
(131,149,141) (132,150,142) (133,141,153) (133,153,144)
(134,143,149) (135,144,150) (136,145,151) (137,146,152)
(138,148,156) (138,156,145) (139,151,147) (140,152,148)
(141,149,153) (142,150,154) (142,154,146) (143,147,155)
(143,155,149) (144,153,150) (145,156,151) (146,154,152)
(147,151,155) (148,152,156) (149,155,153) (150,153,154)
(151,156,155) (152,154,156) (153,155,154) (154,155,156)
Vertex Permutation Groups
(1,44,55,101)(2,105,45,139)(3,78,80,74)(4,117,50,61)(5,84,91,143)(6,129,34,147)
(7,111,30,123)(8,10,150,88)(9,39,154,68)(11,24,142,69)(12,93,66,51)(13,14,132,37)
(15,98,59,99)(16,26,153,56)(17,89,60,46)(18,36,144,134)(19,135,116,81)(20,62,107,52)
(21,33,79,125)(22,28,73,64)(23,130,156,103)(25,58,146,49)(27,114,128,32)(29,122,115,119)
(31,38,71,155)(35,85,152,127)(40,120,149,67)(41,65,72,118)(42,70,106,151)(43,94,86,83)
(47,57,92,108)(48,77,133,95)(53,54,137,82)(63,110,104,87)(75,124,136,90)(76,112,148,145)
(96,131,126,109)(97,141,102,100)(113,140,138,121)

References

  1. Bokowski, J., Sturmfels, B.: Computational Synthetic Geometry, Lecture Notes in Mathematics 1355 (1989. [CrossRef]
  2. Grünbaum, B.: Convex Polytopes, Pure and Applied Mathematics, Vol. 16, Interscience-Wiley, New York, (1967).
  3. Bokowski, J., Guedes de Oliveira, A.: On the generation of oriented matroids. Discrete Comput Geom 24: 197. (2000). [CrossRef]
  4. Schewe, L.: Nonrealizable Minimal Vertex Triangulations of Surfaces: Showing Nonrealizability Using Oriented Matroids and Satisfiability Solvers. (2010).
  5. Conder, M.D.E.: Regular maps and hypermaps of Euler characteristic -1 to -200, J. Comb. Theory Ser. B, 99 455–459 (2009) Associated lists available online: http://www.math.auckland.ac.nz/~conder (accessed on 22 January 2020).
  6. Bokowski, J., Gévay, G.: On Polyhedral Realizations of Hurwitz’s Regular Map {3,7}18 of Genus 7 with Geometric Symmetries. Art Discrete Appl. Math. 1–25 (2021. [CrossRef]
  7. Möbius, A.F.: Gesammelte Werke II. Hrsg. Felix Klein, Neudruck der Ausgabe von 1886, p. 552 ff. (1967).
  8. Császár, A.: A polyhedron without diagonals. Acta Sci. Math. Szeged, 13, 140–142 (1949).
  9. Bokowski, J., Eggert, A.: All Realizations of Möbius’ Torus with 7 Vertices. Structural Topology 17, 59-76 (1991).
  10. Szilassi, L. : Regular toroids. Structural Topology 13, 69-80. 1986. [Google Scholar]
  11. Bokowski, J., Schewe, L.: On Szilassi’s Torus. Symmetry: Culture and Science, Vol. 13, Nos. 3-4, 211-240 (2002).
  12. Altshuler, A., Bokowski, J., Schuchert, P.: Spatial polyhedra without diagonals. Israel J. Math. 86, 373-396 (1994).
  13. Altshuler, A., Bokowski, J., Schuchert, P.: Sphere systems and neighborly spatial polyhedra with 10 vertices. Suppl. Rend. Circ. Mat. Palermo (2), 35 (1994).
  14. Altshuler, A., Bokowski, J., Schuchert, P.: Neighborly 2-Manifolds with 12 Vertices. Journal of Comb. Theory, Series A 75, 148-162 (1996).
  15. Ringel, G.: Map Color Theorem, Springer Verlag, Berlin / New York (1974).
  16. Hurwitz, A.: "Uber algebraische Gebilde mit Eindeutigen Transformationen in sich. Math. Ann. 41 (3): 403-442 (1893). [CrossRef]
  17. Klein, F.: Über die Transformationen siebenter Ordnung der elliptischen Functionen, Math. Ann. 14 (1879), 428–471. (Revised version in Gesammelte Mathematische Abhandlungen, Vol., 3, Springer, Berlin, 1923). /: https. [CrossRef]
  18. Klein, F.: Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen fünften Grades, Teubner, Leipzig, (1884).
  19. Schulte, E., Wills, J. M.: A polyhedral realization of Felix Klein’s map {3,7}8 on a Riemann surface of genus 3. J. London Math. Soc. (2) 32, 539–547 (1985). [CrossRef]
  20. Schulte, E., Wills, J. M.: Convex-Faced Combinatorially Regular Polyhedra of Small Genus. Symmetry 4, 1-14, (2012). [CrossRef]
  21. Gévay, G., Wills, J.M.: On regular and equivelar Leonardo polyhedra, ARS MATHEMATICA CONTEMPORANEA 6, 1-11 (2013. [CrossRef]
  22. Gévay, G., Schulte, E., Wills, J.M.: The regular Grünbaum polyhedron of genus 5, Adv. Geom. 14 465–482 (2014).
  23. Bokowski, J., Wills, J.M.: Regular Leonardo Polyhedra, Art Discrete Appl. Math. 5 (2022). [CrossRef]
  24. Bokowski, J., Wills, J.M.: An E3 embedding of Coxeter’s regular map {8,4|3} results in a regular Leonardo polyhedron. Art Discrete Appl. Math. 7,2 1–14 (2024). [CrossRef]
  25. Bokowski, J.: On Symmetrical Equivelar Polyhedra of Type {3.7} and Embeddings of Regular Maps. Symmetry 2024, 16(10), (1273). [CrossRef]
  26. McCooey, D. I.: A non-self-intersecting polyhedral realization of the all-heptagon Klein map. Symmetry Cult. Sci. 20, 247-268 (2009).
  27. Dyck, W.: Über Aufstellung und Untersuchung von Gruppe und Irrationalität regulärer Riemann’scher Flächen, Math. Ann. 17 473–508 (1880). [CrossRef]
  28. Dyck, W.: Notiz über eine reguläre Riemann’sche Fläche vom Geschlecht drei und die zugehörige “Normalcurve” vierter Ordnung, Math. Ann. 17 (1880), 510–516.
  29. Bokowski, J.: A geometric realization without self-intersections does exist for Dyck’s regular map, Discrete Comput. Geom. 6 583–589 (1989).
  30. Brehm, U.; Maximally symmetric polyhedral realizations of Dyck’s regular map. Mathematika, 34,2, p 229-236 (1987). [CrossRef]
  31. Van Wijk, J. J.: Symmetric tiling of closed surfaces: visualization of regular maps. Conf. Proc. SIGGRAPH, New Orleans, pp 49: 1-12 (ACM Transactions on Graphics), 28 (3): 12, (2009). [CrossRef]
  32. Van Wijk, J. J., Visualization of Regular Maps: The Chase Continues. IEEE Trans Vis Comput Graph. 2014 Dec;20(12):2614-23. [CrossRef]
  33. Klein, F., Fricke, R.: Vorlesungen über die Theorie der elliptischen Modulfunktionen, Teubner, Leipzig, Germany, 1890.
  34. Grünbaum, B., Acoptic polyhedra. In Advances in Discrete and Computational Geometry; Chazelle, B.; et al., Eds.; Contemp. Math. 223; American Mathematical Society: Providence, RI, 1999; pp. 163–199.
  35. Bokowski, J., Cuntz, M.: Hurwitz’s regular map (3,7) of genus 7: A polyhedral realization. Art Discrete Appl Math 1, 1-17 (2018). [CrossRef]
  36. Bokowski, J., Pisanski, T.: Oriented matroids and complete-graph embeddings on surfaces. J. Comb. Theory, Ser. A (2007). [CrossRef]
  37. Bokowski, J.: Schöne Fragen aus der Geometrie, Ein interaktiver Überblick über gelöste und noch offene Probleme. Springer Spektrum (2020).
  38. Altshuler, A., Brehm, U. Neighborly maps with few vertices. Discrete Comput Geom 8, 93–104 (1992). [CrossRef]
  39. Séquin, C., Xiao, L.: K12 and the genus 6 Tiffany Lamp. EECS, CS Division, University of California Berkeley, CA 94720-1776, U.S.A. Home page of Carlo Séquin, Berkeley.
Table 1. Triangular regular maps of genus g, 2 g 14 and their duals with polyhedral embeddings. Embeddings marked with a * were previously known, all others are new.
Table 1. Triangular regular maps of genus g, 2 g 14 and their duals with polyhedral embeddings. Embeddings marked with a * were previously known, all others are new.
Conder Notation Genus Schläfli Type f 0 f 1 f 2 Map Author Comb. Sym. Embedding Symmetries Dual Embedding Fig.
R3.1 3 { 3 , 7 } 8 24 84 56 Klein 336 PSL(2,7) × C 2 T* T* Figure 2
R3.2 3 { 3 , 8 } 6 12 48 32 Dyck 192 D3*, S2 Figure 5
R5.1 5 { 3 , 8 } 12 24 96 64 Fricke, Klein 384 O*, S2 D2, C3 Figure 9
R6.1 6 { 3 , 10 } 6 15 75 50 Coxeter, Moser 300 C3, C2, C1* Figure 11
R7.1 7 { 3 , 7 } 18 72 252 168 Hurwitz, Macbeath 1008 PSL(2,8) × C 2 C3, C2, S2, C1* C3, C2 Figure 12
R8.1 8 { 3 , 8 } 8 42 168 112 672 PSL(3,2) C 2 D2, C4, C3, S2 Figure 16
R8.2 8 { 3 , 8 } 14 42 168 112 672 PSL(3,2) C 2 D2, C4, C3 Figure 17
R10.1 10 { 3 , 9 } 12 36 162 108 648 D2 Figure 18
R10.2 10 { 3 , 12 } 6 18 108 72 432 C2 Figure 19
R13.1 13 { 3 , 10 } 30 36 180 120 720 A 5 × S 3 C3, C2 Figure 21
R13.2 13 { 3 , 12 } 12 24 144 96 576
R14.1 14 { 3 , 7 } 12 156 546 364 2184 PSL(2,13) D2 Figure 22
R14.2 14 { 3 , 7 } 26 156 546 364 2184 PSL(2,13) C2 Figure 23
R14.3 14 { 3 , 7 } 14 156 546 364 2184 PSL(2,13) D2 Figure 24
Table 2. Neighborly spatial polyhedra according to complete graph embeddings on 2-manifolds and pseudo-manifolds.
Table 2. Neighborly spatial polyhedra according to complete graph embeddings on 2-manifolds and pseudo-manifolds.
Graph Genus f 0 f 1 f 2 Number of embeddings Combinatorial polyhedra, articles Geometrical embeddings, articles
K 4 0 4 6 4 1
K 7 1 7 21 14 4 [7] [8,9]
dual 1 14 21 7 1 [10,11]
K 9 9 36 24 16 [12] [12]
K 10 10 45 30 4 [13] [13]
K 12 6 12 66 44 none [14] [3,4]
K 15 11 15 105 70 unknown [15]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated