Submitted:
22 February 2025
Posted:
24 February 2025
You are already at the latest version
Abstract
Keywords:
MSC: 52B70
1. Introduction
2. Polyhedral Embeddings of Triangulated Orientable Regular Maps with Genus g, and Some of Their Duals
3. Polyhedral Embeddings of Neighborly Spatial Polyhedra with Complete Graphs as Their Edge Graph and Their Duals
4. Polyhedral Embeddings as an Optimization Problem
| Permutation Group | Possible Geometric Symmetries |
| (a,b)(c,d)(e,f) | S2, C2, Cs |
| (a,b)(c,d)(e)(f) | C2, Cs |
| (a,b,c)(d,e,f) | C3 |
| (a,b,c,d)(e,f,g,h) | C4, D2 |
| (a,b,c,d)(e,f) | D2 |
| (a,b,c,d)(e)(f) | C4 |

| Length Quality: | for each polygon |
| Distance Quality: | |
| Angle Quality: | |
| Plane Quality: |
| Algorithm 1:Primary search for embeddings |
|
5. Polyhedral Embeddings According to Table 1
5.1. Case R3.1


5.2. The Dual Case R3.1’

5.3. Case R3.2





5.4. Case R5.1

5.5. The Dual Case R5.1’

5.6. Case R6.1

5.7. Case R7.1




5.8. The Dual Case R7.1’


5.9. Case R8.1

5.10. Case R8.2

5.11. Case R10.1

5.12. Case R10.2


5.13. Case R13.1

5.14. Case R14.1

5.15. Case R14.2

5.16. Case R14.3

5.17. Case R13.2
6. Complete Graphs with 4, 7, and 12 Vertices on Closed Oriented 2-Manifolds, No Diagonals
6.1. The Tetrahedron
6.2. The Seven Vertex Torus of Möbius

6.3. The 59 Examples of the Complete Graph with 12 Vertices


6.4. Neighborly Spatial Pseudo-Manifolds with 9 and 10 Vertices

7. The Dual Case of the Former Section
7.1. The Tetrahedron
7.2. Szilassi’s Polyhedron

7.3. The 59 Examples of the Complete Graph with 12 Vertices Used for Its 59 Duals

8. Conclusions

Acknowledgments
Appendix A. Vertex Tables
| Vertex | X | Y | Z | Vertex | X | Y | Z | Triangles | ||
| 1 | 4 | 5 | -6 | 13 | 4 | 3 | -4 | (1,5,23) | (1,21,22) | (2,6,20) |
| 2 | -4 | 5 | 6 | 14 | -4 | 3 | 4 | (2,22,21) | (3,7,21) | (3,23,20) |
| 3 | -4 | -5 | -6 | 15 | -4 | -3 | -4 | (4,8,13) | (4,12,14) | (5,9,12) |
| 4 | 6 | -4 | 5 | 16 | 4 | -4 | 3 | (5,13,15) | (6,10,15) | (6,14,12) |
| 5 | 6 | 4 | -5 | 17 | 4 | 4 | -3 | (7,11,14) | (7,15,13) | (8,4,24) |
| 6 | -6 | 4 | 5 | 18 | -4 | 4 | 3 | (8,16,17) | (8,24,19) | (9,1,18) |
| 7 | -6 | -4 | -5 | 19 | -4 | -4 | -3 | (9,5,1) | (9,17,16) | (10,2,17) |
| 8 | 5 | -6 | 4 | 20 | 3 | -4 | 4 | (10,6,2) | (10,18,19) | (11,3,16) |
| 9 | 5 | 6 | -4 | 21 | 3 | 4 | -4 | (11,7,3) | (11,19,18) | (12,4,5) |
| 10 | -5 | 6 | 4 | 22 | -3 | 4 | 4 | (12,16,20) | (12,20,6) | (13,5,4) |
| 11 | -5 | -6 | -4 | 23 | -3 | -4 | -4 | (13,17,21) | (13,21,7) | (14,6,7) |
| 12 | 4 | -3 | 4 | 24 | 4 | -5 | 6 | (14,18,22) | (14,22,4) | (15,7,6) |
| (15,19,23) | (15,23,5) | (16,8,11) | ||||||||
| (16,12,9) | (17,9,10) | (17,13,8) | ||||||||
| (18,10,9) | (18,14,11) | (19,11,8) | ||||||||
| (19,15,10) | (20,16,3) | (20,24,2) | ||||||||
| (21,1,3) | (21,17,2) | (22,2,24) | ||||||||
| (22,18,1) | (23,3,1) | (23,19,24) | ||||||||
| (24,4,22) | (24,20,23) | |||||||||
| Vertex Permutation Groups | ||||||||||
| (1,24)(2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23) | ||||||||||
| (1,3)(2,24)(4,6)(5,7)(8,10)(9,11)(12,14)(13,15)(16,18)(17,19)(20,22)(21,23) | ||||||||||
| Vertex | X | Y | Z | Vertex | X | Y | Z | Polygons |
| 1 | 513 | 513 | -2337 | 29 | 209 | -209 | -855 | (12,16,42,30,11,8,26) |
| 2 | -513 | 513 | 2337 | 30 | -209 | -209 | 855 | (12,21,44,32,2,56,16) |
| 3 | -513 | -513 | -2337 | 31 | -209 | 209 | -855 | (12,26,49,37,5,4,21) |
| 4 | 2337 | -513 | 513 | 32 | 855 | 209 | 209 | (13,17,43,31,10,9,27) |
| 5 | 2337 | 513 | -513 | 33 | 855 | -209 | -209 | (13,20,45,33,3,1,17) |
| 6 | -2337 | 513 | 513 | 34 | -855 | -209 | 209 | (13,27,48,36,4,5,20) |
| 7 | -2337 | -513 | -513 | 35 | -855 | 209 | -209 | (14,18,40,28,9,10,24) |
| 8 | 513 | -2337 | 513 | 36 | 209 | 855 | 209 | (14,23,46,34,56,2,18) |
| 9 | 513 | 2337 | -513 | 37 | 209 | -855 | -209 | (14,24,51,39,7,6,23) |
| 10 | -513 | 2337 | 513 | 38 | -209 | -855 | 209 | (15,19,41,29,8,11,25) |
| 11 | -513 | -2337 | -513 | 39 | -209 | 855 | -209 | (15,22,47,35,1,3,19) |
| 12 | 2337 | -2337 | 2337 | 40 | 549 | 141 | 549 | (15,25,50,38,6,7,22) |
| 13 | 2337 | 2337 | -2337 | 41 | 549 | -141 | -549 | (52,40,18,2,32,33,45) |
| 14 | -2337 | 2337 | 2337 | 42 | -549 | -141 | 549 | (52,45,20,5,37,38,50) |
| 15 | -2337 | -2337 | -2337 | 43 | -549 | 141 | -549 | (52,50,25,11,30,28,40) |
| 16 | 342 | 57 | 1539 | 44 | 549 | 549 | 141 | (53,41,19,3,33,32,44) |
| 17 | 342 | -57 | -1539 | 45 | 549 | -549 | -141 | (53,44,21,4,36,39,51) |
| 18 | -342 | -57 | 1539 | 46 | -549 | -549 | 141 | (53,51,24,10,31,29,41) |
| 19 | -342 | 57 | -1539 | 47 | -549 | 549 | -141 | (54,42,16,56,34,35,47) |
| 20 | 1539 | 342 | 57 | 48 | 141 | 549 | 549 | (54,47,22,7,39,36,48) |
| 21 | 1539 | -342 | -57 | 49 | 141 | -549 | -549 | (54,48,27,9,28,30,42) |
| 22 | -1539 | -342 | 57 | 50 | -141 | -549 | 549 | (55,43,17,1,35,34,46) |
| 23 | -1539 | 342 | -57 | 51 | -141 | 549 | -549 | (55,46,23,6,38,37,49) |
| 24 | 57 | 1539 | 342 | 52 | 342 | -342 | 342 | (55,49,26,8,29,31,43) |
| 25 | 57 | -1539 | -342 | 53 | 342 | 342 | -342 | |
| 26 | -57 | -1539 | 342 | 54 | -342 | 342 | 342 | |
| 27 | -57 | 1539 | -342 | 55 | -342 | -342 | -342 | |
| 28 | 209 | 209 | 855 | 56 | 513 | -513 | 2337 | |
| Face Permutation Groups | ||||||||
| (1,23)(2,10)(3,5)(4,11)(6,17)(7,13)(8,14)(9,20)(12,16)(15,21)(18,24)(19,22) | ||||||||
| (1,21)(2,23)(3,22)(4,16)(5,17)(6,19)(7,18)(8,12)(9,13)(10,15)(11,14)(20,24) | ||||||||
| Vertex | X | Y | Z | Triangles | ||
| 1 | 3.50807 | -2.08966 | 4.12484 | (1,2,3) | (1,3,5) | (1,4,2) |
| 2 | -1.34797 | -3.85437 | -4.12484 | (1,5,8) | (1,7,4) | (1,8,11) |
| 3 | -8.28589 | -8.38412 | 6.58506 | (1,10,7) | (1,11,10) | (2,4,9) |
| 4 | 11.73538 | -1.10915 | -6.58506 | (2,6,3) | (2,8,6) | (2,9,10) |
| 5 | 11.40380 | -2.98373 | 6.58506 | (2,10,12) | (2,12,8) | (3,6,7) |
| 6 | 4.01197 | 0.75981 | -4.12484 | (3,7,12) | (3,9,5) | (3,11,9) |
| 7 | -3.56373 | -1.99324 | 4.12484 | (3,12,11) | (4,5,9) | (4,6,11) |
| 8 | -2.66400 | 3.09456 | -4.12484 | (4,7,6) | (4,11,12) | (4,12,5) |
| 9 | -6.82824 | -9.60857 | -6.58506 | (5,6,8) | (5,10,6) | (5,12,10) |
| 10 | 0.05567 | 4.08290 | 4.12484 | (6,10,11) | (7,8,12) | (7,9,8) |
| 11 | -4.90714 | 10.71771 | -6.58506 | (7,10,9) | (8,9,11) | |
| 12 | -3.11791 | 11.36785 | 6.58506 | |||
| Vertex Permutation Groups | ||||||
| (1,2,10,6,7,8)(3,9,5,4,12,11) | ||||||
| Vertex | X | Y | Z | Triangles | ||
| 1 | 0 | -7 | 0 | (1,2,3) | (1,3,5) | (1,4,2) |
| 2 | 5 | -24 | 8 | (1,5,8) | (1,7,4) | (1,8,11) |
| 3 | 0 | 13 | 7 | (1,10,7) | (1,11,10) | (2,4,9) |
| 4 | 0 | -13 | -7 | (2,6,3) | (2,8,6) | (2,9,10) |
| 5 | -17 | -3 | -4 | (2,10,12) | (2,12,8) | (3,6,7) |
| 6 | 0 | 7 | 0 | (3,7,12) | (3,9,5) | (3,11,9) |
| 7 | -5 | 24 | -8 | (3,12,11) | (4,5,9) | (4,6,11) |
| 8 | 23 | 0 | 7 | (4,7,6) | (4,11,12) | (4,12,5) |
| 9 | -4 | 9 | 24 | (5,6,8) | (5,10,6) | (5,12,10) |
| 10 | -23 | 0 | -7 | (6,10,11) | (7,8,12) | (7,9,8) |
| 11 | 17 | 3 | 4 | (7,10,9) | (8,9,11) | |
| 12 | 4 | -9 | -24 | |||
| Vertex Permutation Groups | ||||||
| (1,6)(2,7)(3,4)(5,11)(8,10)(9,12) | ||||||
| Vertex | X | Y | Z | Triangles | ||
| 1 | -3 | 19 | 2 | (1,2,3) | (1,2,4) | (1,3,5) |
| 2 | -2 | 3 | 19 | (1,4,7) | (1,5,8) | (1,7,12) |
| 3 | -19 | 2 | 3 | (1,8,14) | (1,12,14) | (2,3,6) |
| 4 | 3 | 2 | 19 | (2,4,10) | (2,6,11) | (2,10,20) |
| 5 | -2 | 19 | -3 | (2,11,18) | (2,20,18) | (3,5,9) |
| 6 | -19 | -3 | 2 | (3,6,13) | (3,9,16) | (3,13,21) |
| 7 | 2 | 19 | 3 | (3,16,21) | (4,7,15) | (4,10,17) |
| 8 | 3 | -2 | -19 | (4,15,16) | (4,16,21) | (4,17,21) |
| 9 | -19 | 3 | -2 | (5,8,15) | (5,9,19) | (5,15,20) |
| 10 | 19 | -3 | -2 | (5,19,18) | (5,20,18) | (6,11,17) |
| 11 | -3 | -2 | 19 | (6,12,14) | (6,13,19) | (6,14,19) |
| 12 | -19 | -2 | -3 | (6,17,12) | (7,9,11) | (7,11,18) |
| 13 | 2 | -19 | -3 | (7,12,9) | (7,15,22) | (7,18,22) |
| 14 | 2 | 3 | -19 | (8,10,13) | (8,13,21) | (8,14,10) |
| 15 | 19 | 3 | 2 | (8,15,23) | (8,21,23) | (9,12,23) |
| 16 | 2 | -3 | 19 | (9,16,11) | (9,19,23) | (10,14,22) |
| 17 | -2 | -19 | 3 | (10,17,22) | (10,20,13) | (11,16,24) |
| 18 | 3 | 19 | -2 | (11,17,24) | (12,17,21) | (12,23,21) |
| 19 | -3 | 2 | -19 | (13,19,24) | (13,20,24) | (14,19,18) |
| 20 | 19 | -2 | 3 | (14,22,18) | (15,16,20) | (15,22,23) |
| 21 | -3 | -19 | -2 | (16,24,20) | (17,22,24) | (19,23,24) |
| 22 | 19 | 2 | -3 | (22,23,24) | ||
| 23 | -2 | -3 | -19 | |||
| 24 | 3 | -19 | 2 | |||
| Vertex Permutation Groups | ||||||
| (1,6,24,15)(2,11,16,4)(3,17,20,7)(5,12,13,22) | ||||||
| (8,14,19,23)(9,21,10,18) | ||||||
| (1,21)(2,23)(3,12)(4,8) | ||||||
| (5,17)(6,9)(7,13)(10,15) | ||||||
| (11,19)(14,16)(18,24)(20,22) | ||||||
| Vertex | X | Y | Z | Triangles | ||
| 1 | -16 | -16 | -2 | (1,2,3) | (1,3,5) | (1,4,2) |
| 2 | -9 | 10 | 2 | (1,5,8) | (1,7,4) | (1,8,14) |
| 3 | -2 | -22 | 8 | (1,12,7) | (1,14,12) | (2,4,10) |
| 4 | 23 | 29 | 7 | (2,6,3) | (2,10,20) | (2,11,6) |
| 5 | 4 | -14 | 5 | (2,18,11) | (2,20,18) | (3,6,13) |
| 6 | -18 | -6 | 2 | (3,9,5) | (3,13,21) | (3,16,9) |
| 7 | -4 | 14 | -5 | (3,21,16) | (4,7,15) | (4,15,16) |
| 8 | -23 | -29 | -7 | (4,16,21) | (4,17,10) | (4,21,17) |
| 9 | 17 | -15 | -12 | (5,9,19) | (5,15,8) | (5,18,20) |
| 10 | -8 | 23 | 29 | (5,19,18) | (5,20,15) | (6,11,17) |
| 11 | -11 | 10 | -20 | (6,12,14) | (6,14,19) | (6,17,12) |
| 12 | -13 | -4 | -26 | (6,19,13) | (7,9,11) | (7,11,18) |
| 13 | 15 | -26 | 24 | (7,12,9) | (7,18,22) | (7,22,15) |
| 14 | -36 | 12 | 0 | (8,10,14) | (8,13,10) | (8,15,23) |
| 15 | 16 | 16 | 2 | (8,21,13) | (8,23,21) | (9,12,23) |
| 16 | 36 | -12 | 0 | (9,16,11) | (9,23,19) | (10,13,20) |
| 17 | -15 | 26 | -24 | (10,17,22) | (10,22,14) | (11,16,24) |
| 18 | -17 | 15 | 12 | (11,24,17) | (12,17,21) | (12,21,23) |
| 19 | 11 | -10 | 20 | (13,19,24) | (13,24,20) | (14,18,19) |
| 20 | 13 | 4 | 26 | (14,22,18) | (15,20,16) | (15,22,23) |
| 21 | 8 | -23 | -29 | (16,20,24) | (17,24,22) | (19,23,24) |
| 22 | 2 | 22 | -8 | (22,24,23) | ||
| 23 | 9 | -10 | -2 | |||
| 24 | 18 | 6 | -2 | |||
| Vertex Permutation Groups | ||||||
| (1,15)(2,23)(3,22)(4,8) | ||||||
| (5,7)(6,24)(9,18)(10,21) | ||||||
| (11,19)(12,20)(13,17)(14,16) | ||||||
| Vertex | X | Y | Z | Vertex | X | Y | Z | Polygons |
| 1 | 20.65379 | -21.80366 | 30.77811 | 33 | -21.71225 | -46.69755 | -23.86363 | (1,2,4,6,8,7,5,3) |
| 2 | 12.74359 | 19.76101 | 29.74751 | 34 | -23.71552 | -42.38214 | -21.10591 | (1,3,15,17,19,18,16,9) |
| 3 | 22.41124 | -22.24871 | 26.29238 | 35 | 21.80365 | 20.65380 | -30.77811 | (1,9,11,13,14,12,10,2) |
| 4 | 29.87010 | 38.88395 | -26.55009 | 36 | -19.76099 | 12.74359 | -29.74751 | (2,10,21,24,23,22,20,4) |
| 5 | 17.18350 | 5.22081 | 25.61127 | 37 | -60.30722 | -73.01170 | -49.44046 | (3,5,25,27,29,28,26,15) |
| 6 | 24.93641 | 54.96569 | -21.91335 | 38 | 38.09246 | -54.72530 | -51.99704 | (4,20,38,39,37,35,36,6) |
| 7 | 33.96277 | 41.71029 | -39.06823 | 39 | 33.11198 | -49.63967 | -50.27328 | (5,7,41,40,42,44,43,25) |
| 8 | 33.11615 | 50.33837 | -41.42038 | 40 | -21.80365 | -20.65380 | -30.77811 | (6,36,46,54,53,32,31,8) |
| 9 | -73.01172 | 60.30723 | 49.44046 | 41 | -22.24871 | -22.41124 | -26.29238 | (7,8,31,34,57,58,49,41) |
| 10 | 54.96571 | -24.93641 | 21.91335 | 42 | 60.30722 | 73.01170 | -49.44046 | (9,16,33,34,31,32,30,11) |
| 11 | -49.63968 | -33.11198 | 50.27328 | 43 | 49.63968 | 33.11198 | 50.27328 | (10,12,48,40,41,49,50,21) |
| 12 | 38.88394 | -29.87010 | 26.55009 | 44 | 54.72530 | 38.09245 | 51.99703 | (11,30,52,51,45,35,37,13) |
| 13 | -54.72530 | -38.09245 | 51.99704 | 45 | 22.24871 | 22.41125 | -26.29238 | (12,14,29,27,59,61,56,48) |
| 14 | 46.69755 | -21.71224 | 23.86363 | 46 | -38.88394 | 29.87010 | 26.55009 | (13,37,39,58,57,28,29,14) |
| 15 | -41.71029 | 33.96277 | 39.06823 | 47 | -54.96571 | 24.93641 | 21.91335 | (15,26,47,46,36,35,45,17) |
| 16 | -38.09246 | 54.72530 | -51.99703 | 48 | 19.76099 | -12.74359 | -29.74751 | (16,18,42,40,48,56,55,33) |
| 17 | -5.22081 | 17.18350 | -25.61127 | 49 | 5.22081 | -17.18350 | -25.61127 | (17,45,51,61,59,22,23,19) |
| 18 | -33.11197 | 49.63968 | -50.27328 | 50 | 41.71029 | -33.96277 | 39.06823 | (18,19,23,24,53,54,44,42) |
| 19 | -31.31434 | 39.35709 | -17.76609 | 51 | -33.96277 | -41.71029 | -39.06823 | (20,22,59,27,25,43,60,38) |
| 20 | 21.71225 | 46.69755 | -23.86363 | 52 | -17.18350 | -5.22081 | 25.61127 | (21,50,62,52,30,32,53,24) |
| 21 | 50.33838 | -33.11615 | 41.42038 | 53 | -42.38214 | 23.71552 | 21.10591 | (26,28,57,34,33,55,63,47) |
| 22 | 23.71552 | 42.38214 | -21.10591 | 54 | -46.69755 | 21.71224 | 23.86363 | (38,60,64,62,50,49,58,39) |
| 23 | 14.61668 | 51.09704 | -18.10958 | 55 | -29.87010 | -38.88395 | -26.55009 | (43,44,54,46,47,63,64,60) |
| 24 | 1.40164 | 30.78678 | 33.25093 | 56 | -24.93641 | -54.96569 | -21.91335 | (51,52,62,64,63,55,56,61) |
| 25 | 39.35710 | 31.31435 | 17.76608 | 57 | -14.61668 | -51.09704 | -18.10958 | |
| 26 | -50.33838 | 33.11615 | 41.42038 | 58 | 31.31434 | -39.35709 | -17.76609 | |
| 27 | 51.09705 | -14.61667 | 18.10958 | 59 | 30.78679 | -1.40162 | -33.25093 | |
| 28 | -1.40164 | -30.78678 | 33.25093 | 60 | 73.01172 | -60.30723 | 49.44046 | |
| 29 | 42.38214 | -23.71552 | 21.10591 | 61 | -33.11615 | -50.33837 | -41.42038 | |
| 30 | -39.35710 | -31.31435 | 17.76608 | 62 | -22.41124 | 22.24871 | 26.29238 | |
| 31 | -30.78679 | 1.40162 | -33.25093 | 63 | -12.74359 | -19.76102 | 29.74751 | |
| 32 | -51.09705 | 14.61667 | 18.10958 | 64 | -20.65379 | 21.80365 | 30.77811 | |
| Face Permutation Groups | ||||||||
| (1,9,24,10)(2,7,23,13)(3,11,22,8)(4,12,19,20)(5,16,17,14)(6,18,15,21) | ||||||||
| Vertex | X | Y | Z | Vertex | X | Y | Z | Polygons |
| 1 | 43.46366 | -21.64751 | -61.72107 | 33 | -39.16046 | -28.68813 | -56.03963 | (1,2,4,6,8,7,5,3) |
| 2 | 44.42489 | -19.56988 | -56.03962 | 34 | 9.96950 | 45.84838 | -20.81775 | (1,3,15,17,19,18,16,9) |
| 3 | 53.86739 | -46.58218 | -39.71776 | 35 | 11.90551 | 85.75792 | -36.03035 | (1,9,11,13,14,12,10,2) |
| 4 | 52.86341 | -40.45273 | -38.74069 | 36 | 38.96070 | 16.42411 | -33.31914 | (2,10,21,24,23,22,20,4) |
| 5 | 55.43655 | -42.78937 | -30.10898 | 37 | 7.80724 | 83.27623 | -40.60529 | (3,5,25,27,29,28,26,15) |
| 6 | 42.06058 | 26.82332 | -27.12557 | 38 | -2.98453 | 48.46441 | -61.72105 | (4,20,38,39,37,35,36,6) |
| 7 | 43.23307 | 35.96650 | -14.69191 | 39 | 13.40766 | 69.94163 | -39.71775 | (5,7,41,40,42,44,43,25) |
| 8 | 41.34849 | 42.18495 | -17.26068 | 40 | 9.53136 | -55.42417 | -14.69193 | (6,36,46,54,53,32,31,8) |
| 9 | -50.16896 | -22.72487 | -43.52481 | 41 | 0 | 0 | -3.48967 | (7,8,31,34,57,58,49,41) |
| 10 | -44.69060 | -14.29033 | -20.81776 | 42 | 15.85899 | -56.90131 | -17.26070 | (9,16,33,34,31,32,30,11) |
| 11 | -66.69357 | -19.12815 | -29.56035 | 43 | 34.72110 | -31.55802 | -20.81777 | (10,12,48,40,41,49,50,21) |
| 12 | -54.41173 | -16.29590 | -24.30598 | 44 | 35.27372 | -0.02124 | -16.67734 | (11,30,52,51,45,35,37,13) |
| 13 | -2.37166 | 14.42542 | 51.11662 | 45 | 0 | 0 | 79.84747 | (12,14,29,27,59,61,56,48) |
| 14 | 1.26806 | 12.52908 | 44.90553 | 46 | 27.61252 | 32.62213 | -21.48363 | (13,37,39,58,57,28,29,14) |
| 15 | 68.21570 | -48.39938 | -40.60532 | 47 | 16.78131 | 67.32243 | -29.56033 | (15,26,47,46,36,35,45,17) |
| 16 | -61.46479 | -25.55469 | -38.74069 | 48 | -64.77494 | -26.61476 | -30.10897 | (16,18,42,40,48,56,55,33) |
| 17 | 68.31578 | -53.18943 | -36.03039 | 49 | -52.76442 | 19.45769 | -14.69192 | (17,45,51,61,59,22,23,19) |
| 18 | 2.19938 | -49.83717 | -27.12558 | 50 | -57.20747 | 14.71636 | -17.26069 | (18,19,23,24,53,54,44,42) |
| 19 | -5.25665 | -41.95300 | -33.31916 | 51 | -80.22128 | -32.56847 | -36.03038 | (20,22,59,27,25,43,60,38) |
| 20 | 44.76481 | -32.08516 | -43.52481 | 52 | -33.70404 | 25.52891 | -33.31914 | (21,50,62,52,30,32,53,24) |
| 21 | -17.65526 | -30.53731 | -16.67734 | 53 | 0 | 0 | -38.49300 | (26,28,57,34,33,55,63,47) |
| 22 | 49.91226 | -48.19425 | -29.56035 | 54 | 22.32151 | 20.10489 | -28.72768 | (38,60,64,62,50,49,58,39) |
| 23 | 14.44533 | -40.22420 | -21.48364 | 55 | -40.47914 | -26.81687 | -61.72107 | (43,44,54,46,47,63,64,60) |
| 24 | 6.25059 | -29.38343 | -28.72769 | 56 | -67.27505 | -23.35943 | -39.71776 | (51,52,62,64,63,55,56,61) |
| 25 | 41.31855 | -38.97399 | -24.30600 | 57 | 13.09319 | 55.26989 | -24.30597 | |
| 26 | 13.67862 | -5.15880 | 51.11662 | 58 | 9.33840 | 69.40414 | -30.10896 | |
| 27 | -11.48454 | -5.16638 | 44.90554 | 59 | -11.30695 | -9.26664 | 51.11662 | |
| 28 | 10.21648 | -7.36273 | 44.90552 | 60 | -5.26442 | 48.25803 | -56.03961 | |
| 29 | 0 | 0 | 60.29438 | 61 | -76.02295 | -34.87683 | -40.60531 | |
| 30 | -42.05785 | 7.60208 | -21.48363 | 62 | -44.25996 | 23.01389 | -27.12557 | |
| 31 | -17.61847 | 30.55856 | -16.67733 | 63 | 5.40416 | 54.81006 | -43.52480 | |
| 32 | -28.57210 | 9.27856 | -28.72769 | 64 | 8.60138 | 66.00742 | -38.74067 | |
| Face Permutation Groups | ||||||||
| (1,22,13)(2,15,19)(3,7,24)(4,23,6)(5,18,20)(8,14,10)(9,11,16)(12,17,21) | ||||||||
| Vertex | X | Y | Z | Triangles | ||
| 1 | 0 | 0 | -11 | (1,2,3) | (1,2,4) | (1,3,5) |
| 2 | 8 | -3 | 0 | (1,4,7) | (1,5,8) | (1,7,10) |
| 3 | 8 | -2 | -2 | (1,8,11) | (1,10,13) | (1,11,14) |
| 4 | 2 | -9 | 2 | (1,13,14) | (2,3,6) | (2,4,9) |
| 5 | 5 | -15 | 5 | (2,6,8) | (2,8,12) | (2,9,10) |
| 6 | -11 | -6 | 0 | (2,10,15) | (2,12,14) | (2,15,14) |
| 7 | 4 | 0 | -6 | (3,5,9) | (3,6,7) | (3,7,12) |
| 8 | -4 | 0 | -6 | (3,9,11) | (3,11,15) | (3,12,13) |
| 9 | 11 | 6 | 0 | (3,15,13) | (4,5,15) | (4,6,13) |
| 10 | -5 | 15 | 5 | (4,7,6) | (4,9,5) | (4,11,12) |
| 11 | -2 | 9 | 2 | (4,13,12) | (4,15,11) | (5,6,14) |
| 12 | -2 | -1 | 1 | (5,8,6) | (5,10,12) | (5,14,12) |
| 13 | -8 | 2 | -2 | (5,15,10) | (6,10,11) | (6,13,10) |
| 14 | -8 | 3 | 0 | (6,14,11) | (7,8,15) | (7,9,14) |
| 15 | 2 | 1 | 1 | (7,10,9) | (7,12,8) | (7,15,14) |
| (8,9,13) | (8,11,9) | (8,15,13) | ||||
| (9,14,13) | (10,12,11) | |||||
| Vertex Permutation Groups | ||||||
| (2,14)(3,13)(4,11)(5,10)(6,9)(7,8)(12,15) | ||||||
| Vertex | X | Y | Z | Triangles | ||
| 1 | -5.99383 | 5.01307 | 1.24410 | (1,2,3) | (1,2,4) | (1,3,5) |
| 2 | -18.71430 | 20.44390 | 9.90603 | (1,4,7) | (1,5,8) | (1,7,10) |
| 3 | -1.34453 | -7.69735 | 1.24410 | (1,8,11) | (1,10,13) | (1,11,14) |
| 4 | 27.06208 | 5.98511 | 9.90603 | (1,13,14) | (2,3,6) | (2,4,9) |
| 5 | -12.16698 | 29.76071 | -19.66275 | (2,6,8) | (2,8,12) | (2,9,10) |
| 6 | -8.34778 | -26.42901 | 9.90603 | (2,10,15) | (2,12,14) | (2,15,14) |
| 7 | 7.33837 | 2.68427 | 1.24410 | (3,5,9) | (3,6,7) | (3,7,12) |
| 8 | -12.24958 | -9.58165 | -9.48644 | (3,9,11) | (3,11,15) | (3,12,13) |
| 9 | -2.17316 | 15.39927 | -9.48644 | (3,15,13) | (4,5,15) | (4,6,13) |
| 10 | 31.85702 | -4.34345 | -19.66276 | (4,7,6) | (4,9,5) | (4,11,12) |
| 11 | -6.93376 | -15.98406 | -1.21418 | (4,13,12) | (4,15,11) | (5,6,14) |
| 12 | -19.69004 | -25.41726 | -19.66275 | (5,8,6) | (5,10,12) | (5,14,12) |
| 13 | 14.42274 | -5.81762 | -9.48644 | (5,15,10) | (6,10,11) | (6,13,10) |
| 14 | -10.37572 | 13.99685 | -1.21417 | (6,14,11) | (7,8,15) | (7,9,14) |
| 15 | 17.30948 | 1.98721 | -1.21418 | (7,10,9) | (7,12,8) | (7,15,14) |
| (8,9,13) | (8,11,9) | (8,15,13) | ||||
| (9,14,13) | (10,12,11) | |||||
| Vertex Permutation Groups | ||||||
| (1,3,7)(2,6,4)(5,12,10)(8,13,9)(11,15,14) | ||||||
| Vertex | X | Y | Z | Vertex | X | Y | Z | Triangles | |||
| 1 | 25 | -29 | 20 | 37 | -16 | 4 | -31 | (1,2,3) | (1,3,4) | (1,4,5) | (1,5,6) |
| 2 | 25 | 28 | 15 | 38 | 0 | 7 | 0 | (1,6,7) | (1,7,8) | (1,8,2) | (2,8,9) |
| 3 | -25 | 29 | 20 | 39 | -12 | 6 | 5 | (2,9,23) | (2,10,3) | (2,16,10) | (2,23,16) |
| 4 | -25 | -28 | 15 | 40 | 11 | 2 | 10 | (3,10,24) | (3,11,4) | (3,17,11) | (3,24,17) |
| 5 | 19 | -18 | 17 | 41 | 0 | -3 | -9 | (4,25,18) | (8,7,15) | (8,15,29) | (10,52,33) |
| 6 | 4 | -4 | 0 | 42 | -5 | 24 | -2 | (11,17,53) | (11,25,4) | (11,53,34) | (12,4,18) |
| 7 | 8 | -10 | 10 | 43 | 0 | -13 | 4 | (12,5,4) | (12,18,54) | (12,26,5) | (12,54,35) |
| 8 | 14 | -28 | 9 | 44 | 1 | 17 | 1 | (13,5,19) | (13,6,5) | (13,27,6) | (14,7,6) |
| 9 | 31 | -9 | 3 | 45 | -11 | -2 | 10 | (14,28,7) | (16,52,10) | (19,5,26) | (20,6,27) |
| 10 | -19 | 18 | 17 | 46 | 17 | 1 | 7 | (20,14,6) | (20,27,33) | (21,7,28) | (21,15,7) |
| 11 | -14 | 28 | 9 | 47 | -5 | -6 | -10 | (21,28,34) | (21,34,40) | (21,40,63) | (21,57,15) |
| 12 | -6 | -32 | 14 | 48 | -30 | 24 | -17 | (21,63,57) | (22,8,29) | (22,9,8) | (22,29,35) |
| 13 | 5 | 6 | -10 | 49 | 6 | -33 | 10 | (22,35,41) | (22,51,9) | (30,14,56) | (30,17,24) |
| 14 | 8 | 8 | 6 | 50 | -13 | 3 | -19 | (30,24,38) | (30,43,17) | (30,56,43) | (31,15,57) |
| 15 | -3 | -15 | 6 | 51 | 10 | 0 | 1 | (31,18,25) | (31,37,18) | (31,57,37) | (32,9,51) |
| 16 | 6 | 32 | 14 | 52 | -17 | 10 | 15 | (32,19,26) | (34,28,42) | (35,29,43) | (36,16,23) |
| 17 | -8 | 10 | 10 | 53 | 3 | 15 | 6 | (36,23,37) | (36,42,16) | (37,23,60) | (37,60,18) |
| 18 | -27 | -4 | -30 | 54 | 17 | -28 | -21 | (38,19,32) | (38,24,61) | (38,32,51) | (38,61,19) |
| 19 | 1 | 3 | -4 | 55 | 0 | 3 | -9 | (39,20,33) | (39,25,62) | (39,31,25) | (39,33,52) |
| 20 | 0 | -7 | 0 | 56 | -1 | -17 | 1 | (39,62,20) | (40,26,63) | (40,32,26) | (40,34,53) |
| 21 | 3 | -6 | 11 | 57 | -24 | -21 | 9 | (41,33,27) | (44,14,30) | (44,28,14) | (44,30,38) |
| 22 | 30 | -24 | -17 | 58 | -6 | 33 | 10 | (44,38,51) | (44,51,65) | (44,58,28) | (44,65,58) |
| 23 | 27 | 4 | -30 | 59 | -3 | 6 | 11 | (45,15,31) | (45,29,15) | (45,31,39) | (45,39,52) |
| 24 | -4 | 4 | 0 | 60 | 16 | -4 | -31 | (45,52,66) | (45,59,29) | (45,66,59) | (46,9,32) |
| 25 | -31 | 9 | 3 | 61 | -10 | 1 | -5 | (46,23,9) | (46,32,40) | (46,40,53) | (46,53,67) |
| 26 | 17 | -10 | 15 | 62 | -10 | 0 | 1 | (46,60,23) | (46,67,60) | (47,10,33) | (47,24,10) |
| 27 | 10 | -1 | -5 | 63 | -3 | -23 | 12 | (47,33,41) | (47,41,54) | (47,54,68) | (47,61,24) |
| 28 | 0 | 13 | 4 | 64 | 15 | 1 | -8 | (47,68,61) | (48,11,34) | (48,25,11) | (48,34,42) |
| 29 | 4 | -9 | 7 | 65 | 12 | 7 | -4 | (48,42,55) | (48,55,69) | (48,62,25) | (48,69,62) |
| 30 | -8 | -8 | 6 | 66 | 3 | 23 | 12 | (49,12,35) | (49,26,12) | (49,35,43) | (49,43,56) |
| 31 | -17 | -1 | 7 | 67 | 24 | 21 | 9 | (49,56,70) | (49,63,26) | (49,70,63) | (50,13,36) |
| 32 | 12 | -6 | 5 | 68 | 13 | -3 | -19 | (50,27,13) | (50,36,37) | (50,37,57) | (50,57,71) |
| 33 | -1 | -3 | -4 | 69 | -15 | -1 | -8 | (50,64,27) | (50,71,64) | (54,18,60) | (54,41,35) |
| 34 | -4 | 9 | 7 | 70 | -12 | -7 | -4 | (55,13,19) | (55,19,61) | (55,36,13) | (55,42,36) |
| 35 | 5 | -24 | -2 | 71 | -12 | 1 | -30 | (55,61,69) | (56,14,20) | (56,20,62) | (56,62,70) |
| 36 | -17 | 28 | -21 | 72 | 12 | -1 | -30 | (58,16,42) | (58,42,28) | (58,52,16) | (58,65,66) |
| (58,66,52) | (59,17,43) | (59,43,29) | (59,53,17) | ||||||||
| (63,70,71) | (63,71,57) | (64,22,41) | (64,41,27) | ||||||||
| (64,51,22) | (64,65,51) | (64,71,65) | (65,71,72) | ||||||||
| (66,65,72) | (67,53,59) | (67,59,66) | (67,66,72) | ||||||||
| (67,68,60) | (67,72,68) | (68,54,60) | (68,69,61) | ||||||||
| (68,72,69) | (69,70,62) | (69,72,70) | (71,70,72) | ||||||||
| Vertex Permutation Groups | |||||||||||
| (1,3)(2,4)(5,10)(6,24)(7,17)(8,11)(9,25)(12,16)(13,47)(14,30)(15,53)(18,23) | |||||||||||
| (19,33)(20,38)(21,59)(22,48)(26,52)(27,61)(28,43)(29,34)(31,46)(32,39)(35,42)(36,54) | |||||||||||
| (37,60)(40,45)(41,55)(44,56)(49,58)(50,68)(51,62)(57,67)(63,66)(64,69)(65,70)(71,72) | |||||||||||
| Vertex | X | Y | Z | Vertex | X | Y | Z | Triangles | |||
| 1 | 54 | 77 | -11 | 37 | -62 | 0 | -1 | (1,2,8) | (1,3,2) | (1,4,3) | (1,5,4) |
| 2 | 26 | -9 | 45 | 38 | 25 | 37 | 7 | (1,6,5) | (1,7,6) | (1,8,7) | (2,3,10) |
| 3 | 55 | 55 | -24 | 39 | -5 | 20 | 8 | (2,9,8) | (2,10,16) | (2,16,23) | (2,23,9) |
| 4 | -10 | 50 | 23 | 40 | 5 | -20 | -31 | (3,4,11) | (3,11,17) | (3,17,24) | (3,24,10) |
| 5 | 6 | 40 | 22 | 41 | 20 | -24 | 68 | (4,18,25) | (8,15,7) | (8,29,15) | (10,33,52) |
| 6 | 8 | 99 | 16 | 42 | -85 | -2 | -40 | (11,4,25) | (11,34,53) | (11,53,17) | (12,4,5) |
| 7 | 14 | 65 | -78 | 43 | 85 | -51 | -13 | (12,5,26) | (12,18,4) | (12,35,54) | (12,54,18) |
| 8 | 75 | 70 | -5 | 44 | -19 | -6 | -16 | (13,5,6) | (13,6,27) | (13,19,5) | (14,6,7) |
| 9 | 18 | -51 | 35 | 45 | -18 | -76 | -36 | (14,7,28) | (16,10,52) | (19,26,5) | (20,6,14) |
| 10 | 12 | 13 | 52 | 46 | 8 | -40 | -3 | (20,27,6) | (20,33,27) | (21,7,15) | (21,15,57) |
| 11 | 46 | 71 | -32 | 47 | 20 | 36 | 87 | (21,28,7) | (21,34,28) | (21,40,34) | (21,57,63) |
| 12 | 47 | -7 | 10 | 48 | -21 | 43 | -52 | (21,63,40) | (22,8,9) | (22,9,51) | (22,29,8) |
| 13 | 14 | 95 | 29 | 49 | 18 | -7 | -11 | (22,35,29) | (22,41,35) | (30,17,43) | (30,24,17) |
| 14 | -75 | 44 | -15 | 50 | -56 | 0 | 14 | (30,38,24) | (30,43,56) | (30,56,14) | (31,18,37) |
| 15 | 0 | -40 | -83 | 51 | -10 | -24 | -13 | (31,25,18) | (31,37,57) | (31,57,15) | (32,26,19) |
| 16 | -18 | 7 | 11 | 52 | -20 | 7 | 1 | (32,51,9) | (34,42,28) | (35,43,29) | (36,16,42) |
| 17 | 56 | 0 | -14 | 53 | 43 | -6 | -26 | (36,23,16) | (36,37,23) | (37,18,60) | (37,60,23) |
| 18 | 19 | 6 | 16 | 54 | 81 | -54 | 29 | (38,19,61) | (38,32,19) | (38,51,32) | (38,61,24) |
| 19 | 18 | 76 | 36 | 55 | -72 | -56 | 31 | (39,20,62) | (39,25,31) | (39,33,20) | (39,52,33) |
| 20 | -8 | 40 | 3 | 56 | -12 | 30 | -10 | (39,62,25) | (40,26,32) | (40,53,34) | (40,63,26) |
| 21 | -20 | -36 | -87 | 57 | -37 | -49 | 14 | (41,27,33) | (44,14,28) | (44,28,58) | (44,30,14) |
| 22 | 21 | -43 | 52 | 58 | -47 | 7 | -10 | (44,38,30) | (44,51,38) | (44,58,65) | (44,65,51) |
| 23 | 12 | -30 | 10 | 59 | -14 | -95 | -29 | (45,15,29) | (45,29,59) | (45,31,15) | (45,39,31) |
| 24 | 37 | 49 | -14 | 60 | 75 | -44 | 15 | (45,52,39) | (45,59,66) | (45,66,52) | (46,9,23) |
| 25 | 10 | 24 | 13 | 61 | 0 | 40 | 83 | (46,23,60) | (46,32,9) | (46,40,32) | (46,53,40) |
| 26 | 20 | -7 | -1 | 62 | -18 | 51 | -35 | (46,60,67) | (46,67,53) | (47,10,24) | (47,24,61) |
| 27 | -43 | 6 | 26 | 63 | -12 | -13 | -52 | (47,33,10) | (47,41,33) | (47,54,41) | (47,61,68) |
| 28 | -81 | 54 | -29 | 64 | -46 | -71 | 32 | (47,68,54) | (48,11,25) | (48,25,62) | (48,34,11) |
| 29 | 72 | 56 | -31 | 65 | 10 | -50 | -23 | (48,42,34) | (48,55,42) | (48,62,69) | (48,69,55) |
| 30 | 62 | 0 | 1 | 66 | -6 | -40 | -22 | (49,12,26) | (49,26,63) | (49,35,12) | (49,43,35) |
| 31 | -25 | -37 | -7 | 67 | -8 | -99 | -16 | (49,56,43) | (49,63,70) | (49,70,56) | (50,13,27) |
| 32 | 5 | -20 | -8 | 68 | -14 | -65 | 78 | (50,27,64) | (50,36,13) | (50,37,36) | (50,57,37) |
| 33 | -5 | 20 | 31 | 69 | -75 | -70 | 5 | (50,64,71) | (50,71,57) | (54,35,41) | (54,60,18) |
| 34 | -20 | 24 | -68 | 70 | -26 | 9 | -45 | (55,13,36) | (55,19,13) | (55,36,42) | (55,61,19) |
| 35 | 85 | 2 | 40 | 71 | -55 | -55 | 24 | (55,69,61) | (56,20,14) | (56,62,20) | (56,70,62) |
| 36 | -85 | 51 | 13 | 72 | -54 | -77 | 11 | (58,16,52) | (58,28,42) | (58,42,16) | (58,52,66) |
| (58,66,65) | (59,17,53) | (59,29,43) | (59,43,17) | ||||||||
| (63,57,71) | (63,71,70) | (64,22,51) | (64,27,41) | ||||||||
| (64,41,22) | (64,51,65) | (64,65,71) | (65,72,71) | ||||||||
| (66,72,65) | (67,59,53) | (67,60,68) | (67,66,59) | ||||||||
| (67,68,72) | (67,72,66) | (68,60,54) | (68,61,69) | ||||||||
| (68,69,72) | (69,62,70) | (69,70,72) | (71,72,70) | ||||||||
| Vertex Permutation Groups | |||||||||||
| (1,72)(2,70)(3,71)(4,65)(5,66)(6,67)(7,68)(8,69)(9,62)(10,63)(11,64)(12,58) | |||||||||||
| (13,59)(14,60)(15,61)(16,49)(17,50)(18,44)(19,45)(20,46)(21,47)(22,48)(23,56)(24,57) | |||||||||||
| (25,51)(26,52)(27,53)(28,54)(29,55)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(36,43) | |||||||||||
| Vertex | X | Y | Z | Vertex | X | Y | Z | Triangles | |||
| 1 | -7.56801 | 10.70538 | 5.21656 | 37 | -8.08031 | 1.28652 | 13.15790 | (1,2,3) | (1,2,4) | (1,3,5) | (1,4,7) |
| 2 | -20.81640 | 20.48934 | -0.01571 | 38 | 8.38186 | -2.47831 | -7.09248 | (1,5,8) | (1,7,12) | (1,8,12) | (2,3,6) |
| 3 | -24.55717 | 15.79025 | -11.94582 | 39 | -1.13204 | -10.49296 | 1.61630 | (2,4,10) | (2,6,11) | (2,10,18) | (2,11,18) |
| 4 | 5.08631 | 0.37848 | -2.07012 | 40 | -9.68365 | -23.53667 | -1.22782 | (3,5,9) | (3,6,13) | (3,9,16) | (3,13,16) |
| 5 | -7.29889 | 9.52212 | 8.19785 | 41 | 11.89584 | 1.55996 | 8.19785 | (4,7,15) | (4,10,17) | (4,15,26) | (4,17,26) |
| 6 | -8.13559 | -22.80113 | -17.04527 | 42 | -0.29098 | 25.70097 | 8.86883 | (5,8,14) | (5,9,19) | (5,14,24) | (5,19,24) |
| 7 | 4.05356 | 3.57506 | -6.10364 | 43 | -9.62736 | 18.72593 | 23.87503 | (6,11,22) | (6,13,20) | (6,20,34) | (6,22,34) |
| 8 | -4.68011 | -0.83056 | 16.84014 | 44 | 4.66235 | 1.38416 | 13.35325 | (7,12,23) | (7,15,25) | (7,23,38) | (7,25,38) |
| 9 | -8.52114 | 6.22686 | 1.61630 | 45 | 21.50829 | 9.85368 | 25.64286 | (8,12,21) | (8,14,27) | (8,21,35) | (8,27,35) |
| 10 | -2.87093 | 4.21563 | -2.07012 | 46 | 13.05513 | 1.20140 | 5.21656 | (9,16,31) | (9,19,28) | (9,28,47) | (9,31,47) |
| 11 | -22.11221 | -13.10248 | 8.86883 | 47 | 2.92600 | -7.64101 | 13.15790 | (10,17,32) | (10,18,29) | (10,29,48) | (10,32,48) |
| 12 | -3.52990 | 3.34564 | 13.35325 | 48 | -5.48712 | -11.90677 | 5.21656 | (11,18,33) | (11,22,36) | (11,33,53) | (11,36,53) |
| 13 | 1.27231 | -12.11945 | -21.10028 | 49 | -1.39617 | -29.16226 | -11.94582 | (12,21,40) | (12,23,37) | (12,40,37) | (13,16,30) |
| 14 | 1.62077 | 4.46838 | 16.84014 | 50 | -15.67856 | 18.44619 | -17.04527 | (13,20,39) | (13,30,49) | (13,39,49) | (14,24,44) |
| 15 | 34.45072 | 6.38996 | 0.12212 | 51 | -11.69149 | -33.03018 | 0.12212 | (14,27,41) | (14,41,46) | (14,44,46) | (15,25,45) |
| 16 | -11.13191 | 4.95787 | -21.10028 | 52 | -19.28768 | 13.69988 | 25.64286 | (15,26,42) | (15,42,43) | (15,45,43) | (16,30,56) |
| 17 | -2.21538 | -4.59411 | -2.07012 | 53 | 4.40467 | -10.68459 | 10.20493 | (16,31,50) | (16,56,50) | (17,26,46) | (17,32,51) |
| 18 | -22.75923 | 26.64022 | 0.12212 | 54 | -5.92856 | -0.30062 | 9.70240 | (17,46,61) | (17,51,61) | (18,29,55) | (18,33,52) |
| 19 | -18.93555 | 12.65559 | 4.40191 | 55 | -15.54153 | 20.15462 | -1.22782 | (18,55,52) | (19,24,43) | (19,28,54) | (19,43,59) |
| 20 | -0.66200 | -10.32516 | -6.69882 | 56 | 25.95334 | 13.37201 | -11.94582 | (19,54,59) | (20,34,61) | (20,39,57) | (20,57,44) |
| 21 | -10.25955 | -19.67105 | 1.72717 | 57 | 5.15431 | 6.35450 | 13.15790 | (20,61,44) | (21,33,58) | (21,33,62) | (21,35,62) |
| 22 | -11.53865 | -2.84358 | 18.63150 | 58 | -2.22060 | -23.55356 | 25.64286 | (21,40,58) | (22,34,59) | (22,36,63) | (22,59,42) |
| 23 | 9.27285 | 4.58927 | -6.69882 | 59 | -11.45546 | 1.52774 | 10.20493 | (22,63,42) | (23,30,60) | (23,30,64) | (23,37,64) |
| 24 | -11.90586 | 18.72056 | 1.72717 | 60 | 23.81415 | 4.35494 | -17.04527 | (23,38,60) | (24,43,52) | (24,44,55) | (24,52,55) |
| 25 | 25.22518 | 3.38205 | -1.22782 | 61 | 1.06931 | -5.29802 | -6.10364 | (25,38,47) | (25,45,65) | (25,47,68) | (25,65,68) |
| 26 | 28.15249 | 7.78286 | -0.01571 | 62 | -1.49228 | -22.72646 | 4.40191 | (26,42,50) | (26,46,56) | (26,50,56) | (27,35,48) |
| 27 | 3.05935 | -3.63782 | 16.84014 | 63 | 3.30671 | 11.41455 | 18.63150 | (27,41,65) | (27,48,68) | (27,65,68) | (28,47,53) |
| 28 | 3.22463 | -4.98398 | 9.70240 | 64 | 9.65319 | 4.26610 | 1.61630 | (28,53,62) | (28,54,66) | (28,62,66) | (29,31,67) |
| 29 | -5.12287 | 1.72296 | -6.10364 | 65 | 22.16541 | 0.95049 | 1.72717 | (29,31,68) | (29,48,68) | (29,55,67) | (30,49,60) |
| 30 | 9.85960 | 7.16158 | -21.10028 | 66 | 2.70393 | 5.28460 | 9.70240 | (30,56,64) | (31,47,68) | (31,50,67) | (32,48,49) |
| 31 | -8.61085 | 5.73589 | -6.69882 | 67 | -2.04465 | 8.49806 | -7.09248 | (32,49,60) | (32,51,69) | (32,60,69) | (33,52,58) |
| 32 | -7.33609 | -28.27221 | -0.01571 | 68 | -1.13246 | -4.72980 | 13.35325 | (33,53,62) | (34,37,40) | (34,59,37) | (34,61,40) |
| 33 | -11.40346 | -17.70050 | 23.87503 | 69 | 22.40318 | -12.59849 | 8.86883 | (35,39,49) | (35,48,49) | (35,62,39) | (36,38,60) |
| 34 | -6.33721 | -6.01975 | -7.09248 | 70 | 20.42783 | 10.07087 | 4.40191 | (36,53,38) | (36,60,69) | (36,63,69) | (37,59,54) |
| 35 | -4.59695 | -11.08208 | 8.19785 | 71 | 21.03082 | -1.02543 | 23.87503 | (37,64,54) | (38,47,53) | (39,57,66) | (39,62,66) |
| 36 | 8.23194 | -8.57097 | 18.63150 | 72 | 7.05079 | 9.15685 | 10.20493 | (40,58,51) | (40,61,51) | (41,46,56) | (41,56,64) |
| (41,64,70) | (41,65,70) | (42,43,59) | (42,63,50) | ||||||||
| (43,45,52) | (44,46,61) | (44,57,55) | (45,52,58) | ||||||||
| (45,58,71) | (45,65,71) | (50,67,63) | (51,58,71) | ||||||||
| (51,69,71) | (54,64,70) | (54,66,70) | (55,67,57) | ||||||||
| (57,66,72) | (57,67,72) | (63,67,72) | (63,69,72) | ||||||||
| (65,70,71) | (66,70,72) | (69,71,72) | (70,71,72) | ||||||||
| Vertex Permutation Groups | |||||||||||
| (1,48,46)(2,32,26)(3,49,56)(4,10,17)(5,35,41)(6,60,50)(7,29,61)(8,27,14) | |||||||||||
| (9,39,64)(11,69,42)(12,68,44)(13,30,16)(15,18,51)(19,62,70)(20,23,31)(21,65,24) | |||||||||||
| (22,36,63)(25,55,40)(28,66,54)(33,71,43)(34,38,67)(37,47,57)(45,52,58)(53,72,59) | |||||||||||
| Vertex | X | Y | Z | Vertex | X | Y | Z | Polygons |
| 1 | -0.77228 | -2.89729 | 35.97290 | 85 | 24.28991 | 13.49551 | 0.78380 | (1,2,10,23,30,16,9) |
| 2 | 0.77228 | 2.89729 | 35.97290 | 86 | -52.70324 | 43.45797 | 167.66333 | (1,7,6,5,4,3,2) |
| 3 | -23.96945 | -5.27541 | 10.77695 | 87 | -60.68767 | -14.97272 | -38.97069 | (1,7,8,15,29,22,9) |
| 4 | -25.77635 | -3.46354 | 8.21991 | 88 | 21.02101 | 9.79577 | -3.24991 | (2,3,11,24,31,17,10) |
| 5 | -23.37394 | 12.51777 | 6.14574 | 89 | -18.71064 | 10.40841 | 3.84855 | (3,4,12,25,32,18,11) |
| 6 | 73.24480 | -1.39085 | 118.17785 | 90 | 40.91615 | -42.85596 | -7.93866 | (4,5,13,26,33,19,12) |
| 7 | 48.91850 | -17.87175 | 95.91875 | 91 | -1.61397 | -19.14422 | 11.99876 | (5,6,14,27,34,20,13) |
| 8 | 50.93260 | 0.10177 | 32.90858 | 92 | 60.68767 | 14.97272 | -38.97069 | (6,7,8,28,35,21,14) |
| 9 | 23.96945 | 5.27541 | 10.77695 | 93 | 23.75477 | -4.36734 | 3.29944 | (8,15,43,50,57,36,28) |
| 10 | -48.91850 | 17.87175 | 95.91875 | 94 | -67.66644 | 40.04232 | -57.43208 | (9,22,37,58,51,44,16) |
| 11 | -17.15787 | -7.00599 | 3.69405 | 95 | 85.50433 | -47.97673 | -79.33041 | (10,23,38,59,52,45,17) |
| 12 | -24.72954 | -2.71453 | 3.80330 | 96 | -21.02101 | -9.79577 | -3.24991 | (11,24,39,60,53,46,18) |
| 13 | -22.49006 | 14.75382 | 3.32295 | 97 | 81.47538 | 25.48256 | 35.81934 | (12,25,40,61,54,47,19) |
| 14 | 37.93365 | -42.26521 | 152.05721 | 98 | -81.47539 | -25.48256 | 35.81934 | (13,26,41,62,55,48,20) |
| 15 | 147.24025 | 17.12645 | -13.08525 | 99 | 32.71715 | 13.79608 | -47.99250 | (14,27,42,63,56,49,21) |
| 16 | 25.77635 | 3.46354 | 8.21991 | 100 | 21.88915 | -13.32737 | -0.26171 | (15,29,64,92,99,106,43) |
| 17 | -50.93260 | -0.10177 | 32.90858 | 101 | -22.92542 | 28.83418 | 0.45938 | (16,30,65,93,100,107,44) |
| 18 | -14.63621 | -8.87724 | 5.10708 | 102 | 74.80479 | -59.26288 | -93.28657 | (17,31,66,94,101,108,45) |
| 19 | -22.76907 | 5.54786 | -0.59071 | 103 | -30.63692 | -29.02187 | 0.23133 | (18,32,67,95,102,109,46) |
| 20 | 0.31618 | 16.21817 | 22.03817 | 104 | 91.06590 | 10.89486 | 32.17862 | (19,33,68,96,103,110,47) |
| 21 | -29.47967 | -60.64068 | -16.21246 | 105 | -88.51120 | -25.46504 | 36.73831 | (20,34,69,97,104,111,48) |
| 22 | 17.15787 | 7.00599 | 3.69405 | 106 | 43.83405 | 0.37877 | -63.37598 | (21,35,70,98,105,112,49) |
| 23 | -73.24480 | 1.39085 | 118.17785 | 107 | 22.76907 | -5.54786 | -0.59071 | (22,29,64,71,78,85,37) |
| 24 | -83.46900 | -18.69271 | -27.84975 | 108 | 0.06085 | 33.59378 | 10.10680 | (23,30,65,72,79,86,38) |
| 25 | 26.14064 | -21.56823 | -29.65050 | 109 | -11.08264 | -13.51310 | -2.71609 | (24,31,66,73,80,87,39) |
| 26 | -23.75477 | 4.36734 | 3.29944 | 110 | -27.26375 | -29.41883 | -1.75801 | (25,32,67,74,81,88,40) |
| 27 | 52.70324 | -43.45797 | 167.66333 | 111 | 1.07018 | 8.93212 | 19.68921 | (26,33,68,75,82,89,41) |
| 28 | 22.31771 | -21.42973 | 15.10144 | 112 | -63.88404 | 17.99086 | 89.72525 | (27,34,69,76,83,90,42) |
| 29 | 83.46900 | 18.69271 | -27.84975 | 113 | 8.30972 | -2.76753 | 16.22901 | (28,35,70,77,84,91,36) |
| 30 | 23.37394 | -12.51777 | 6.14574 | 114 | -70.79834 | 52.51220 | -57.49750 | (36,57,122,128,134,148,91) |
| 31 | -147.24025 | -17.12645 | -13.08525 | 115 | 70.79834 | -52.51220 | -57.49750 | (37,58,123,129,135,149,85) |
| 32 | 27.68394 | -23.17566 | -27.27019 | 116 | -18.90873 | 5.47599 | -29.52697 | (38,59,124,130,136,150,86) |
| 33 | -21.88915 | 13.32737 | -0.26171 | 117 | 26.76078 | 44.16088 | 4.72524 | (39,60,125,131,137,151,87) |
| 34 | 113.29918 | 61.87540 | 52.23039 | 118 | -91.06589 | -10.89486 | 32.17861 | (40,61,126,132,138,152,88) |
| 35 | 3.99798 | -36.88117 | 10.20856 | 119 | -15.48267 | -13.41034 | -42.14531 | (41,62,120,133,139,153,89) |
| 36 | -0.06085 | -33.59378 | 10.10680 | 120 | 1.52311 | -13.27359 | 20.80703 | (42,63,121,127,140,154,90) |
| 37 | 14.63621 | 8.87724 | 5.10708 | 121 | -84.16370 | -44.94635 | -39.95758 | (43,50,115,130,136,143,106) |
| 38 | -37.93365 | 42.26521 | 152.05721 | 122 | 15.61599 | -12.63363 | 5.01436 | (44,51,116,131,137,144,107) |
| 39 | -70.04882 | -26.66724 | -20.51257 | 123 | -28.22441 | 12.97841 | -12.26003 | (45,52,117,132,138,145,108) |
| 40 | 18.90873 | -5.47599 | -29.52698 | 124 | 118.67790 | 12.13467 | 57.79802 | (46,53,118,133,139,146,109) |
| 41 | -8.30972 | 2.76753 | 16.22901 | 125 | -25.67421 | -9.29414 | -24.20695 | (47,54,119,127,140,147,110) |
| 42 | 10.62177 | -84.19041 | -56.58475 | 126 | 25.67421 | 9.29414 | -24.20695 | (48,55,113,128,134,141,111) |
| 43 | 146.46402 | 15.58591 | -15.39566 | 127 | -46.64407 | -42.53370 | -28.56465 | (49,56,114,129,135,142,112) |
| 44 | 24.72954 | 2.71453 | 3.80330 | 128 | 18.71064 | -10.40841 | 3.84855 | (50,57,122,74,67,95,115) |
| 45 | -22.31771 | 21.42973 | 15.10144 | 129 | -85.50433 | 47.97673 | -79.33041 | (51,58,123,75,68,96,116) |
| 46 | -24.28991 | -13.49551 | 0.78380 | 130 | 153.01996 | 17.63692 | -12.20300 | (52,59,124,76,69,97,117) |
| 47 | -0.82271 | -4.55665 | -14.34265 | 131 | -25.48331 | -3.11637 | -37.65998 | (53,60,125,77,70,98,118) |
| 48 | -1.52311 | 13.27359 | 20.80703 | 132 | 33.81064 | 36.84145 | 4.78407 | (54,61,126,71,64,92,119) |
| 49 | -118.67792 | -12.13467 | 57.79802 | 133 | -1.07018 | -8.93212 | 19.68921 | (55,62,120,72,65,93,113) |
| 50 | 67.66644 | -40.04232 | -57.43208 | 134 | 13.84846 | -3.06746 | 6.59005 | (56,63,121,73,66,94,114) |
| 51 | -26.14064 | 21.56823 | -29.65050 | 135 | -74.80478 | 59.26288 | -93.28657 | (71,78,104,97,117,132,126) |
| 52 | -3.99798 | 36.88117 | 10.20856 | 136 | 68.16949 | 54.79069 | -45.99051 | (72,79,105,98,118,133,120) |
| 53 | -40.21312 | -15.64774 | -6.85107 | 137 | -6.64113 | -3.16744 | -22.87441 | (73,80,99,92,119,127,121) |
| 54 | 6.64113 | 3.16744 | -22.87441 | 138 | 26.78432 | 25.07733 | 7.51519 | (74,81,100,93,113,128,122) |
| 55 | 0.63497 | 5.33467 | 23.37304 | 139 | -8.10494 | -12.02365 | 4.64034 | (75,82,101,94,114,129,123) |
| 56 | -153.01996 | -17.63692 | -12.20300 | 140 | -33.04987 | -32.54760 | -15.31074 | (76,83,102,95,115,130,124) |
| 57 | 22.92542 | -28.83418 | 0.45938 | 141 | 8.10494 | 12.02365 | 4.64034 | (77,84,103,96,116,131,125) |
| 58 | -27.68394 | 23.17566 | -27.27019 | 142 | -42.68237 | 45.53736 | 42.70621 | (78,85,149,155,141,111,104) |
| 59 | 29.47967 | 60.64068 | -16.21246 | 143 | 84.16370 | 44.94635 | -39.95758 | (79,86,150,156,142,112,105) |
| 60 | -36.75237 | -22.14047 | -4.54998 | 144 | 0.82271 | 4.55665 | -14.34265 | (80,87,151,157,143,106,99) |
| 61 | 25.48331 | 3.11637 | -37.65998 | 145 | 1.61397 | 19.14422 | 11.99876 | (81,88,152,158,144,107,100) |
| 62 | -0.63497 | -5.33467 | 23.37305 | 146 | -13.68730 | -12.27985 | 4.68166 | (82,89,153,159,145,108,101) |
| 63 | -68.16949 | -54.79071 | -45.99051 | 147 | -46.60689 | -43.02608 | -24.86275 | (83,90,154,160,146,109,102) |
| 64 | 70.04882 | 26.66724 | -20.51257 | 148 | 6.23564 | -19.53143 | 8.53529 | (84,91,148,161,147,110,103) |
| 65 | 22.49006 | -14.75382 | 3.32295 | 149 | 11.08264 | 13.51310 | -2.71609 | (134,141,155,162,168,161,148) |
| 66 | -146.46400 | -15.58591 | -15.39566 | 150 | -10.62177 | 84.19041 | -56.58475 | (135,142,156,163,162,155,149) |
| 67 | 28.22441 | -12.97841 | -12.26003 | 151 | 15.48267 | 13.41034 | -42.14531 | (136,143,157,164,163,156,150) |
| 68 | -27.79708 | 1.31883 | 1.85603 | 152 | 30.63692 | 29.02187 | 0.23133 | (137,144,158,165,164,157,151) |
| 69 | 88.51120 | 25.46504 | 36.73831 | 153 | -13.84846 | 3.06746 | 6.59005 | (138,145,159,166,165,158,152) |
| 70 | -26.76078 | -44.16088 | 4.72524 | 154 | -3.47818 | -18.12546 | 6.20864 | (139,146,160,167,166,159,153) |
| 71 | 36.75237 | 22.14047 | -4.54998 | 155 | 13.68730 | 12.27985 | 4.68166 | (140,147,161,168,167,160,154) |
| 72 | -0.31618 | -16.21817 | 22.03817 | 156 | -40.91615 | 42.85596 | -7.93866 | (162,168,167,166,165,164,163) |
| 73 | -43.83405 | -0.37877 | -63.37598 | 157 | 46.64407 | 42.53370 | -28.56465 | |
| 74 | 32.41477 | -23.82625 | -14.33892 | 158 | 27.26375 | 29.41883 | -1.75801 | |
| 75 | -32.41477 | 23.82625 | -14.33892 | 159 | -6.23564 | 19.53143 | 8.53529 | |
| 76 | 63.88404 | -17.99086 | 89.72525 | 160 | -6.12312 | -16.55262 | 4.05183 | |
| 77 | -33.81063 | -36.84145 | 4.78407 | 161 | -0.65333 | -20.57255 | 8.57434 | |
| 78 | 40.21312 | 15.64774 | -6.85107 | 162 | 6.12312 | 16.55262 | 4.05183 | |
| 79 | -113.29918 | -61.87540 | 52.23039 | 163 | 3.47818 | 18.12546 | 6.20864 | |
| 80 | -32.71715 | -13.79608 | -47.99250 | 164 | 33.04987 | 32.54760 | -15.31074 | |
| 81 | 27.79708 | -1.31883 | 1.85603 | 165 | 46.60689 | 43.02608 | -24.86275 | |
| 82 | -15.61599 | 12.63363 | 5.01436 | 166 | 0.65333 | 20.57255 | 8.57434 | |
| 83 | 42.68237 | -45.53736 | 42.70619 | 167 | 1.18737 | 11.23758 | 7.40785 | |
| 84 | -26.78432 | -25.07733 | 7.51519 | 168 | -1.18737 | -11.23758 | 7.40785 | |
| Face Permutation Groups | ||||||||
| (1,3)(2,4)(5,10)(6,24)(7,17)(8,11)(9,25)(12,16)(13,47)(14,30)(15,53)(18,23) | ||||||||
| (19,33)(20,38)(21,59)(22,48)(26,52)(27,61)(28,43)(29,34)(31,46)(32,39)(35,42)(36,54) | ||||||||
| (37,60)(40,45)(41,55)(44,56)(49,58)(50,68)(51,62)(57,67)(63,66)(64,69)(65,70)(71,72) | ||||||||
| Vertex | X | Y | Z | Vertex | X | Y | Z | Polygons |
| 1 | -11.66809 | 2.49525 | 4.08575 | 85 | 16.46599 | 56.92002 | 8.46202 | (1,2,9,11,12,10,8) |
| 2 | -18.45931 | 10.01290 | -4.68825 | 86 | 55.43167 | -8.22392 | 32.09068 | (1,3,5,7,6,4,2) |
| 3 | -28.24467 | 11.32991 | -8.45819 | 87 | 0 | 0 | 47.85097 | (1,8,14,16,15,13,3) |
| 4 | -6.54753 | 12.68733 | -4.08775 | 88 | 31.13094 | -57.31091 | 25.77840 | (2,4,17,19,20,18,9) |
| 5 | 19.70385 | 32.62620 | -15.86063 | 89 | -10.80701 | -39.12773 | 40.70345 | (3,13,22,24,23,21,5) |
| 6 | 26.34879 | 34.11556 | -15.52326 | 90 | 14.74078 | 6.16394 | 8.21624 | (4,6,29,31,32,30,17) |
| 7 | 8.16186 | 36.83691 | -22.78513 | 91 | 38.49994 | 13.96717 | -7.56511 | (5,21,34,36,35,33,7) |
| 8 | -11.47521 | -12.91115 | 7.11907 | 92 | 23.50046 | 34.67405 | -6.87747 | (6,7,33,49,51,50,29) |
| 9 | -21.47845 | 7.49906 | -7.51574 | 93 | 16.69732 | 10.07417 | 5.73427 | (8,10,25,28,27,26,14) |
| 10 | 20.97795 | 6.43444 | 38.91895 | 94 | 37.45202 | -49.28170 | 5.82672 | (9,18,41,44,43,42,11) |
| 11 | -12.29819 | -18.37750 | 7.22446 | 95 | 31.03196 | -52.83044 | -4.11475 | (10,12,45,47,48,46,25) |
| 12 | 21.39051 | 3.41731 | 39.92117 | 96 | 41.06120 | -42.71998 | 8.46202 | (11,42,71,73,72,45,12) |
| 13 | -32.52810 | 6.64744 | -10.38541 | 97 | -50.21369 | 18.66139 | -10.80719 | (13,15,37,40,39,38,22) |
| 14 | -1.34547 | -10.74567 | 13.35736 | 98 | -57.52719 | -14.20004 | 8.46202 | (14,26,53,55,54,52,16) |
| 15 | -27.70766 | 21.46598 | -10.01821 | 99 | -51.27690 | 14.42504 | -8.40311 | (15,16,52,64,66,65,37) |
| 16 | 0.83487 | -4.24459 | 13.56147 | 100 | -61.26849 | -0.45924 | -4.11475 | (17,30,60,63,62,61,19) |
| 17 | -9.76829 | 14.68989 | -0.27841 | 101 | -4.91659 | -21.38465 | 38.91894 | (18,20,67,69,70,68,41) |
| 18 | 0 | 0 | -24.38698 | 102 | 7.99500 | 8.85724 | 4.08575 | (19,61,101,103,102,67,20) |
| 19 | -9.76628 | 19.83930 | 7.22447 | 103 | -5.44378 | 16.39341 | 7.11907 | (21,23,56,59,58,57,34) |
| 20 | 17.23360 | 14.85135 | -7.51574 | 104 | -38.10704 | 0.75093 | -15.86063 | (22,38,75,77,76,74,24) |
| 21 | 26.08258 | -4.97616 | -54.49568 | 105 | -16.71866 | -13.92984 | -53.64426 | (23,24,74,94,96,95,56) |
| 22 | 17.22153 | 14.62318 | -31.21380 | 106 | -35.98262 | -11.35010 | -22.78514 | (25,46,87,89,88,86,28) |
| 23 | 20.42293 | -7.51387 | -53.64426 | 107 | -36.46960 | -14.52402 | -22.97034 | (26,27,78,81,80,79,53) |
| 24 | 22.77604 | -3.82443 | -51.54537 | 108 | -1.15610 | 17.41107 | -29.86531 | (27,28,86,127,126,128,78) |
| 25 | 31.29230 | 4.38350 | 41.21877 | 109 | -5.06434 | 31.72013 | -5.23190 | (29,50,92,91,90,93,31) |
| 26 | -2.03227 | -15.84786 | 8.21625 | 110 | 0 | 0 | -63.53915 | (30,32,97,99,100,98,60) |
| 27 | 0.37582 | -19.49739 | 5.73427 | 111 | -11.91701 | 18.47532 | -38.79691 | (31,93,133,132,138,97,32) |
| 28 | 49.78823 | -13.00933 | 32.28438 | 112 | -20.28708 | -28.84959 | 15.00294 | (33,35,84,83,82,85,49) |
| 29 | 27.27638 | 41.49163 | -11.40372 | 113 | -49.57100 | 2.87622 | -11.40373 | (34,57,105,107,106,104,36) |
| 30 | -10.00394 | 28.30738 | 8.83657 | 114 | -42.71934 | 5.76094 | -15.52326 | (35,36,104,131,129,130,84) |
| 31 | -14.84093 | 31.99392 | 15.00294 | 115 | -15.25329 | -23.87951 | 9.12835 | (37,65,119,112,113,118,40) |
| 32 | -13.05362 | 25.14949 | 9.12836 | 116 | 9.97876 | 4.20762 | 13.35736 | (38,39,108,109,111,110,75) |
| 33 | 5.65664 | 38.84562 | -22.97032 | 117 | 32.44392 | 13.26254 | -10.01821 | (39,40,118,99,97,138,108) |
| 34 | 0 | 0 | -75.60766 | 118 | -44.33855 | 17.39310 | -12.56723 | (41,68,122,123,121,120,44) |
| 35 | -3.70425 | 21.44370 | -53.64426 | 119 | -17.07315 | 9.42322 | 5.73427 | (42,43,114,113,112,115,71) |
| 36 | -8.73181 | 25.07626 | -54.49568 | 120 | 3.67309 | -11.35248 | 4.08575 | (43,44,120,131,104,106,114) |
| 37 | -31.34590 | 26.35835 | -7.56511 | 121 | 16.91899 | -3.48224 | 7.11907 | (45,72,124,82,83,125,47) |
| 38 | 21.43705 | 3.23293 | -35.02782 | 122 | -13.65472 | 16.81607 | 39.92115 | (46,48,132,133,134,135,87) |
| 39 | 16.52827 | 7.18121 | -32.16852 | 123 | -16.06135 | 14.95022 | 38.91894 | (47,125,109,108,138,132,48) |
| 40 | -41.77884 | 3.01498 | -6.87747 | 124 | 8.14308 | -1.65676 | 34.09456 | (49,85,141,142,128,126,51) |
| 41 | 4.24484 | -22.35041 | -7.51574 | 125 | 7.82292 | 52.34404 | 26.16505 | (50,51,126,127,136,137,92) |
| 42 | -7.83767 | -15.80453 | -0.27840 | 126 | 41.26808 | 34.15564 | -10.80719 | (52,54,116,90,91,117,64) |
| 43 | -7.71379 | -12.01399 | -4.08775 | 127 | 47.33844 | 37.88400 | -9.88364 | (53,79,139,140,130,129,55) |
| 44 | 0.55823 | -20.99269 | -4.68825 | 128 | 28.30691 | -1.26998 | 9.12835 | (54,55,129,131,120,121,116) |
| 45 | 3.64823 | -7.59125 | 40.47314 | 129 | 10.50718 | -31.49387 | -10.38541 | (56,95,151,80,81,150,59) |
| 46 | 39.28909 | 10.20470 | 40.70346 | 130 | -21.27481 | 7.60270 | -31.21380 | (57,58,143,144,145,146,105) |
| 47 | 10.28827 | 50.99398 | 23.37592 | 131 | 4.31035 | -30.12555 | -8.45819 | (58,59,150,69,67,102,143) |
| 48 | 34.06721 | 55.61563 | 25.77840 | 132 | -20.59369 | 52.11719 | 32.09068 | (60,98,154,153,152,149,63) |
| 49 | 30.23653 | 53.28968 | -4.11475 | 133 | -13.62771 | 49.62254 | 32.28438 | (61,62,147,88,89,148,101) |
| 50 | 37.23215 | 29.70176 | -12.56723 | 134 | -19.44236 | 24.90819 | 41.21877 | (62,63,149,94,74,76,147) |
| 51 | 38.13091 | 37.19458 | -8.40311 | 135 | -28.48206 | 28.92301 | 40.70346 | (64,117,144,143,102,103,66) |
| 52 | 0 | 0 | 24.67595 | 136 | 15.65648 | -7.70432 | -29.86531 | (65,66,103,101,148,155,119) |
| 53 | -7.15405 | -40.32552 | -7.56511 | 137 | -2.04502 | -17.90451 | -32.16852 | (68,70,142,141,156,157,122) |
| 54 | 3.25848 | 2.84532 | 13.56147 | 138 | -56.47773 | 22.05429 | -9.88364 | (69,150,81,78,128,142,70) |
| 55 | -4.73626 | -34.72852 | -10.01821 | 139 | -14.48324 | 10.72329 | -32.16853 | (71,115,160,151,95,96,73) |
| 56 | 30.81298 | -24.32162 | -22.97033 | 140 | -13.51832 | 16.94857 | -35.02782 | (72,73,96,94,149,152,124) |
| 57 | -17.35077 | -20.10010 | -54.49568 | 141 | 2.45729 | 8.39389 | 32.14307 | (75,110,159,158,137,136,77) |
| 58 | 18.40319 | -33.37714 | -15.86063 | 142 | 29.51688 | -5.49003 | 8.83657 | (76,77,136,127,86,88,147) |
| 59 | 27.82077 | -25.48685 | -22.78513 | 143 | 23.93432 | 18.79565 | -8.45819 | (79,80,151,160,162,161,139) |
| 60 | -8.49797 | -2.06886 | 32.14307 | 144 | 22.02090 | 24.84643 | -10.38540 | (82,124,152,153,156,141,85) |
| 61 | -7.73578 | -20.23337 | 39.92115 | 145 | 4.05328 | -22.22587 | -31.21379 | (83,84,130,140,111,109,125) |
| 62 | -8.39833 | 0.63616 | 40.47312 | 146 | -14.70007 | -17.81242 | -51.54537 | (87,135,164,163,155,148,89) |
| 63 | -8.34952 | -6.30249 | 32.65667 | 147 | 39.01795 | -34.40689 | 23.37591 | (90,116,121,123,134,133,93) |
| 64 | -4.09336 | 1.39927 | 13.56146 | 148 | -11.84993 | -29.29166 | 41.21876 | (91,92,137,158,145,144,117) |
| 65 | -12.70852 | 9.68392 | 8.21625 | 149 | -5.50633 | -6.22374 | 34.09457 | (98,100,107,105,146,165,154) |
| 66 | -8.63329 | 6.53805 | 13.35736 | 150 | 16.37055 | -39.87651 | -15.52326 | (99,118,113,114,106,107,100) |
| 67 | 17.90109 | 10.97978 | -4.68825 | 151 | 13.14600 | -51.61961 | -8.40311 | (110,111,140,139,161,166,159) |
| 68 | 22.06448 | -1.46180 | 7.22447 | 152 | 0 | 0 | 36.25107 | (112,119,155,163,162,160,115) |
| 69 | 14.26131 | -0.67334 | -4.08775 | 153 | -2.63675 | 7.88049 | 34.09457 | (122,157,167,164,135,134,123) |
| 70 | 17.60596 | 1.11464 | -0.27841 | 154 | -61.40520 | -7.79354 | 5.82673 | (145,158,159,166,168,165,146) |
| 71 | -19.51295 | -22.81736 | 8.83657 | 155 | -36.16052 | -36.61320 | 32.28437 | (153,154,165,168,167,157,156) |
| 72 | 9.63288 | -4.07964 | 32.65667 | 156 | -1.28336 | 10.38214 | 32.65667 | (161,162,163,164,167,168,166) |
| 73 | 6.04069 | -6.32503 | 32.14307 | 157 | 4.75009 | 6.95509 | 40.47312 | |
| 74 | 44.69453 | -43.44576 | 15.85656 | 158 | -7.91873 | -20.18149 | -35.02782 | |
| 75 | 21.95861 | 1.08277 | -38.79692 | 159 | -10.04160 | -19.55810 | -38.79691 | |
| 76 | 41.41981 | -32.94687 | 26.16506 | 160 | 8.94561 | -52.81702 | -10.80719 | |
| 77 | 30.00261 | -11.47423 | -5.23191 | 161 | -14.50038 | -9.70675 | -29.86531 | |
| 78 | 35.12801 | -3.14433 | 15.00294 | 162 | 9.13930 | -59.93830 | -9.88364 | |
| 79 | 18.27838 | -37.68902 | -6.87747 | 163 | -34.83796 | -43.89327 | 32.09066 | |
| 80 | 7.10640 | -47.09486 | -12.56723 | 164 | -65.19814 | 1.69525 | 25.77840 | |
| 81 | 22.29462 | -44.36786 | -11.40373 | 165 | -59.97240 | -16.98372 | 15.85657 | |
| 82 | 23.95319 | 57.07524 | 5.82673 | 166 | -24.93826 | -20.24592 | -5.23191 | |
| 83 | 15.27787 | 60.42947 | 15.85656 | 167 | -49.30622 | -16.58709 | 23.37591 | |
| 84 | -8.07597 | 21.63684 | -51.54537 | 168 | -49.24272 | -19.39717 | 26.16505 | |
| Face Permutation Groups | ||||||||
| (1,48,46)(2,32,26)(3,49,56)(4,10,17)(5,35,41)(6,60,50)(7,29,61)(8,27,14) | ||||||||
| (9,39,64)(11,69,42)(12,68,44)(13,30,16)(15,18,51)(19,62,70)(20,23,31)(21,65,24) | ||||||||
| (22,36,63)(25,55,40)(28,66,54)(33,71,43)(34,38,67)(37,47,57)(45,52,58)(53,72,59) | ||||||||
| Vertex | X | Y | Z | Triangles | ||
| 1 | 5 | 8 | 17 | (1,2,4) | (1,3,2) | (1,4,7) |
| 2 | -16 | -40 | -4 | (1,5,3) | (1,7,12) | (1,8,5) |
| 3 | 6 | -20 | 11 | (1,12,14) | (1,14,8) | (2,3,6) |
| 4 | -7 | -24 | -1 | (2,6,11) | (2,10,4) | (2,11,19) |
| 5 | 9 | 33 | 38 | (2,19,20) | (2,20,10) | (3,5,9) |
| 6 | 19 | -1 | -11 | (3,9,17) | (3,13,6) | (3,17,21) |
| 7 | 8 | 13 | 16 | (3,21,13) | (4,10,18) | (4,16,7) |
| 8 | 41 | 43 | 15 | (4,18,25) | (4,25,26) | (4,26,16) |
| 9 | -8 | 22 | 53 | (5,8,15) | (5,15,24) | (5,18,9) |
| 10 | -8 | -3 | -6 | (5,24,27) | (5,27,18) | (6,13,16) |
| 11 | 28 | 3 | -13 | (6,15,11) | (6,16,30) | (6,30,33) |
| 12 | 9 | 26 | 20 | (6,33,15) | (7,13,32) | (7,16,13) |
| 13 | -1 | -17 | -21 | (7,23,12) | (7,31,23) | (7,32,31) |
| 14 | 30 | 46 | 13 | (8,11,15) | (8,14,22) | (8,22,31) |
| 15 | 0 | 61 | -1 | (8,31,34) | (8,34,11) | (9,10,37) |
| 16 | -3 | -2 | 6 | (9,18,10) | (9,22,17) | (9,37,39) |
| 17 | 17 | 0 | 11 | (9,39,22) | (10,20,23) | (10,23,38) |
| 18 | -3 | -4 | 0 | (10,38,37) | (11,28,19) | (11,34,38) |
| 19 | -30 | -46 | -13 | (11,38,28) | (12,20,40) | (12,23,20) |
| 20 | -17 | 0 | -11 | (12,24,29) | (12,29,14) | (12,40,24) |
| 21 | -9 | -26 | -20 | (13,21,28) | (13,28,39) | (13,39,32) |
| 22 | 50 | 1 | 13 | (14,17,22) | (14,26,41) | (14,29,26) |
| 23 | 4 | 10 | 0 | (14,41,17) | (15,29,24) | (15,33,36) |
| 24 | 1 | 17 | 21 | (15,36,29) | (16,26,29) | (16,29,35) |
| 25 | -41 | -43 | -15 | (16,35,30) | (17,30,35) | (17,35,21) |
| 26 | -28 | -3 | 13 | (17,41,30) | (18,27,35) | (18,35,36) |
| 27 | -8 | -13 | -16 | (18,36,25) | (19,21,42) | (19,25,36) |
| 28 | 53 | 7 | -3 | (19,28,21) | (19,36,20) | (19,42,25) |
| 29 | -53 | -7 | 3 | (20,33,40) | (20,36,33) | (21,27,42) |
| 30 | 8 | 3 | 6 | (21,35,27) | (22,23,31) | (22,28,23) |
| 31 | 3 | 4 | 0 | (22,39,28) | (23,28,38) | (24,37,38) |
| 32 | -9 | -33 | -38 | (24,38,27) | (24,40,37) | (25,32,39) |
| 33 | 8 | -22 | -53 | (25,39,26) | (25,42,32) | (26,37,41) |
| 34 | 7 | 24 | 1 | (26,39,37) | (27,34,42) | (27,38,34) |
| 35 | -4 | -10 | 0 | (29,36,35) | (30,31,33) | (30,34,31) |
| 36 | -50 | -1 | -13 | (30,41,34) | (31,32,33) | (32,40,33) |
| 37 | -19 | 1 | 11 | (32,42,40) | (34,41,42) | (37,40,41) |
| 38 | 3 | 2 | -6 | (40,42,41) | ||
| 39 | 0 | -61 | 1 | |||
| 40 | -6 | 20 | -11 | |||
| 41 | 16 | 40 | 4 | |||
| 42 | -5 | -8 | -17 | |||
| Vertex Permutation Groups | ||||||
| (1,42)(2,41)(3,40)(4,34)(5,32)(6,37)(7,27) | ||||||
| (8,25)(9,33)(10,30)(11,26)(12,21)(13,24)(14,19) | ||||||
| (15,39)(16,38)(17,20)(18,31)(22,36)(23,35)(28,29) | ||||||
| Vertex | X | Y | Z | Triangles | ||
| 1 | -2.20394 | -3.33551 | -11.69687 | (1,2,3) | (1,3,5) | (1,4,2) |
| 2 | 17.78823 | -3.93397 | 12.12479 | (1,5,8) | (1,7,4) | (1,8,14) |
| 3 | 6.06313 | -5.63495 | 3.91730 | (1,12,7) | (1,14,12) | (2,4,10) |
| 4 | 17.52774 | -0.64880 | 9.89485 | (2,6,3) | (2,10,20) | (2,11,6) |
| 5 | -4.80849 | -4.53634 | -18.63129 | (2,19,11) | (2,20,19) | (3,6,13) |
| 6 | 9.25037 | -2.26494 | -18.86588 | (3,9,5) | (3,13,21) | (3,17,9) |
| 7 | 3.99060 | -0.24091 | -11.69687 | (3,21,17) | (4,7,16) | (4,16,26) |
| 8 | -4.92751 | -25.57663 | -1.02392 | (4,18,10) | (4,25,18) | (4,26,25) |
| 9 | -0.74958 | -4.70524 | -15.12677 | (5,9,18) | (5,15,8) | (5,18,27) |
| 10 | -9.81494 | 4.80626 | -0.23560 | (5,24,15) | (5,27,24) | (6,11,15) |
| 11 | -0.52731 | -21.65107 | -10.27507 | (6,15,33) | (6,16,13) | (6,30,16) |
| 12 | -1.78667 | 3.57642 | -11.69687 | (6,33,30) | (7,12,23) | (7,13,16) |
| 13 | 6.33283 | -1.89610 | -18.63129 | (7,23,31) | (7,31,32) | (7,32,13) |
| 14 | -9.32575 | -14.85507 | 9.89485 | (8,11,34) | (8,15,11) | (8,22,14) |
| 15 | -6.58668 | -6.87859 | -18.86588 | (8,31,22) | (8,34,31) | (9,10,18) |
| 16 | 24.61376 | 8.52097 | -1.02392 | (9,17,22) | (9,22,39) | (9,37,10) |
| 17 | 1.16061 | -10.87326 | 10.05103 | (9,39,37) | (10,23,20) | (10,37,38) |
| 18 | -14.92760 | 7.96358 | -9.57584 | (10,38,23) | (11,19,28) | (11,28,38) |
| 19 | 16.34658 | -0.10121 | 15.41202 | (11,38,34) | (12,14,29) | (12,20,23) |
| 20 | -19.68626 | 17.05566 | -1.02392 | (12,24,40) | (12,29,24) | (12,40,20) |
| 21 | 1.21049 | -17.08186 | 17.65667 | (13,28,21) | (13,32,39) | (13,39,28) |
| 22 | 0.74512 | -10.90311 | -0.23560 | (14,17,41) | (14,22,17) | (14,26,29) |
| 23 | -8.20199 | 15.50387 | 9.89485 | (14,41,26) | (15,24,29) | (15,29,36) |
| 24 | -7.91158 | -2.43335 | 3.91730 | (15,36,33) | (16,29,26) | (16,30,35) |
| 25 | 8.83621 | 6.44175 | 10.05103 | (16,35,29) | (17,21,35) | (17,30,41) |
| 26 | 9.06981 | 6.09685 | -0.23560 | (17,35,30) | (18,25,36) | (18,35,27) |
| 27 | -15.39857 | 7.49262 | 17.65667 | (18,36,35) | (19,20,36) | (19,21,28) |
| 28 | 0.56714 | -16.90947 | -9.57584 | (19,25,42) | (19,36,25) | (19,42,21) |
| 29 | -12.30103 | -13.43807 | 12.12479 | (20,33,36) | (20,40,33) | (21,27,35) |
| 30 | 19.01403 | 10.36887 | -10.27507 | (21,42,27) | (22,23,28) | (22,28,39) |
| 31 | -5.48720 | 17.37204 | 12.12479 | (22,31,23) | (23,38,28) | (24,27,38) |
| 32 | 1.84845 | 8.06830 | 3.91730 | (24,37,40) | (24,38,37) | (25,26,39) |
| 33 | -2.66369 | 9.14353 | -18.86588 | (25,32,42) | (25,39,32) | (26,37,39) |
| 34 | -8.08564 | 14.20716 | 15.41202 | (26,41,37) | (27,34,38) | (27,42,34) |
| 35 | -8.26094 | -14.10595 | 15.41202 | (29,35,36) | (30,31,34) | (30,33,31) |
| 36 | -18.48672 | 11.28220 | -10.27507 | (30,34,41) | (31,33,32) | (32,33,40) |
| 37 | -3.70007 | 3.00177 | -15.12677 | (32,40,42) | (34,42,41) | (37,41,40) |
| 38 | -9.99683 | 4.43151 | 10.05103 | (40,41,42) | ||
| 39 | 4.44964 | 1.70347 | -15.12677 | |||
| 40 | -1.52434 | 6.43244 | -18.63129 | |||
| 41 | 14.36046 | 8.94589 | -9.57584 | |||
| 42 | 14.18808 | 9.58924 | 17.65667 | |||
| Vertex Permutation Groups | ||||||
| (1,7,12)(2,31,29)(3,32,24)(4,23,14)(5,13,40)(6,33,15)(8,16,20) | ||||||
| (9,39,37)(10,22,26)(11,30,36)(17,25,38)(18,28,41)(19,34,35)(21,42,27) | ||||||
| Vertex | X | Y | Z | Triangles | ||
| 1 | -35 | 4 | 132 | (1,2,3) | (1,3,5) | (1,4,2) |
| 2 | -43 | -54 | 36 | (1,5,8) | (1,7,4) | (1,8,14) |
| 3 | -21 | -57 | -93 | (1,12,7) | (1,14,12) | (2,4,10) |
| 4 | -102 | 80 | 53 | (2,6,3) | (2,10,20) | (2,11,6) |
| 5 | -29 | -40 | -48 | (2,19,11) | (2,20,19) | (3,6,13) |
| 6 | 5 | -16 | -26 | (3,9,5) | (3,13,21) | (3,17,9) |
| 7 | 91 | 78 | 4 | (3,21,17) | (4,7,16) | (4,16,26) |
| 8 | -1 | -22 | 11 | (4,18,10) | (4,25,18) | (4,26,25) |
| 9 | -38 | 4 | -21 | (5,9,18) | (5,15,8) | (5,18,27) |
| 10 | -91 | -78 | 4 | (5,24,15) | (5,27,24) | (6,11,15) |
| 11 | -4 | -38 | 21 | (6,15,33) | (6,16,13) | (6,30,16) |
| 12 | 43 | 54 | 36 | (6,33,30) | (7,12,23) | (7,13,16) |
| 13 | 22 | -1 | -11 | (7,23,31) | (7,31,32) | (7,32,13) |
| 14 | -57 | 21 | 93 | (8,11,34) | (8,15,11) | (8,22,14) |
| 15 | 0 | 0 | -31 | (8,31,22) | (8,34,31) | (9,10,18) |
| 16 | 84 | 102 | -10 | (9,17,22) | (9,22,39) | (9,37,10) |
| 17 | -54 | 43 | -36 | (9,39,37) | (10,23,20) | (10,37,38) |
| 18 | -102 | 84 | 10 | (10,38,23) | (11,19,28) | (11,28,38) |
| 19 | 57 | -21 | 93 | (11,38,34) | (12,14,29) | (12,20,23) |
| 20 | 35 | -4 | 132 | (12,24,40) | (12,29,24) | (12,40,20) |
| 21 | -4 | -35 | -132 | (13,28,21) | (13,32,39) | (13,39,28) |
| 22 | -16 | -5 | 26 | (14,17,41) | (14,22,17) | (14,26,29) |
| 23 | 102 | -80 | 53 | (14,41,26) | (15,24,29) | (15,29,36) |
| 24 | -5 | 16 | -26 | (15,36,33) | (16,29,26) | (16,30,35) |
| 25 | 16 | 5 | 26 | (16,35,29) | (17,21,35) | (17,30,41) |
| 26 | -40 | 29 | 48 | (17,35,30) | (18,25,36) | (18,35,27) |
| 27 | -80 | -102 | -53 | (18,36,35) | (19,20,36) | (19,21,28) |
| 28 | 40 | -29 | 48 | (19,25,42) | (19,36,25) | (19,42,21) |
| 29 | 4 | 38 | 21 | (20,33,36) | (20,40,33) | (21,27,35) |
| 30 | 80 | 102 | -53 | (21,42,27) | (22,23,28) | (22,28,39) |
| 31 | 102 | -84 | 10 | (22,31,23) | (23,38,28) | (24,27,38) |
| 32 | 38 | -4 | -21 | (24,37,40) | (24,38,37) | (25,26,39) |
| 33 | 29 | 40 | -48 | (25,32,42) | (25,39,32) | (26,37,39) |
| 34 | 78 | -91 | -4 | (26,41,37) | (27,34,38) | (27,42,34) |
| 35 | -78 | 91 | -4 | (29,35,36) | (30,31,34) | (30,33,31) |
| 36 | 1 | 22 | 11 | (30,34,41) | (31,33,32) | (32,33,40) |
| 37 | -22 | 1 | -11 | (32,40,42) | (34,42,41) | (37,41,40) |
| 38 | -84 | -102 | -10 | (40,41,42) | ||
| 39 | 0 | 0 | 31 | |||
| 40 | 21 | 57 | -93 | |||
| 41 | 4 | 35 | -132 | |||
| 42 | 54 | -43 | -36 | |||
| Vertex Permutation Groups | ||||||
| (1,21,20,41)(2,42,12,17)(3,19,40,14)(4,27,23,30) | ||||||
| (5,28,33,26)(6,25,24,22)(7,35,10,34)(8,13,36,37) | ||||||
| (9,11,32,29)(15,39)(16,18,38,31) | ||||||
| Vertex | X | Y | Z | Triangles | ||
| 1 | 21 | 1 | 22 | (1,2,4) | (1,3,2) | (1,4,7) |
| 2 | 31 | 18 | -29 | (1,5,3) | (1,7,12) | (1,8,5) |
| 3 | -1 | 21 | 22 | (1,12,14) | (1,14,8) | (2,3,6) |
| 4 | 18 | -31 | -29 | (2,6,11) | (2,10,4) | (2,11,19) |
| 5 | 31 | 0 | 42 | (2,19,20) | (2,20,10) | (3,5,9) |
| 6 | -18 | 31 | -29 | (3,9,17) | (3,13,6) | (3,17,21) |
| 7 | 1 | -21 | 22 | (3,21,13) | (4,10,18) | (4,16,7) |
| 8 | -5 | -7 | 3 | (4,18,25) | (4,25,26) | (4,26,16) |
| 9 | 3 | 8 | 10 | (5,8,15) | (5,15,24) | (5,18,9) |
| 10 | 27 | 7 | -43 | (5,24,27) | (5,27,18) | (6,13,16) |
| 11 | -7 | 27 | -43 | (6,15,11) | (6,16,30) | (6,30,33) |
| 12 | 0 | -31 | 42 | (6,33,15) | (7,13,32) | (7,16,13) |
| 13 | -21 | -1 | 22 | (7,23,12) | (7,31,23) | (7,32,31) |
| 14 | 8 | -3 | 10 | (8,11,15) | (8,14,22) | (8,22,31) |
| 15 | -2 | -5 | -1 | (8,31,34) | (8,34,11) | (9,10,37) |
| 16 | -31 | -18 | -29 | (9,18,10) | (9,22,17) | (9,37,39) |
| 17 | 7 | -5 | 3 | (9,39,22) | (10,20,23) | (10,23,38) |
| 18 | 11 | -1 | 13 | (10,38,37) | (11,28,19) | (11,34,38) |
| 19 | 1 | 11 | 13 | (11,38,28) | (12,20,40) | (12,23,20) |
| 20 | -5 | 2 | -1 | (12,24,29) | (12,29,14) | (12,40,24) |
| 21 | 0 | 31 | 42 | (13,21,28) | (13,28,39) | (13,39,32) |
| 22 | 0 | 0 | 4 | (14,17,22) | (14,26,41) | (14,29,26) |
| 23 | -7 | 5 | 3 | (14,41,17) | (15,29,24) | (15,33,36) |
| 24 | 36 | 1 | 45 | (15,36,29) | (16,26,29) | (16,29,35) |
| 25 | 2 | 5 | -1 | (16,35,30) | (17,30,35) | (17,35,21) |
| 26 | 7 | -27 | -43 | (17,41,30) | (18,27,35) | (18,35,36) |
| 27 | -1 | 36 | 45 | (18,36,25) | (19,21,42) | (19,25,36) |
| 28 | -8 | 3 | 10 | (19,28,21) | (19,36,20) | (19,42,25) |
| 29 | -1 | -11 | 13 | (20,33,40) | (20,36,33) | (21,27,42) |
| 30 | -27 | -7 | -43 | (21,35,27) | (22,23,31) | (22,28,23) |
| 31 | -3 | -8 | 10 | (22,39,28) | (23,28,38) | (24,37,38) |
| 32 | -31 | 0 | 42 | (24,38,27) | (24,40,37) | (25,32,39) |
| 33 | -11 | 1 | 13 | (25,39,26) | (25,42,32) | (26,37,41) |
| 34 | -21 | 31 | -38 | (26,39,37) | (27,34,42) | (27,38,34) |
| 35 | 5 | -2 | -1 | (29,36,35) | (30,31,33) | (30,34,31) |
| 36 | 0 | 0 | -11 | (30,41,34) | (31,32,33) | (32,40,33) |
| 37 | 21 | -31 | -38 | (32,42,40) | (34,41,42) | (37,40,41) |
| 38 | 31 | 21 | -38 | (40,42,41) | ||
| 39 | 5 | 7 | 3 | |||
| 40 | 1 | -36 | 45 | |||
| 41 | -31 | -21 | -38 | |||
| 42 | -36 | -1 | 45 | |||
| Vertex Permutation Groups | ||||||
| (1,3,13,7)(2,6,16,4)(5,21,32,12)(8,17,39,23) | ||||||
| (9,28,31,14)(10,11,30,26)(15,35,25,20)(18,19,33,29) | ||||||
| (24,27,42,40)(34,41,37,38) | ||||||
| Vertex | X | Y | Z | Triangles | ||
| 1 | 14.16807 | 5.08777 | -8.95402 | (1,2,6) | (1,6,13) | (1,8,17) |
| 2 | 3.78487 | 8.02386 | 0.86412 | (1,12,2) | (1,13,25) | (1,17,19) |
| 3 | 2.19958 | -0.19126 | 4.98653 | (1,19,12) | (1,25,8) | (2,10,20) |
| 4 | -1.26543 | -1.80926 | 4.98653 | (2,12,26) | (2,14,10) | (2,18,6) |
| 5 | 2.11976 | -4.30032 | 8.94061 | (2,20,18) | (2,26,14) | (3,4,18) |
| 6 | 14.11143 | 12.53091 | -0.51153 | (3,5,4) | (3,12,5) | (3,18,32) |
| 7 | -12.55265 | -0.06217 | 4.39903 | (3,21,34) | (3,29,21) | (3,32,29) |
| 8 | -2.67789 | -14.81380 | -8.95402 | (3,34,12) | (4,5,13) | (4,13,35) |
| 9 | -3.16223 | 11.87491 | -6.27571 | (4,22,36) | (4,23,22) | (4,35,23) |
| 10 | -6.11647 | -1.97390 | -0.39480 | (4,36,18) | (5,12,31) | (5,24,28) |
| 11 | 12.18826 | 16.06597 | 1.10914 | (5,28,33) | (5,31,24) | (5,33,13) |
| 12 | 2.34960 | 1.11712 | -0.96729 | (6,7,11) | (6,11,27) | (6,18,30) |
| 13 | 10.66116 | -14.61757 | 6.85814 | (6,27,13) | (6,30,7) | (7,9,11) |
| 14 | -2.50975 | 2.03888 | 2.22025 | (7,21,33) | (7,26,9) | (7,28,26) |
| 15 | -15.92490 | -1.64829 | -11.19981 | (7,30,21) | (7,33,28) | (8,15,17) |
| 16 | -8.70286 | -8.67603 | -6.27571 | (8,21,30) | (8,22,34) | (8,25,22) |
| 17 | -11.49018 | 9.72602 | -8.95402 | (8,30,15) | (8,34,21) | (9,15,16) |
| 18 | -0.93415 | 2.00052 | 4.98653 | (9,16,37) | (9,19,11) | (9,26,38) |
| 19 | 6.53499 | 14.61551 | -11.19981 | (9,37,19) | (9,38,15) | (10,14,16) |
| 20 | -2.14225 | 1.47625 | -0.96729 | (10,16,27) | (10,23,20) | (10,24,31) |
| 21 | 3.79637 | -18.48632 | -0.51153 | (10,27,24) | (10,31,23) | (11,19,29) |
| 22 | -0.20735 | -2.59337 | -0.96729 | (11,24,27) | (11,29,32) | (11,32,24) |
| 23 | -8.84130 | -0.73414 | 0.86412 | (12,19,31) | (12,34,26) | (13,27,35) |
| 24 | 11.14989 | -9.99959 | 10.89373 | (13,33,25) | (14,22,25) | (14,25,16) |
| 25 | 9.38991 | -12.96722 | -11.19981 | (14,26,28) | (14,28,36) | (14,36,22) |
| 26 | 1.34879 | 6.28397 | -0.39480 | (15,20,17) | (15,30,39) | (15,38,20) |
| 27 | 6.33016 | -10.83983 | 4.39903 | (15,39,16) | (16,25,37) | (16,39,27) |
| 28 | -14.23484 | -4.65630 | 10.89373 | (17,20,23) | (17,23,35) | (17,29,19) |
| 29 | 7.32861 | 16.54162 | 6.85814 | (17,35,29) | (18,20,32) | (18,36,30) |
| 30 | -17.98977 | -1.92405 | 6.85814 | (19,37,31) | (20,38,32) | (21,29,41) |
| 31 | -0.51085 | -3.19295 | 2.22025 | (21,41,33) | (22,23,42) | (22,42,34) |
| 32 | 2.66430 | 3.98593 | 8.94061 | (23,31,42) | (24,32,40) | (24,40,28) |
| 33 | 7.81941 | -18.58833 | 1.10914 | (25,33,37) | (26,34,38) | (27,39,35) |
| 34 | 5.05643 | -7.28972 | 0.86412 | (28,40,36) | (29,35,41) | (30,36,39) |
| 35 | -17.90781 | 5.95540 | -0.51153 | (31,37,42) | (32,38,40) | (33,41,37) |
| 36 | -4.78406 | 0.31439 | 8.94061 | (34,42,38) | (35,39,41) | (36,40,39) |
| 37 | 11.86509 | -3.19889 | -6.27571 | (37,41,42) | (38,42,40) | (39,40,41) |
| 38 | 3.02060 | 1.15407 | 2.22025 | (40,42,41) | ||
| 39 | -20.00767 | 2.52236 | 1.10914 | |||
| 40 | 3.08495 | 14.65588 | 10.89373 | |||
| 41 | 6.22249 | 10.90200 | 4.39903 | |||
| 42 | 4.76768 | -4.31007 | -0.39480 | |||
| Vertex Permutation Groups | ||||||
| (1,17,8)(2,23,34)(3,18,4)(5,32,36)(6,35,21)(7,27,41)(9,16,37) | ||||||
| (10,42,26)(11,39,33)(12,20,22)(13,29,30)(14,31,38)(15,25,19)(24,40,28) | ||||||
| Vertex | X | Y | Z | Triangles | ||
| 1 | 29 | 9 | -49 | (1,2,12) | (1,6,2) | (1,8,25) |
| 2 | 29 | 6 | -65 | (1,12,19) | (1,13,6) | (1,17,8) |
| 3 | 6 | -29 | 65 | (1,19,17) | (1,25,13) | (2,6,18) |
| 4 | 9 | -29 | 49 | (2,10,14) | (2,14,26) | (2,18,20) |
| 5 | -80 | -9 | 13 | (2,20,10) | (2,26,12) | (3,4,5) |
| 6 | -3 | 6 | -15 | (3,5,12) | (3,12,34) | (3,18,4) |
| 7 | -6 | 29 | 65 | (3,21,29) | (3,29,32) | (3,32,18) |
| 8 | 16 | 32 | 5 | (3,34,21) | (4,13,5) | (4,18,36) |
| 9 | -9 | 29 | 49 | (4,22,23) | (4,23,35) | (4,35,13) |
| 10 | 0 | 0 | -47 | (4,36,22) | (5,13,33) | (5,24,31) |
| 11 | -6 | -3 | 15 | (5,28,24) | (5,31,12) | (5,33,28) |
| 12 | 9 | -80 | -13 | (6,7,30) | (6,11,7) | (6,13,27) |
| 13 | -54 | 1 | 18 | (6,27,11) | (6,30,18) | (7,9,26) |
| 14 | -2 | 28 | -40 | (7,11,9) | (7,21,30) | (7,26,28) |
| 15 | 20 | 39 | 19 | (7,28,33) | (7,33,21) | (8,15,30) |
| 16 | -32 | 16 | -5 | (8,17,15) | (8,21,34) | (8,22,25) |
| 17 | 39 | -20 | -19 | (8,30,21) | (8,34,22) | (9,11,19) |
| 18 | 6 | 3 | 15 | (9,15,38) | (9,16,15) | (9,19,37) |
| 19 | -1 | -54 | -18 | (9,37,16) | (9,38,26) | (10,16,14) |
| 20 | 17 | 0 | -13 | (10,20,23) | (10,23,31) | (10,24,27) |
| 21 | 0 | 0 | 47 | (10,27,16) | (10,31,24) | (11,24,32) |
| 22 | 20 | -7 | 31 | (11,27,24) | (11,29,19) | (11,32,29) |
| 23 | 32 | -16 | -5 | (12,26,34) | (12,31,19) | (13,25,33) |
| 24 | -29 | -6 | -65 | (13,35,27) | (14,16,25) | (14,22,36) |
| 25 | 7 | 20 | -31 | (14,25,22) | (14,28,26) | (14,36,28) |
| 26 | 80 | 9 | 13 | (15,16,39) | (15,17,20) | (15,20,38) |
| 27 | -17 | 0 | -13 | (15,39,30) | (16,27,39) | (16,37,25) |
| 28 | -9 | 80 | -13 | (17,19,29) | (17,23,20) | (17,29,35) |
| 29 | 0 | -17 | 13 | (17,35,23) | (18,30,36) | (18,32,20) |
| 30 | 0 | 17 | 13 | (19,31,37) | (20,32,38) | (21,33,41) |
| 31 | 2 | -28 | -40 | (21,41,29) | (22,34,42) | (22,42,23) |
| 32 | 3 | -6 | -15 | (23,42,31) | (24,28,40) | (24,40,32) |
| 33 | -28 | -2 | 40 | (25,37,33) | (26,38,34) | (27,35,39) |
| 34 | 28 | 2 | 40 | (28,36,40) | (29,41,35) | (30,39,36) |
| 35 | -20 | -39 | 19 | (31,42,37) | (32,40,38) | (33,37,41) |
| 36 | 1 | 54 | -18 | (34,38,42) | (35,41,39) | (36,39,40) |
| 37 | -20 | 7 | 31 | (37,42,41) | (38,40,42) | (39,41,40) |
| 38 | 54 | -1 | 18 | (40,41,42) | ||
| 39 | -39 | 20 | -19 | |||
| 40 | -29 | -9 | -49 | |||
| 41 | -16 | -32 | 5 | |||
| 42 | -7 | -20 | -31 | |||
| Vertex Permutation Groups | ||||||
| (1,9,40,4)(2,7,24,3)(5,12,26,28)(6,11,32,18) | ||||||
| (8,16,41,23)(10,21)(13,19,38,36)(14,33,31,34) | ||||||
| (15,39,35,17)(20,30,27,29)(22,25,37,42) | ||||||
| Vertex | X | Y | Z | Triangles | ||
| 1 | 0 | 0 | -63 | (1,2,6) | (1,6,13) | (1,8,17) |
| 2 | 42 | -27 | -52 | (1,12,2) | (1,13,25) | (1,17,19) |
| 3 | -3 | 65 | 31 | (1,19,12) | (1,25,8) | (2,10,20) |
| 4 | -41 | -44 | -41 | (2,12,26) | (2,14,10) | (2,18,6) |
| 5 | 18 | 38 | 25 | (2,20,18) | (2,26,14) | (3,4,18) |
| 6 | 14 | -55 | -26 | (3,5,4) | (3,12,5) | (3,18,32) |
| 7 | 65 | 3 | 31 | (3,21,34) | (3,29,21) | (3,32,29) |
| 8 | -42 | 27 | -52 | (3,34,12) | (4,5,13) | (4,13,35) |
| 9 | 41 | 44 | -41 | (4,22,36) | (4,23,22) | (4,35,23) |
| 10 | 44 | -41 | -41 | (4,36,18) | (5,12,31) | (5,24,28) |
| 11 | 45 | 61 | 26 | (5,28,33) | (5,31,24) | (5,33,13) |
| 12 | 55 | 14 | -26 | (6,7,11) | (6,11,27) | (6,18,30) |
| 13 | -27 | -42 | -52 | (6,27,13) | (6,30,7) | (7,9,11) |
| 14 | 61 | -45 | 26 | (7,21,33) | (7,26,9) | (7,28,26) |
| 15 | 14 | 41 | -28 | (7,30,21) | (7,33,28) | (8,15,17) |
| 16 | 3 | -65 | 31 | (8,21,30) | (8,22,34) | (8,25,22) |
| 17 | -14 | 55 | -26 | (8,30,15) | (8,34,21) | (9,15,16) |
| 18 | -14 | -41 | -28 | (9,16,37) | (9,19,11) | (9,26,38) |
| 19 | 27 | 42 | -52 | (9,37,19) | (9,38,15) | (10,14,16) |
| 20 | -38 | 18 | 25 | (10,16,27) | (10,23,20) | (10,24,31) |
| 21 | -44 | 41 | -41 | (10,27,24) | (10,31,23) | (11,19,29) |
| 22 | -57 | -27 | -31 | (11,24,27) | (11,29,32) | (11,32,24) |
| 23 | -65 | -3 | 31 | (12,19,31) | (12,34,26) | (13,27,35) |
| 24 | 30 | 66 | 32 | (13,33,25) | (14,22,25) | (14,25,16) |
| 25 | -55 | -14 | -26 | (14,26,28) | (14,28,36) | (14,36,22) |
| 26 | 57 | 27 | -31 | (15,20,17) | (15,30,39) | (15,38,20) |
| 27 | 27 | -57 | -31 | (15,39,16) | (16,25,37) | (16,39,27) |
| 28 | 70 | 19 | 38 | (17,20,23) | (17,23,35) | (17,29,19) |
| 29 | -27 | 57 | -31 | (17,35,29) | (18,20,32) | (18,36,30) |
| 30 | 38 | -18 | 25 | (19,37,31) | (20,38,32) | (21,29,41) |
| 31 | 41 | -14 | -28 | (21,41,33) | (22,23,42) | (22,42,34) |
| 32 | -19 | 70 | 38 | (23,31,42) | (24,32,40) | (24,40,28) |
| 33 | -41 | 14 | -28 | (25,33,37) | (26,34,38) | (27,39,35) |
| 34 | -61 | 45 | 26 | (28,40,36) | (29,35,41) | (30,36,39) |
| 35 | -45 | -61 | 26 | (31,37,42) | (32,38,40) | (33,41,37) |
| 36 | 66 | -30 | 32 | (34,42,38) | (35,39,41) | (36,40,39) |
| 37 | -18 | -38 | 25 | (37,41,42) | (38,42,40) | (39,40,41) |
| 38 | -66 | 30 | 32 | (40,42,41) | ||
| 39 | 19 | -70 | 38 | |||
| 40 | 0 | 0 | 88 | |||
| 41 | -30 | -66 | 32 | |||
| 42 | -70 | -19 | 38 | |||
| Vertex Permutation Groups | ||||||
| (2,19,8,13)(3,23,16,7)(4,10,9,21)(5,20,37,30) | ||||||
| (6,12,17,25)(11,34,35,14)(15,33,18,31)(22,27,26,29) | ||||||
| (24,38,41,36)(28,32,42,39) | ||||||
| Vertex | X | Y | Z | Triangles | ||
| 1 | 18 | -26 | -16 | (1,2,3) | (1,3,5) | (1,4,2) |
| 2 | 41 | -45 | -11 | (1,5,8) | (1,7,4) | (1,8,14) |
| 3 | -4 | 0 | -18 | (1,12,7) | (1,14,20) | (1,20,12) |
| 4 | 26 | 18 | 16 | (2,4,10) | (2,6,3) | (2,10,22) |
| 5 | -34 | 19 | -57 | (2,11,6) | (2,19,11) | (2,22,29) |
| 6 | 4 | 0 | -18 | (2,29,19) | (3,6,13) | (3,9,5) |
| 7 | 37 | 49 | 40 | (3,13,23) | (3,17,9) | (3,23,28) |
| 8 | 49 | -37 | -40 | (3,28,17) | (4,7,16) | (4,16,21) |
| 9 | -1 | -1 | -2 | (4,18,10) | (4,21,34) | (4,24,18) |
| 10 | 14 | 19 | 11 | (4,34,24) | (5,9,21) | (5,15,8) |
| 11 | 49 | -40 | -37 | (5,18,15) | (5,21,26) | (5,26,33) |
| 12 | 19 | -14 | -11 | (5,33,18) | (6,11,26) | (6,15,24) |
| 13 | -41 | 45 | -11 | (6,16,36) | (6,24,13) | (6,26,16) |
| 14 | -26 | -18 | 16 | (6,36,15) | (7,12,27) | (7,13,33) |
| 15 | 34 | -19 | -57 | (7,17,16) | (7,27,13) | (7,30,17) |
| 16 | -19 | -34 | 57 | (7,33,30) | (8,11,25) | (8,15,22) |
| 17 | 19 | 34 | 57 | (8,22,30) | (8,25,14) | (8,30,34) |
| 18 | -49 | 37 | -40 | (8,34,11) | (9,10,36) | (9,17,30) |
| 19 | -40 | -49 | 37 | (9,19,21) | (9,25,19) | (9,30,10) |
| 20 | -45 | -41 | 11 | (9,36,25) | (10,18,23) | (10,23,27) |
| 21 | 0 | -4 | 18 | (10,27,36) | (10,30,22) | (11,12,26) |
| 22 | 11 | -4 | 0 | (11,19,25) | (11,27,12) | (11,34,27) |
| 23 | -49 | 40 | -37 | (12,20,32) | (12,22,28) | (12,28,26) |
| 24 | -18 | 26 | -16 | (12,32,22) | (13,14,25) | (13,24,14) |
| 25 | -14 | -19 | 11 | (13,25,33) | (13,27,23) | (14,17,31) |
| 26 | 1 | -1 | 2 | (14,24,29) | (14,29,17) | (14,31,20) |
| 27 | 40 | 49 | 37 | (15,18,24) | (15,28,22) | (15,31,28) |
| 28 | -1 | 1 | 2 | (15,36,31) | (16,17,29) | (16,26,21) |
| 29 | -37 | -49 | 40 | (16,29,32) | (16,32,36) | (17,28,31) |
| 30 | 4 | 11 | 0 | (18,20,23) | (18,32,20) | (18,33,32) |
| 31 | 0 | 4 | 18 | (19,20,21) | (19,23,20) | (19,29,35) |
| 32 | -4 | -11 | 0 | (19,35,23) | (20,31,21) | (21,31,34) |
| 33 | -11 | 4 | 0 | (22,32,29) | (23,35,28) | (24,34,35) |
| 34 | 45 | 41 | 11 | (24,35,29) | (25,32,33) | (25,36,32) |
| 35 | -19 | 14 | -11 | (26,28,35) | (26,35,33) | (27,31,36) |
| 36 | 1 | 1 | -2 | (27,34,31) | (30,33,35) | (30,35,34) |
| Vertex Permutation Groups | ||||||
| (1,4,24,14)(2,34,13,20)(3,21,6,31)(5,16,15,17)(7,18,29,8) | ||||||
| (9,26,36,28)(10,35,25,12)(11,27,23,19)(22,30,33,32) | ||||||
| Vertex | X | Y | Z | Triangles | ||
| 1 | -29 | -83 | -105 | (1,2,3) | (1,3,5) | (1,4,2) |
| 2 | -2 | -20 | -42 | (1,5,8) | (1,7,4) | (1,8,11) |
| 3 | 76 | 34 | 18 | (1,10,7) | (1,11,14) | (1,13,10) |
| 4 | -41 | -19 | 7 | (1,14,17) | (1,16,13) | (1,17,16) |
| 5 | 6 | -26 | -9 | (2,4,9) | (2,6,3) | (2,8,6) |
| 6 | 29 | 83 | -105 | (2,9,10) | (2,10,15) | (2,12,8) |
| 7 | 3 | 31 | -30 | (2,14,12) | (2,15,16) | (2,16,18) |
| 8 | 15 | -7 | 0 | (2,18,14) | (3,6,7) | (3,7,12) |
| 9 | -26 | -37 | -1 | (3,9,5) | (3,11,9) | (3,12,13) |
| 10 | -6 | 26 | -9 | (3,13,18) | (3,15,11) | (3,17,15) |
| 11 | 41 | 19 | 7 | (3,18,17) | (4,5,9) | (4,6,13) |
| 12 | 26 | 37 | -1 | (4,7,6) | (4,11,15) | (4,12,17) |
| 13 | -15 | 7 | 0 | (4,13,12) | (4,15,5) | (4,17,18) |
| 14 | -3 | -31 | -30 | (4,18,11) | (5,6,8) | (5,10,18) |
| 15 | -7 | -7 | 2 | (5,12,14) | (5,14,6) | (5,15,10) |
| 16 | 2 | 20 | -42 | (5,16,12) | (5,18,16) | (6,10,13) |
| 17 | -76 | -34 | 18 | (6,11,16) | (6,14,11) | (6,16,17) |
| 18 | 7 | 7 | 2 | (6,17,10) | (7,8,12) | (7,9,16) |
| (7,10,9) | (7,14,18) | (7,15,14) | ||||
| (7,16,15) | (7,18,8) | (8,9,11) | ||||
| (8,13,15) | (8,15,17) | (8,17,9) | ||||
| (8,18,13) | (9,13,16) | (9,14,13) | ||||
| (9,17,14) | (10,11,18) | (10,12,11) | ||||
| (10,17,12) | (11,12,16) | (13,14,15) | ||||
| Vertex Permutation Groups | ||||||
| (1,6)(2,16)(3,17)(4,11)(5,10)(7,14)(8,13)(9,12)(15,18) | ||||||
| Vertex | X | Y | Z | Triangles | |||
| 1 | -18 | 27 | 8 | (1,2,3) | (1,3,5) | (1,4,2) | (1,5,8) |
| 2 | 79 | -80 | -125 | (1,7,4) | (1,8,14) | (1,12,7) | (1,14,24) |
| 3 | 12 | 10 | -5 | (1,20,12) | (1,24,20) | (2,4,10) | (2,6,3) |
| 4 | 5 | 4 | -6 | (2,10,22) | (2,11,6) | (2,19,11) | (2,22,32) |
| 5 | -1 | 99 | -61 | (2,30,19) | (2,32,30) | (3,6,13) | (3,9,5) |
| 6 | 27 | 23 | 5 | (3,13,23) | (3,17,9) | (3,23,33) | (3,28,17) |
| 7 | -38 | 77 | 57 | (3,33,28) | (4,7,16) | (4,16,31) | (4,18,10) |
| 8 | -5 | -4 | -6 | (4,28,33) | (4,29,18) | (4,31,28) | (4,33,29) |
| 9 | -47 | -13 | -81 | (5,9,21) | (5,15,8) | (5,21,29) | (5,27,15) |
| 10 | 1 | -99 | -61 | (5,29,30) | (5,30,32) | (5,32,27) | (6,11,26) |
| 11 | 42 | 25 | -13 | (6,20,24) | (6,24,31) | (6,25,13) | (6,26,27) |
| 12 | -42 | -25 | -13 | (6,27,20) | (6,31,25) | (7,12,15) | (7,15,35) |
| 13 | -27 | -23 | 5 | (7,19,30) | (7,21,16) | (7,23,21) | (7,30,23) |
| 14 | -72 | -17 | 42 | (7,35,19) | (8,15,18) | (8,16,14) | (8,18,19) |
| 15 | -79 | 80 | -125 | (8,19,33) | (8,23,34) | (8,33,23) | (8,34,16) |
| 16 | 14 | 13 | -4 | (9,12,20) | (9,17,25) | (9,20,22) | (9,22,26) |
| 17 | 47 | 13 | -81 | (9,25,34) | (9,26,21) | (9,34,12) | (10,14,35) |
| 18 | 18 | -27 | 8 | (10,17,24) | (10,18,25) | (10,24,14) | (10,25,17) |
| 19 | 38 | -77 | 57 | (10,26,22) | (10,35,26) | (11,14,16) | (11,16,26) |
| 20 | -49 | -31 | 2 | (11,17,28) | (11,18,36) | (11,19,18) | (11,28,14) |
| 21 | 52 | 44 | 20 | (11,36,17) | (12,13,15) | (12,29,33) | (12,32,13) |
| 22 | -82 | -61 | 10 | (12,33,32) | (12,34,29) | (13,21,23) | (13,22,36) |
| 23 | 37 | 29 | 9 | (13,25,15) | (13,32,22) | (13,36,21) | (14,28,30) |
| 24 | -52 | -44 | 20 | (14,29,35) | (14,30,29) | (15,25,18) | (15,26,35) |
| 25 | -12 | -10 | -5 | (15,27,26) | (16,21,26) | (16,25,31) | (16,34,25) |
| 26 | -49 | -9 | -123 | (17,27,32) | (17,32,24) | (17,36,27) | (18,21,36) |
| 27 | 82 | 61 | 10 | (18,29,21) | (19,24,33) | (19,31,24) | (19,35,31) |
| 28 | 16 | 14 | -3 | (20,23,30) | (20,27,23) | (20,28,22) | (20,30,28) |
| 29 | 72 | 17 | 42 | (22,28,31) | (22,31,36) | (23,27,34) | (24,32,33) |
| 30 | 94 | 97 | 73 | (27,36,34) | (29,34,35) | (31,35,36) | (34,36,35) |
| 31 | -37 | -29 | 9 | ||||
| 32 | 49 | 9 | -123 | ||||
| 33 | -14 | -13 | -4 | ||||
| 34 | -16 | -14 | -3 | ||||
| 35 | -94 | -97 | 73 | ||||
| 36 | 49 | 31 | 2 | ||||
| Vertex Permutation Groups | |||||||
| (1,18)(2,15)(3,25)(4,8)(5,10)(6,13)(7,19)(9,17)(11,12) | |||||||
| (14,29)(16,33)(20,36)(21,24)(22,27)(23,31)(26,32)(28,34)(30,35) | |||||||
| Vertex | X | Y | Z | Triangles | |||
| 1 | -29.01689 | -20.72304 | 4.74648 | (1,2,3) | (1,2,4) | (1,3,5) | (1,4,7) |
| 2 | 6.54041 | -0.52815 | 4.75682 | (1,5,8) | (1,7,12) | (1,8,14) | (1,12,20) |
| 3 | 0.01759 | -8.95913 | 4.72149 | (1,14,24) | (1,20,24) | (2,3,6) | (2,4,10) |
| 4 | 21.20078 | -19.86469 | 23.14094 | (2,6,11) | (2,10,22) | (2,11,19) | (2,19,30) |
| 5 | 0.51110 | -1.53234 | -0.04966 | (2,22,32) | (2,30,32) | (3,5,9) | (3,6,13) |
| 6 | 2.28051 | 5.20475 | 4.44815 | (3,9,17) | (3,13,23) | (3,17,28) | (3,23,33) |
| 7 | -26.13677 | 7.45144 | -11.59738 | (3,28,33) | (4,7,16) | (4,10,18) | (4,16,31) |
| 8 | -3.72759 | -5.40009 | 4.75682 | (4,18,29) | (4,28,33) | (4,29,33) | (4,31,28) |
| 9 | 6.07036 | -5.06800 | -6.16980 | (5,8,15) | (5,9,21) | (5,15,27) | (5,21,29) |
| 10 | 0.51354 | -0.95603 | -1.14829 | (5,27,32) | (5,29,30) | (5,32,30) | (6,11,26) |
| 11 | -2.64214 | 0.41735 | 1.85202 | (6,13,25) | (6,20,24) | (6,20,27) | (6,24,31) |
| 12 | 1.35383 | 7.79109 | -6.16980 | (6,25,31) | (6,26,27) | (7,12,15) | (7,15,35) |
| 13 | 7.75004 | 4.49480 | 4.72149 | (7,16,21) | (7,19,30) | (7,21,23) | (7,30,23) |
| 14 | -1.08471 | 0.03327 | -1.14829 | (7,35,19) | (8,14,16) | (8,15,18) | (8,16,34) |
| 15 | 1.53282 | -0.40228 | -0.82216 | (8,18,19) | (8,19,33) | (8,33,23) | (8,34,23) |
| 16 | -27.80371 | -8.42807 | 23.14094 | (9,12,20) | (9,12,34) | (9,17,25) | (9,20,22) |
| 17 | -1.11479 | -1.12632 | -0.82216 | (9,21,26) | (9,22,26) | (9,34,25) | (10,14,24) |
| 18 | 0.95963 | -2.49683 | 1.85202 | (10,14,35) | (10,17,25) | (10,18,25) | (10,22,26) |
| 19 | 1.68250 | 2.07948 | 1.85202 | (10,24,17) | (10,35,26) | (11,14,16) | (11,14,28) |
| 20 | -7.42419 | -2.72309 | -6.16980 | (11,17,36) | (11,19,18) | (11,26,16) | (11,28,17) |
| 21 | -5.64770 | -0.62739 | 4.44815 | (11,36,18) | (12,13,32) | (12,15,13) | (12,29,33) |
| 22 | 32.45512 | -14.76784 | 4.74648 | (12,32,33) | (12,34,29) | (13,21,36) | (13,23,21) |
| 23 | -7.76763 | 4.46433 | 4.72149 | (13,25,15) | (13,32,22) | (13,36,22) | (14,28,30) |
| 24 | -0.63254 | 1.02010 | -0.26769 | (14,30,29) | (14,35,29) | (15,18,25) | (15,27,26) |
| 25 | 19.52152 | 18.90939 | -11.59738 | (15,35,26) | (16,21,26) | (16,31,25) | (16,34,25) |
| 26 | -0.56716 | -1.05785 | -0.26769 | (17,24,32) | (17,32,27) | (17,36,27) | (18,29,21) |
| 27 | -1.58260 | 0.32354 | -0.04966 | (18,36,21) | (19,24,31) | (19,33,24) | (19,35,31) |
| 28 | 6.61525 | -26.36083 | -11.59738 | (20,22,28) | (20,23,30) | (20,27,23) | (20,28,30) |
| 29 | 1.19971 | 0.03775 | -0.26769 | (22,28,31) | (22,36,31) | (23,34,27) | (24,32,33) |
| 30 | -0.41803 | 1.52860 | -0.82216 | (27,36,34) | (29,34,35) | (31,35,36) | (34,36,35) |
| 31 | 6.60293 | 28.29276 | 23.14094 | ||||
| 32 | 1.07150 | 1.20880 | -0.04966 | ||||
| 33 | 3.36719 | -4.57736 | 4.44815 | ||||
| 34 | -3.43823 | 35.49088 | 4.74648 | ||||
| 35 | 0.57117 | 0.92275 | -1.14829 | ||||
| 36 | -2.81282 | 5.92824 | 4.75682 | ||||
| Vertex Permutation Groups | |||||||
| (1,22,34)(2,36,8)(3,13,23)(4,31,16)(5,32,27)(6,21,33) | |||||||
| (7,28,25)(9,12,20)(10,35,14)(11,18,19)(15,30,17)(24,26,29) | |||||||
| Vertex | X | Y | Z | Vertex | X | Y | Z | Triangles | |||
| 1 | 2 | 67 | -15 | 79 | 82 | -58 | -9 | (1,2,3) | (1,3,5) | (1,4,2) | (1,5,8) |
| 2 | -87 | 28 | 13 | 80 | 3 | 0 | -37 | (1,7,4) | (1,8,12) | (1,12,7) | (2,4,10) |
| 3 | -2 | 55 | 1 | 81 | -80 | 58 | -45 | (2,6,3) | (2,10,18) | (2,11,6) | (2,18,11) |
| 4 | -84 | 39 | 4 | 82 | -67 | 62 | 22 | (3,6,13) | (3,9,5) | (3,13,16) | (3,16,9) |
| 5 | 36 | 46 | 54 | 83 | -13 | -7 | 69 | (4,7,15) | (4,15,26) | (4,17,10) | (4,26,17) |
| 6 | -43 | 85 | -10 | 84 | 55 | 2 | -1 | (5,9,19) | (5,14,8) | (5,19,24) | (5,24,14) |
| 7 | -15 | 51 | -12 | 85 | -57 | -5 | 25 | (6,11,22) | (6,20,13) | (6,22,34) | (6,34,20) |
| 8 | 34 | 62 | 4 | 86 | -13 | 67 | -47 | (7,12,23) | (7,23,38) | (7,25,15) | (7,38,25) |
| 9 | 40 | 67 | 38 | 87 | 84 | -39 | 4 | (8,14,27) | (8,21,12) | (8,27,35) | (8,35,21) |
| 10 | -58 | -82 | 9 | 88 | 57 | -23 | -86 | (9,16,31) | (9,28,19) | (9,31,47) | (9,47,28) |
| 11 | -82 | 58 | -9 | 89 | 12 | 22 | -41 | (10,17,32) | (10,29,18) | (10,32,48) | (10,48,29) |
| 12 | -5 | 57 | -25 | 90 | 87 | -28 | 13 | (11,18,33) | (11,33,53) | (11,36,22) | (11,53,36) |
| 13 | -18 | 39 | 23 | 91 | 28 | -35 | 82 | (12,21,40) | (12,37,23) | (12,40,37) | (13,20,39) |
| 14 | 57 | 5 | 25 | 92 | 17 | -19 | 0 | (13,30,16) | (13,39,49) | (13,49,30) | (14,24,44) |
| 15 | -67 | -13 | 47 | 93 | -56 | -6 | 57 | (14,41,27) | (14,44,64) | (14,64,41) | (15,25,45) |
| 16 | -7 | 70 | 73 | 94 | -14 | -54 | -90 | (15,42,26) | (15,45,65) | (15,65,42) | (16,30,55) |
| 17 | -42 | -96 | 29 | 95 | 62 | -86 | 6 | (16,50,31) | (16,55,50) | (17,26,46) | (17,46,69) |
| 18 | -85 | -43 | 10 | 96 | -70 | -7 | -73 | (17,51,32) | (17,69,51) | (18,29,54) | (18,52,33) |
| 19 | 56 | 6 | 57 | 97 | 0 | 3 | 37 | (18,54,52) | (19,28,51) | (19,43,24) | (19,51,66) |
| 20 | -49 | 57 | 33 | 98 | 46 | -36 | -54 | (19,66,43) | (20,34,60) | (20,45,39) | (20,60,82) |
| 21 | 13 | 7 | 69 | 99 | 7 | -70 | 73 | (20,82,45) | (21,35,61) | (21,56,40) | (21,61,83) |
| 22 | 28 | 87 | -13 | 100 | 22 | -12 | 41 | (21,83,56) | (22,36,41) | (22,41,84) | (22,57,34) |
| 23 | -62 | 34 | -4 | 101 | 6 | -25 | 0 | (22,84,57) | (23,37,62) | (23,58,38) | (23,62,85) |
| 24 | 24 | -4 | -13 | 102 | -39 | -84 | -4 | (23,85,58) | (24,43,71) | (24,67,44) | (24,71,67) |
| 25 | -18 | 16 | 5 | 103 | -22 | 12 | 41 | (25,38,63) | (25,39,45) | (25,63,89) | (25,89,39) |
| 26 | -58 | -80 | 45 | 104 | 23 | 57 | 86 | (26,42,70) | (26,68,46) | (26,70,68) | (27,36,86) |
| 27 | 51 | 15 | 12 | 105 | -14 | -57 | -45 | (27,41,36) | (27,59,35) | (27,86,59) | (28,32,51) |
| 28 | 57 | -14 | 45 | 106 | 10 | 14 | -4 | (28,47,78) | (28,78,101) | (28,101,32) | (29,48,79) |
| 29 | -28 | -87 | -13 | 107 | 15 | -51 | -12 | (29,62,54) | (29,79,102) | (29,102,62) | (30,49,80) |
| 30 | -6 | 6 | -2 | 108 | -62 | 86 | 6 | (30,72,55) | (30,80,103) | (30,103,72) | (31,50,56) |
| 31 | -5 | 66 | 78 | 109 | -67 | 40 | -38 | (31,56,104) | (31,73,47) | (31,104,73) | (32,74,48) |
| 32 | 49 | -57 | 33 | 110 | 2 | -55 | 1 | (32,101,74) | (33,52,72) | (33,72,105) | (33,75,53) |
| 33 | -57 | -49 | -33 | 111 | 70 | 7 | -73 | (33,105,75) | (34,57,90) | (34,87,60) | (34,90,87) |
| 34 | 58 | 82 | 9 | 112 | 13 | 104 | -14 | (35,59,91) | (35,70,61) | (35,91,70) | (36,53,81) |
| 35 | 19 | 17 | 0 | 113 | -4 | -24 | 13 | (36,81,86) | (37,40,77) | (37,54,62) | (37,77,109) |
| 36 | 39 | 84 | -4 | 114 | -51 | -15 | 12 | (37,109,54) | (38,58,67) | (38,67,88) | (38,88,63) |
| 37 | -46 | 36 | -54 | 115 | 49 | 41 | -52 | (39,76,49) | (39,89,76) | (40,50,106) | (40,56,50) |
| 38 | -17 | 19 | 0 | 116 | -54 | 14 | 90 | (40,106,77) | (41,64,98) | (41,98,84) | (42,61,70) |
| 39 | -6 | 25 | 0 | 117 | 66 | 5 | -78 | (42,65,99) | (42,99,122) | (42,122,61) | (43,66,100) |
| 40 | 4 | 24 | 13 | 118 | -19 | -17 | 0 | (43,80,71) | (43,100,123) | (43,123,80) | (44,58,124) |
| 41 | 67 | -2 | 15 | 119 | 39 | 18 | -23 | (44,67,58) | (44,92,64) | (44,124,92) | (45,82,93) |
| 42 | 5 | -66 | 78 | 120 | -24 | 4 | -13 | (45,93,65) | (46,68,75) | (46,75,125) | (46,94,69) |
| 43 | 14 | -10 | 4 | 121 | 14 | 57 | -45 | (46,125,94) | (47,73,87) | (47,87,107) | (47,107,78) |
| 44 | 7 | -13 | -69 | 122 | -2 | -18 | 2 | (48,74,110) | (48,90,79) | (48,110,90) | (49,71,80) |
| 45 | -57 | 14 | 45 | 123 | -3 | 0 | -37 | (49,76,111) | (49,111,71) | (50,55,97) | (50,97,106) |
| 46 | -86 | -62 | -6 | 124 | -10 | 0 | -32 | (51,69,95) | (51,95,66) | (52,54,96) | (52,55,72) |
| 47 | 67 | 13 | 47 | 125 | -49 | -41 | -52 | (52,96,126) | (52,126,55) | (53,68,108) | (53,75,68) |
| 48 | 43 | -85 | -10 | 126 | -6 | -6 | 2 | (53,108,81) | (54,109,96) | (55,126,97) | (56,83,118) |
| 49 | 0 | 7 | -17 | 127 | 5 | -57 | -25 | (56,118,104) | (57,79,90) | (57,84,119) | (57,119,141) |
| 50 | 2 | 18 | 2 | 128 | 80 | -58 | -45 | (57,141,79) | (58,85,120) | (58,120,124) | (59,86,121) |
| 51 | 67 | -62 | 22 | 129 | -36 | -46 | 54 | (59,100,91) | (59,121,142) | (59,142,100) | (60,73,143) |
| 52 | -39 | -18 | -23 | 130 | 54 | -14 | 90 | (60,87,73) | (60,112,82) | (60,143,112) | (61,113,83) |
| 53 | -96 | 42 | -29 | 131 | -12 | -22 | -41 | (61,122,113) | (62,102,114) | (62,114,85) | (63,88,94) |
| 54 | -55 | -2 | -1 | 132 | 96 | -42 | -29 | (63,94,144) | (63,115,89) | (63,144,115) | (64,92,107) |
| 55 | -7 | 0 | 17 | 133 | -14 | 10 | 4 | (64,107,127) | (64,127,98) | (65,93,129) | (65,110,99) |
| 56 | 0 | 10 | 32 | 134 | -16 | -18 | -5 | (65,129,110) | (66,91,100) | (66,95,130) | (66,130,91) |
| 57 | 85 | 43 | 10 | 135 | -66 | -5 | -78 | (67,71,117) | (67,117,88) | (68,70,116) | (68,116,108) |
| 58 | -7 | 13 | -69 | 136 | -2 | -67 | -15 | (69,88,128) | (69,94,88) | (69,128,95) | (70,91,116) |
| 59 | 16 | 18 | -5 | 137 | 104 | -13 | 14 | (71,111,117) | (72,103,134) | (72,134,105) | (73,104,137) |
| 60 | 42 | 96 | 29 | 138 | 0 | -7 | -17 | (73,137,143) | (74,99,110) | (74,101,138) | (74,138,149) |
| 61 | 0 | -10 | 32 | 139 | 6 | -56 | -57 | (74,149,99) | (75,105,139) | (75,139,125) | (76,89,140) |
| 62 | -67 | 2 | 15 | 140 | 0 | -3 | 37 | (76,119,111) | (76,140,148) | (76,148,119) | (77,106,115) |
| 63 | 35 | 28 | -82 | 141 | 57 | 49 | -33 | (77,115,152) | (77,121,109) | (77,152,121) | (78,92,151) |
| 64 | 62 | -34 | -4 | 142 | 25 | 6 | 0 | (78,107,92) | (78,131,101) | (78,151,131) | (79,132,102) |
| 65 | -40 | -67 | 38 | 143 | 86 | 62 | -6 | (79,141,132) | (80,123,133) | (80,133,103) | (81,108,112) |
| 66 | 41 | -49 | 52 | 144 | 14 | 54 | -90 | (81,112,150) | (81,135,86) | (81,150,135) | (82,108,145) |
| 67 | 10 | 0 | -32 | 145 | -41 | 49 | 52 | (82,112,108) | (82,145,93) | (83,113,127) | (83,127,146) |
| 68 | -104 | 13 | 14 | 146 | -34 | -62 | 4 | (83,146,118) | (84,98,147) | (84,111,119) | (84,147,111) |
| 69 | -13 | -104 | -14 | 147 | 67 | -40 | -38 | (85,114,146) | (85,129,120) | (85,146,129) | (86,109,121) |
| 70 | -23 | -57 | 86 | 148 | 7 | 0 | 17 | (86,135,109) | (87,90,136) | (87,136,107) | (88,117,128) |
| 71 | 18 | -2 | -2 | 149 | 6 | -6 | -2 | (89,106,140) | (89,115,106) | (90,110,136) | (91,130,116) |
| 72 | -25 | -6 | 0 | 150 | -57 | 23 | -86 | (92,124,150) | (92,150,151) | (93,120,129) | (93,133,120) |
| 73 | 58 | 80 | 45 | 151 | -35 | -28 | -82 | (93,145,133) | (94,125,151) | (94,151,144) | (95,128,132) |
| 74 | 18 | -39 | 23 | 152 | 62 | 67 | -22 | (95,132,137) | (95,137,130) | (96,109,135) | (96,135,155) |
| 75 | -62 | -67 | -22 | 153 | 13 | -67 | -47 | (96,138,126) | (96,155,138) | (97,126,131) | (97,131,156) |
| 76 | 6 | 6 | 2 | 154 | -28 | 35 | 82 | (97,140,106) | (97,156,140) | (98,113,139) | (98,127,113) |
| 77 | -6 | 56 | -57 | 155 | -18 | 2 | -2 | (98,139,147) | (99,148,122) | (99,149,148) | (100,142,149) |
| 78 | 18 | -16 | 5 | 156 | -10 | -14 | -4 | (100,149,123) | (101,126,138) | (101,131,126) | (102,128,153) |
| (102,132,128) | (102,153,114) | (103,133,145) | (103,145,154) | ||||||||
| (103,154,134) | (104,118,154) | (104,130,137) | (104,154,130) | ||||||||
| (105,134,153) | (105,147,139) | (105,153,147) | (107,136,127) | ||||||||
| (108,116,145) | (110,129,136) | (111,147,117) | (112,143,144) | ||||||||
| (112,144,150) | (113,122,156) | (113,156,139) | (114,118,146) | ||||||||
| (114,134,118) | (114,153,134) | (115,143,152) | (115,144,143) | ||||||||
| (116,130,154) | (116,154,145) | (117,147,153) | (117,153,128) | ||||||||
| (118,134,154) | (119,142,141) | (119,148,142) | (120,133,155) | ||||||||
| (120,155,124) | (121,141,142) | (121,152,141) | (122,140,156) | ||||||||
| (122,148,140) | (123,138,155) | (123,149,138) | (123,155,133) | ||||||||
| (124,135,150) | (124,155,135) | (125,131,151) | (125,139,156) | ||||||||
| (125,156,131) | (127,136,146) | (129,146,136) | (132,141,152) | ||||||||
| (132,152,137) | (137,152,143) | (142,148,149) | (144,151,150) | ||||||||
| Vertex Permutation Groups | |||||||||||
| (1,62,136,41)(2,29,90,22)(3,54,110,84)(4,102,87,36)(5,37,129,98)(6,18,48,57) | |||||||||||
| (7,114,107,27)(8,23,146,64)(9,109,65,147)(10,79,34,11)(12,85,127,14)(13,52,74,119) | |||||||||||
| (15,153,47,86)(16,96,99,111)(17,132,60,53)(19,77,93,139)(20,33,32,141)(21,58,83,44) | |||||||||||
| (24,40,120,113)(25,134,78,59)(26,128,73,81)(28,121,45,105)(30,126,149,76)(31,135,42,117) | |||||||||||
| (35,38,118,92)(39,72,101,142)(43,106,133,156)(46,95,143,108)(49,55,138,148)(50,155,122,71) | |||||||||||
| (51,152,82,75)(56,124,61,67)(63,154,151,91)(66,115,145,125)(68,69,137,112)(70,88,104,150) | |||||||||||
| (80,97,123,140)(89,103,131,100)(94,130,144,116) | |||||||||||
| Vertex | X | Y | Z | Vertex | X | Y | Z | Triangles | |||
| 1 | -68 | 2 | -198 | 79 | 74 | 41 | -91 | (1,2,3) | (1,3,5) | (1,4,2) | (1,5,13) |
| 2 | 20 | 9 | -15 | 80 | 61 | -69 | -13 | (1,8,10) | (1,10,4) | (1,13,8) | (2,4,14) |
| 3 | 21 | 8 | 3 | 81 | -173 | -67 | -60 | (2,6,11) | (2,9,3) | (2,11,9) | (2,14,6) |
| 4 | 14 | 34 | -118 | 82 | -61 | 69 | -13 | (3,7,15) | (3,9,18) | (3,15,5) | (3,18,7) |
| 5 | -25 | 27 | -98 | 83 | 212 | 60 | -118 | (4,10,21) | (4,12,30) | (4,21,12) | (4,30,14) |
| 6 | -38 | 30 | 31 | 84 | -143 | 140 | -172 | (5,15,31) | (5,16,36) | (5,31,16) | (5,36,13) |
| 7 | -21 | 24 | 5 | 85 | -20 | -90 | 142 | (6,14,43) | (6,28,49) | (6,32,28) | (6,43,32) |
| 8 | -21 | -88 | 0 | 86 | -41 | 51 | 166 | (6,49,11) | (7,18,55) | (7,19,29) | (7,29,60) |
| 9 | 33 | 33 | 70 | 87 | 47 | -72 | 113 | (7,55,19) | (7,60,15) | (8,13,42) | (8,20,38) |
| 10 | -14 | -34 | -118 | 88 | 27 | 183 | 91 | (8,38,48) | (8,42,20) | (8,48,10) | (9,11,33) |
| 11 | 15 | 29 | 11 | 89 | -101 | 4 | 118 | (9,17,39) | (9,33,17) | (9,39,18) | (10,22,40) |
| 12 | 21 | 88 | 0 | 90 | 41 | -51 | 166 | (10,40,21) | (10,48,22) | (11,23,41) | (11,41,33) |
| 13 | -74 | -41 | -91 | 91 | 80 | -176 | 98 | (11,49,23) | (12,21,79) | (12,26,68) | (12,27,26) |
| 14 | 15 | 21 | 0 | 92 | -116 | -156 | 1 | (12,68,30) | (12,79,27) | (13,24,42) | (13,36,51) |
| 15 | -29 | -4 | -24 | 93 | -66 | 125 | 103 | (13,51,24) | (14,25,43) | (14,30,52) | (14,52,25) |
| 16 | 50 | 155 | -105 | 94 | 69 | -114 | -19 | (15,34,53) | (15,53,31) | (15,60,34) | (16,26,37) |
| 17 | -2 | 89 | 90 | 95 | 152 | 21 | 14 | (16,31,78) | (16,37,88) | (16,78,26) | (16,88,36) |
| 18 | 39 | 0 | 22 | 96 | 8 | 2 | 45 | (17,27,69) | (17,33,93) | (17,37,27) | (17,69,39) |
| 19 | 54 | -57 | 18 | 97 | -33 | -33 | 70 | (17,93,37) | (18,35,55) | (18,39,63) | (18,63,35) |
| 20 | 7 | -94 | -56 | 98 | 29 | 4 | -24 | (19,22,50) | (19,50,29) | (19,55,77) | (19,66,22) |
| 21 | 68 | -2 | -198 | 99 | 77 | -15 | 124 | (19,77,66) | (20,23,62) | (20,42,92) | (20,62,38) |
| 22 | -15 | -21 | 0 | 100 | -27 | -183 | 91 | (20,67,23) | (20,92,67) | (21,40,64) | (21,45,79) |
| 23 | 69 | 3 | -40 | 101 | 9 | -65 | -17 | (21,64,45) | (22,48,101) | (22,66,40) | (22,101,50) |
| 24 | -150 | -81 | -31 | 102 | 60 | 26 | -34 | (23,49,102) | (23,67,41) | (23,102,62) | (24,28,54) |
| 25 | -26 | 29 | 13 | 103 | -90 | -30 | -36 | (24,51,81) | (24,54,107) | (24,81,28) | (24,107,42) |
| 26 | -7 | 94 | -56 | 104 | 136 | 88 | -49 | (25,29,50) | (25,50,108) | (25,52,82) | (25,82,29) |
| 27 | 159 | 147 | -68 | 105 | -60 | -26 | -34 | (25,108,43) | (26,27,37) | (26,59,68) | (26,78,59) |
| 28 | -77 | 15 | 124 | 106 | 23 | -116 | -152 | (27,56,69) | (27,79,56) | (28,32,54) | (28,81,89) |
| 29 | -21 | 29 | 9 | 107 | -19 | -74 | 70 | (28,89,49) | (29,70,60) | (29,82,70) | (30,46,84) |
| 30 | 0 | 74 | 4 | 108 | 21 | -29 | 9 | (30,68,46) | (30,84,52) | (31,44,78) | (31,53,85) |
| 31 | -32 | -6 | -32 | 109 | -170 | -88 | 21 | (31,85,44) | (32,34,54) | (32,43,76) | (32,76,86) |
| 32 | -38 | 46 | 143 | 110 | -69 | 114 | -19 | (32,86,34) | (33,41,65) | (33,57,93) | (33,65,57) |
| 33 | 20 | 90 | 142 | 111 | 140 | -54 | -209 | (34,60,115) | (34,86,53) | (34,115,54) | (35,38,62) |
| 34 | -66 | -57 | 52 | 112 | -75 | 137 | 39 | (35,62,118) | (35,63,95) | (35,95,38) | (35,118,55) |
| 35 | 90 | 30 | -36 | 113 | -17 | -47 | 174 | (36,58,83) | (36,83,51) | (36,88,58) | (37,61,88) |
| 36 | 4 | 214 | -148 | 114 | -90 | 44 | 14 | (37,93,61) | (38,71,48) | (38,95,71) | (39,47,96) |
| 37 | 116 | 156 | 1 | 115 | 69 | -93 | 85 | (39,69,47) | (39,96,63) | (40,44,97) | (40,66,44) |
| 38 | 12 | -135 | -113 | 116 | 32 | -57 | 216 | (40,97,64) | (41,45,98) | (41,67,45) | (41,98,65) |
| 39 | 5 | 3 | 77 | 117 | -177 | 40 | 122 | (42,72,92) | (42,107,72) | (43,73,76) | (43,108,73) |
| 40 | -20 | -9 | -15 | 118 | 90 | -44 | 14 | (44,66,123) | (44,85,97) | (44,123,78) | (45,64,98) |
| 41 | 32 | 6 | -32 | 119 | 173 | 67 | -60 | (45,67,124) | (45,124,79) | (46,51,111) | (46,68,127) |
| 42 | -159 | -147 | -68 | 120 | 176 | -79 | 3 | (46,81,51) | (46,111,84) | (46,127,81) | (47,52,112) |
| 43 | -54 | 57 | 18 | 121 | -39 | 0 | 22 | (47,69,128) | (47,82,52) | (47,112,96) | (47,128,82) |
| 44 | -15 | -29 | 11 | 122 | 66 | 57 | 52 | (48,71,74) | (48,74,101) | (49,75,102) | (49,89,75) |
| 45 | 25 | -27 | -98 | 123 | 6 | -35 | 16 | (50,80,108) | (50,101,80) | (51,83,111) | (52,84,112) |
| 46 | -43 | 181 | -180 | 124 | -4 | -214 | -148 | (53,57,113) | (53,86,57) | (53,113,85) | (54,87,107) |
| 47 | -26 | 28 | 75 | 125 | 26 | -28 | 75 | (54,115,87) | (55,90,77) | (55,118,90) | (56,79,106) |
| 48 | 0 | -74 | 4 | 126 | 67 | 25 | -15 | (56,99,104) | (56,104,69) | (56,106,119) | (56,119,99) |
| 49 | -6 | 35 | 16 | 127 | -152 | -21 | 14 | (57,65,113) | (57,86,132) | (57,132,93) | (58,63,120) |
| 50 | 26 | -29 | 13 | 128 | -47 | 72 | 113 | (58,88,134) | (58,95,63) | (58,120,83) | (58,134,95) |
| 51 | -23 | 116 | -152 | 129 | 91 | -137 | 82 | (59,78,105) | (59,103,68) | (59,105,110) | (59,110,114) |
| 52 | -9 | 65 | -17 | 130 | -140 | 54 | -209 | (59,114,103) | (60,70,91) | (60,91,115) | (61,93,117) |
| 53 | -38 | -66 | 91 | 131 | 66 | -125 | 103 | (61,100,116) | (61,109,100) | (61,116,88) | (61,117,109) |
| 54 | -136 | -88 | -49 | 132 | -26 | 56 | 202 | (62,94,118) | (62,102,94) | (63,96,120) | (64,73,98) |
| 55 | 64 | -28 | 7 | 133 | 83 | -71 | 42 | (64,97,121) | (64,121,73) | (65,90,113) | (65,98,122) |
| 56 | 150 | 81 | -31 | 134 | 170 | 88 | 21 | (65,122,90) | (66,77,99) | (66,99,123) | (67,92,100) |
| 57 | 17 | 47 | 174 | 135 | -44 | 20 | 55 | (67,100,124) | (68,103,127) | (69,104,128) | (70,82,110) |
| 58 | 194 | 134 | -48 | 136 | -5 | -3 | 77 | (70,105,129) | (70,110,105) | (70,129,91) | (71,95,119) |
| 59 | -83 | 56 | -36 | 137 | 62 | 24 | -6 | (71,106,130) | (71,119,106) | (71,130,74) | (72,85,131) |
| 60 | -62 | -24 | -6 | 138 | -194 | -134 | -48 | (72,97,85) | (72,107,136) | (72,131,92) | (72,136,97) |
| 61 | -32 | 57 | 216 | 139 | 75 | -137 | 39 | (73,108,137) | (73,121,76) | (73,137,98) | (74,84,111) |
| 62 | 83 | -56 | -36 | 140 | -91 | 137 | 82 | (74,111,139) | (74,130,84) | (74,139,101) | (75,89,135) |
| 63 | 156 | -53 | 26 | 141 | 26 | -56 | 202 | (75,96,112) | (75,112,140) | (75,135,96) | (75,140,102) |
| 64 | -21 | -8 | 3 | 142 | -83 | 71 | 42 | (76,103,114) | (76,114,86) | (76,121,103) | (77,90,122) |
| 65 | 38 | 66 | 91 | 143 | 101 | -4 | 118 | (77,104,99) | (77,122,104) | (78,123,105) | (79,124,106) |
| 66 | 38 | -30 | 31 | 144 | 111 | -39 | 49 | (80,87,94) | (80,94,126) | (80,101,125) | (80,125,87) |
| 67 | -50 | -155 | -105 | 145 | -156 | 53 | 26 | (80,126,108) | (81,109,89) | (81,127,109) | (82,128,110) |
| 68 | -12 | 135 | -113 | 146 | -69 | 93 | 85 | (83,91,129) | (83,120,91) | (83,129,111) | (84,130,112) |
| 69 | 19 | 74 | 70 | 147 | 0 | -33 | 18 | (85,113,131) | (86,114,132) | (87,115,133) | (87,125,107) |
| 70 | -67 | -25 | -15 | 148 | -212 | -60 | -118 | (87,133,94) | (88,116,134) | (89,109,117) | (89,117,135) |
| 71 | 43 | -181 | -180 | 149 | 177 | -40 | 122 | (90,118,141) | (90,141,113) | (91,120,144) | (91,144,115) |
| 72 | 2 | -89 | 90 | 150 | -95 | 34 | 54 | (92,116,100) | (92,131,116) | (93,132,117) | (94,102,126) |
| 73 | 21 | -24 | 5 | 151 | -8 | -2 | 45 | (94,133,118) | (95,134,119) | (96,135,120) | (97,136,121) |
| 74 | 143 | -140 | -172 | 152 | -80 | 176 | 98 | (98,137,122) | (99,119,143) | (99,143,123) | (100,109,138) |
| 75 | 0 | 33 | 18 | 153 | 95 | -34 | 54 | (100,138,124) | (101,139,125) | (102,140,126) | (103,121,145) |
| 76 | -64 | 28 | 7 | 154 | -111 | 39 | 49 | (103,145,127) | (104,122,146) | (104,146,128) | (105,123,147) |
| 77 | 38 | -46 | 143 | 155 | 44 | -20 | 55 | (105,147,129) | (106,124,148) | (106,148,130) | (107,125,136) |
| 78 | -69 | -3 | -40 | 156 | -176 | 79 | 3 | (108,126,137) | (109,127,138) | (110,128,142) | (110,142,114) |
| (111,129,139) | (112,130,140) | (113,141,131) | (114,142,132) | ||||||||
| (115,144,133) | (116,131,149) | (116,149,134) | (117,132,150) | ||||||||
| (117,150,135) | (118,133,141) | (119,134,143) | (120,135,144) | ||||||||
| (121,136,145) | (122,137,146) | (123,143,147) | (124,138,148) | ||||||||
| (125,139,151) | (125,151,136) | (126,140,152) | (126,152,137) | ||||||||
| (127,145,138) | (128,146,142) | (129,147,139) | (130,148,140) | ||||||||
| (131,141,149) | (132,142,150) | (133,144,153) | (133,153,141) | ||||||||
| (134,149,143) | (135,150,144) | (136,151,145) | (137,152,146) | ||||||||
| (138,145,156) | (138,156,148) | (139,147,151) | (140,148,152) | ||||||||
| (141,153,149) | (142,146,154) | (142,154,150) | (143,149,155) | ||||||||
| (143,155,147) | (144,150,153) | (145,151,156) | (146,152,154) | ||||||||
| (147,155,151) | (148,156,152) | (149,153,155) | (150,154,153) | ||||||||
| (151,155,156) | (152,156,154) | (153,154,155) | (154,156,155) | ||||||||
| Vertex Permutation Groups | |||||||||||
| (1,21)(2,40)(3,64)(4,10)(5,45)(6,66)(7,73)(8,12)(9,97)(11,44) | |||||||||||
| (13,79)(14,22)(15,98)(16,67)(17,72)(18,121)(19,43)(20,26)(23,78)(24,56) | |||||||||||
| (25,50)(27,42)(28,99)(29,108)(30,48)(31,41)(32,77)(33,85)(34,122)(35,103) | |||||||||||
| (36,124)(37,92)(38,68)(39,136)(46,71)(47,125)(49,123)(51,106)(52,101)(53,65) | |||||||||||
| (54,104)(55,76)(57,113)(58,138)(59,62)(60,137)(61,116)(63,145)(69,107)(70,126) | |||||||||||
| (74,84)(75,147)(80,82)(81,119)(83,148)(86,90)(87,128)(88,100)(89,143)(91,152) | |||||||||||
| (93,131)(94,110)(95,127)(96,151)(102,105)(109,134)(111,130)(112,139)(114,118)(115,146) | |||||||||||
| (117,149)(120,156)(129,140)(132,141)(133,142)(135,155)(144,154)(150,153) | |||||||||||
| Vertex | X | Y | Z | Vertex | X | Y | Z | Triangles | |||
| 1 | 35 | 62 | 32 | 79 | 0 | -71 | 3 | (1,2,21) | (1,3,2) | (1,13,43) | (1,20,3) |
| 2 | -35 | 23 | 35 | 80 | 58 | 1 | 65 | (1,21,51) | (1,43,20) | (1,51,13) | (2,3,30) |
| 3 | -58 | -1 | 65 | 81 | -67 | -83 | -24 | (2,6,42) | (2,30,34) | (2,34,6) | (2,42,21) |
| 4 | -9 | -72 | 83 | 82 | 2 | 10 | 4 | (3,12,60) | (3,20,33) | (3,33,12) | (3,60,30) |
| 5 | -13 | 3 | 10 | 83 | 77 | -74 | -44 | (4,10,19) | (4,12,14) | (4,14,10) | (4,17,66) |
| 6 | -16 | 24 | 35 | 84 | -3 | -13 | -10 | (4,19,17) | (4,50,12) | (4,66,50) | (5,6,7) |
| 7 | -2 | 6 | 20 | 85 | -1 | -20 | 9 | (5,7,15) | (5,15,29) | (5,18,67) | (5,29,18) |
| 8 | -58 | -41 | -34 | 86 | -74 | -77 | 44 | (5,31,6) | (5,67,31) | (6,31,42) | (6,34,45) |
| 9 | -40 | -22 | -6 | 87 | -53 | 71 | -17 | (6,45,7) | (7,17,22) | (7,22,15) | (7,45,80) |
| 10 | 41 | -58 | 34 | 88 | -41 | 58 | 34 | (7,80,17) | (8,9,11) | (8,11,13) | (8,13,61) |
| 11 | -127 | 4 | -9 | 89 | 12 | 51 | -48 | (8,16,9) | (8,18,16) | (8,61,81) | (8,81,18) |
| 12 | -98 | -7 | 95 | 90 | -27 | 58 | -40 | (9,16,38) | (9,23,35) | (9,25,11) | (9,35,25) |
| 13 | -74 | 103 | -57 | 91 | 13 | -3 | 10 | (9,38,23) | (10,14,24) | (10,24,39) | (10,26,36) |
| 14 | -103 | -74 | 57 | 92 | -6 | -10 | 16 | (10,36,19) | (10,39,26) | (11,25,27) | (11,27,87) |
| 15 | -9 | -2 | -3 | 93 | 7 | -98 | -95 | (11,32,13) | (11,87,32) | (12,33,44) | (12,44,14) |
| 16 | 6 | -19 | -3 | 94 | -77 | 74 | -44 | (12,50,60) | (13,32,43) | (13,51,61) | (14,27,24) |
| 17 | 51 | -12 | 48 | 95 | -72 | -41 | 28 | (14,44,94) | (14,94,27) | (15,22,57) | (15,28,54) |
| 18 | -18 | -24 | -2 | 96 | -30 | 16 | -39 | (15,54,29) | (15,57,28) | (16,18,48) | (16,40,38) |
| 19 | 83 | -67 | 24 | 97 | 47 | 63 | -2 | (16,48,100) | (16,100,40) | (17,19,47) | (17,47,22) |
| 20 | -47 | -19 | 81 | 98 | 2 | -9 | 3 | (17,80,66) | (18,29,48) | (18,81,67) | (19,36,40) |
| 21 | 0 | 71 | 3 | 99 | -2 | 9 | 3 | (19,40,109) | (19,109,47) | (20,41,75) | (20,43,72) |
| 22 | -1 | 2 | 6 | 100 | 63 | -47 | 2 | (20,72,41) | (20,75,33) | (21,42,90) | (21,52,74) |
| 23 | -46 | 17 | -3 | 101 | 62 | -35 | -32 | (21,74,51) | (21,90,52) | (22,47,99) | (22,53,57) |
| 24 | -4 | -127 | 9 | 102 | -47 | -63 | -2 | (22,99,53) | (23,38,70) | (23,70,112) | (23,76,35) |
| 25 | -55 | -28 | 2 | 103 | 17 | 46 | 3 | (23,112,113) | (23,113,76) | (24,27,63) | (24,58,39) |
| 26 | 19 | 6 | 3 | 104 | 71 | 53 | 17 | (24,63,114) | (24,114,58) | (25,35,53) | (25,53,119) |
| 27 | -109 | 6 | -2 | 105 | -23 | -35 | -35 | (25,63,27) | (25,119,63) | (26,39,71) | (26,71,120) |
| 28 | -2 | -1 | -6 | 106 | -30 | -61 | 21 | (26,77,36) | (26,97,77) | (26,120,97) | (27,94,87) |
| 29 | -4 | -21 | 3 | 107 | 47 | 19 | 81 | (28,57,89) | (28,89,111) | (28,92,54) | (28,98,92) |
| 30 | 2 | -6 | 20 | 108 | 10 | -6 | -16 | (28,111,98) | (29,54,58) | (29,58,110) | (29,110,48) |
| 31 | -19 | 14 | 16 | 109 | 16 | 30 | 39 | (30,59,91) | (30,60,73) | (30,73,59) | (30,91,34) |
| 32 | 6 | 109 | 2 | 110 | 53 | -71 | -17 | (31,56,68) | (31,67,56) | (31,68,103) | (31,103,42) |
| 33 | -71 | 0 | -3 | 111 | -6 | -2 | -20 | (32,49,69) | (32,69,104) | (32,87,49) | (32,104,43) |
| 34 | 16 | -24 | 35 | 112 | -43 | -27 | 40 | (33,70,105) | (33,75,70) | (33,105,44) | (34,71,106) |
| 35 | -20 | 1 | -9 | 113 | -66 | 15 | 24 | (34,91,71) | (34,106,45) | (35,76,121) | (35,96,53) |
| 36 | 24 | -18 | 2 | 114 | -6 | -109 | 2 | (35,121,96) | (36,77,122) | (36,84,40) | (36,122,84) |
| 37 | 103 | 74 | 57 | 115 | 4 | 21 | 3 | (37,50,66) | (37,66,101) | (37,69,88) | (37,83,128) |
| 38 | -14 | -19 | -16 | 116 | -83 | 67 | 24 | (37,88,50) | (37,101,83) | (37,128,69) | (38,40,84) |
| 39 | 22 | -40 | 6 | 117 | 72 | -9 | -83 | (38,84,129) | (38,129,70) | (39,58,85) | (39,85,130) |
| 40 | 44 | -29 | 0 | 118 | -37 | 64 | -55 | (39,130,71) | (40,100,109) | (41,72,107) | (41,86,95) |
| 41 | -64 | -37 | 55 | 119 | -21 | 4 | -3 | (41,95,102) | (41,102,75) | (41,107,86) | (42,76,90) |
| 42 | 30 | 61 | 21 | 120 | 29 | 44 | 0 | (42,103,76) | (43,77,72) | (43,104,77) | (44,62,94) |
| 43 | 74 | 77 | 44 | 121 | 15 | 66 | -24 | (44,78,62) | (44,105,78) | (45,55,80) | (45,79,55) |
| 44 | -62 | 35 | -32 | 122 | 21 | -4 | -3 | (45,106,79) | (46,61,93) | (46,64,108) | (46,78,123) |
| 45 | 35 | -23 | 35 | 123 | 6 | 2 | -20 | (46,81,61) | (46,93,78) | (46,108,81) | (46,123,64) |
| 46 | -12 | -51 | -48 | 124 | 27 | -58 | -40 | (47,64,99) | (47,82,64) | (47,109,82) | (48,65,100) |
| 47 | 6 | 10 | 16 | 125 | 71 | 0 | -3 | (48,83,65) | (48,110,83) | (49,68,69) | (49,82,127) |
| 48 | 41 | -72 | -28 | 126 | 30 | -16 | -39 | (49,87,115) | (49,115,82) | (49,127,68) | (50,88,116) |
| 49 | -28 | 55 | -2 | 127 | 1 | 20 | 9 | (50,116,60) | (51,74,89) | (51,89,117) | (51,117,61) |
| 50 | 9 | 72 | 83 | 128 | 109 | -6 | -2 | (52,65,83) | (52,83,101) | (52,90,118) | (52,101,74) |
| 51 | -7 | 98 | -95 | 129 | -24 | -16 | -35 | (52,118,65) | (53,96,57) | (53,99,119) | (54,85,58) |
| 52 | -19 | 47 | -81 | 130 | -17 | -46 | 3 | (54,92,131) | (54,131,85) | (55,79,93) | (55,86,107) |
| 53 | -10 | 2 | -4 | 131 | -16 | -30 | 39 | (55,93,132) | (55,107,80) | (55,132,86) | (56,67,102) |
| 54 | -2 | -10 | 4 | 132 | 74 | -103 | -57 | (56,88,68) | (56,95,134) | (56,102,95) | (56,134,88) |
| 55 | -35 | -62 | 32 | 133 | -41 | 72 | -28 | (57,96,135) | (57,135,89) | (58,114,110) | (59,64,82) |
| 56 | -19 | -6 | 3 | 134 | -24 | 18 | 2 | (59,73,108) | (59,82,115) | (59,108,64) | (59,115,91) |
| 57 | -10 | 6 | -16 | 135 | 67 | 83 | -24 | (60,92,73) | (60,116,92) | (61,117,93) | (62,65,118) |
| 58 | 28 | -55 | -2 | 136 | 58 | 27 | 40 | (62,78,79) | (62,79,124) | (62,118,94) | (62,124,65) |
| 59 | 9 | 2 | -3 | 137 | 10 | -2 | -4 | (63,86,114) | (63,95,86) | (63,119,95) | (64,123,99) |
| 60 | -51 | 12 | 48 | 138 | 66 | -15 | 24 | (65,124,100) | (66,80,125) | (66,125,101) | (67,81,126) |
| 61 | -72 | 9 | -83 | 139 | 23 | 35 | -35 | (67,126,102) | (68,88,69) | (68,127,103) | (69,128,104) |
| 62 | 19 | -47 | -81 | 140 | -15 | -66 | -24 | (70,75,112) | (70,129,105) | (71,91,120) | (71,130,106) |
| 63 | -71 | -53 | 17 | 141 | -63 | 47 | 2 | (72,77,97) | (72,97,136) | (72,136,107) | (73,92,98) |
| 64 | 2 | 1 | -6 | 142 | 127 | -4 | -9 | (73,98,137) | (73,137,108) | (74,101,139) | (74,111,89) |
| 65 | 37 | -64 | -55 | 143 | 3 | 13 | -10 | (74,139,111) | (75,102,140) | (75,140,112) | (76,103,121) |
| 66 | 98 | 7 | 95 | 144 | 18 | 24 | -2 | (76,113,90) | (77,104,122) | (78,93,79) | (78,105,123) |
| 67 | -29 | -44 | 0 | 145 | 43 | 27 | 40 | (79,106,124) | (80,107,125) | (81,108,126) | (82,109,127) |
| 68 | -22 | 40 | 6 | 146 | 55 | 28 | 2 | (83,110,128) | (84,98,111) | (84,111,129) | (84,122,98) |
| 69 | 4 | 127 | 9 | 147 | 24 | 16 | -35 | (85,112,130) | (85,113,112) | (85,131,113) | (86,132,114) |
| 70 | -61 | 30 | -21 | 148 | 27 | -43 | -40 | (87,94,133) | (87,133,115) | (88,134,116) | (89,135,117) |
| 71 | 19 | -14 | 16 | 149 | -44 | 29 | 0 | (90,113,141) | (90,141,118) | (91,115,144) | (91,144,120) |
| 72 | 64 | 37 | 55 | 150 | 58 | 41 | -34 | (92,116,131) | (93,117,132) | (94,118,133) | (95,119,134) |
| 73 | 1 | -2 | 6 | 151 | 61 | -30 | -21 | (96,97,120) | (96,120,135) | (96,121,97) | (97,121,136) |
| 74 | -1 | 58 | -65 | 152 | 20 | -1 | -9 | (98,122,137) | (99,123,143) | (99,143,119) | (100,124,138) |
| 75 | -58 | -27 | 40 | 153 | -6 | 19 | -3 | (100,138,109) | (101,125,139) | (102,126,140) | (103,127,145) |
| 76 | -27 | 43 | -40 | 154 | 40 | 22 | -6 | (103,145,121) | (104,128,146) | (104,146,122) | (105,129,147) |
| 77 | 72 | 41 | 28 | 155 | 14 | 19 | -16 | (105,147,123) | (106,130,148) | (106,148,124) | (107,136,125) |
| 78 | 1 | -58 | -65 | 156 | 46 | -17 | -3 | (108,137,126) | (109,138,127) | (110,114,142) | (110,142,128) |
| (111,139,129) | (112,140,130) | (113,131,141) | (114,132,142) | ||||||||
| (115,133,144) | (116,134,149) | (116,149,131) | (117,135,150) | ||||||||
| (117,150,132) | (118,141,133) | (119,143,134) | (120,144,135) | ||||||||
| (121,145,136) | (122,146,137) | (123,147,143) | (124,148,138) | ||||||||
| (125,136,151) | (125,151,139) | (126,137,152) | (126,152,140) | ||||||||
| (127,138,145) | (128,142,146) | (129,139,147) | (130,140,148) | ||||||||
| (131,149,141) | (132,150,142) | (133,141,153) | (133,153,144) | ||||||||
| (134,143,149) | (135,144,150) | (136,145,151) | (137,146,152) | ||||||||
| (138,148,156) | (138,156,145) | (139,151,147) | (140,152,148) | ||||||||
| (141,149,153) | (142,150,154) | (142,154,146) | (143,147,155) | ||||||||
| (143,155,149) | (144,153,150) | (145,156,151) | (146,154,152) | ||||||||
| (147,151,155) | (148,152,156) | (149,155,153) | (150,153,154) | ||||||||
| (151,156,155) | (152,154,156) | (153,155,154) | (154,155,156) | ||||||||
| Vertex Permutation Groups | |||||||||||
| (1,44,55,101)(2,105,45,139)(3,78,80,74)(4,117,50,61)(5,84,91,143)(6,129,34,147) | |||||||||||
| (7,111,30,123)(8,10,150,88)(9,39,154,68)(11,24,142,69)(12,93,66,51)(13,14,132,37) | |||||||||||
| (15,98,59,99)(16,26,153,56)(17,89,60,46)(18,36,144,134)(19,135,116,81)(20,62,107,52) | |||||||||||
| (21,33,79,125)(22,28,73,64)(23,130,156,103)(25,58,146,49)(27,114,128,32)(29,122,115,119) | |||||||||||
| (31,38,71,155)(35,85,152,127)(40,120,149,67)(41,65,72,118)(42,70,106,151)(43,94,86,83) | |||||||||||
| (47,57,92,108)(48,77,133,95)(53,54,137,82)(63,110,104,87)(75,124,136,90)(76,112,148,145) | |||||||||||
| (96,131,126,109)(97,141,102,100)(113,140,138,121) | |||||||||||
References
- Bokowski, J., Sturmfels, B.: Computational Synthetic Geometry, Lecture Notes in Mathematics 1355 (1989. [CrossRef]
- Grünbaum, B.: Convex Polytopes, Pure and Applied Mathematics, Vol. 16, Interscience-Wiley, New York, (1967).
- Bokowski, J., Guedes de Oliveira, A.: On the generation of oriented matroids. Discrete Comput Geom 24: 197. (2000). [CrossRef]
- Schewe, L.: Nonrealizable Minimal Vertex Triangulations of Surfaces: Showing Nonrealizability Using Oriented Matroids and Satisfiability Solvers. (2010).
- Conder, M.D.E.: Regular maps and hypermaps of Euler characteristic -1 to -200, J. Comb. Theory Ser. B, 99 455–459 (2009) Associated lists available online: http://www.math.auckland.ac.nz/~conder (accessed on 22 January 2020).
- Bokowski, J., Gévay, G.: On Polyhedral Realizations of Hurwitz’s Regular Map {3,7}18 of Genus 7 with Geometric Symmetries. Art Discrete Appl. Math. 1–25 (2021. [CrossRef]
- Möbius, A.F.: Gesammelte Werke II. Hrsg. Felix Klein, Neudruck der Ausgabe von 1886, p. 552 ff. (1967).
- Császár, A.: A polyhedron without diagonals. Acta Sci. Math. Szeged, 13, 140–142 (1949).
- Bokowski, J., Eggert, A.: All Realizations of Möbius’ Torus with 7 Vertices. Structural Topology 17, 59-76 (1991).
- Szilassi, L. : Regular toroids. Structural Topology 13, 69-80. 1986. [Google Scholar]
- Bokowski, J., Schewe, L.: On Szilassi’s Torus. Symmetry: Culture and Science, Vol. 13, Nos. 3-4, 211-240 (2002).
- Altshuler, A., Bokowski, J., Schuchert, P.: Spatial polyhedra without diagonals. Israel J. Math. 86, 373-396 (1994).
- Altshuler, A., Bokowski, J., Schuchert, P.: Sphere systems and neighborly spatial polyhedra with 10 vertices. Suppl. Rend. Circ. Mat. Palermo (2), 35 (1994).
- Altshuler, A., Bokowski, J., Schuchert, P.: Neighborly 2-Manifolds with 12 Vertices. Journal of Comb. Theory, Series A 75, 148-162 (1996).
- Ringel, G.: Map Color Theorem, Springer Verlag, Berlin / New York (1974).
- Hurwitz, A.: "Uber algebraische Gebilde mit Eindeutigen Transformationen in sich. Math. Ann. 41 (3): 403-442 (1893). [CrossRef]
- Klein, F.: Über die Transformationen siebenter Ordnung der elliptischen Functionen, Math. Ann. 14 (1879), 428–471. (Revised version in Gesammelte Mathematische Abhandlungen, Vol., 3, Springer, Berlin, 1923). /: https. [CrossRef]
- Klein, F.: Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen fünften Grades, Teubner, Leipzig, (1884).
- Schulte, E., Wills, J. M.: A polyhedral realization of Felix Klein’s map {3,7}8 on a Riemann surface of genus 3. J. London Math. Soc. (2) 32, 539–547 (1985). [CrossRef]
- Schulte, E., Wills, J. M.: Convex-Faced Combinatorially Regular Polyhedra of Small Genus. Symmetry 4, 1-14, (2012). [CrossRef]
- Gévay, G., Wills, J.M.: On regular and equivelar Leonardo polyhedra, ARS MATHEMATICA CONTEMPORANEA 6, 1-11 (2013. [CrossRef]
- Gévay, G., Schulte, E., Wills, J.M.: The regular Grünbaum polyhedron of genus 5, Adv. Geom. 14 465–482 (2014).
- Bokowski, J., Wills, J.M.: Regular Leonardo Polyhedra, Art Discrete Appl. Math. 5 (2022). [CrossRef]
- Bokowski, J., Wills, J.M.: An E3 embedding of Coxeter’s regular map {8,4|3} results in a regular Leonardo polyhedron. Art Discrete Appl. Math. 7,2 1–14 (2024). [CrossRef]
- Bokowski, J.: On Symmetrical Equivelar Polyhedra of Type {3.7} and Embeddings of Regular Maps. Symmetry 2024, 16(10), (1273). [CrossRef]
- McCooey, D. I.: A non-self-intersecting polyhedral realization of the all-heptagon Klein map. Symmetry Cult. Sci. 20, 247-268 (2009).
- Dyck, W.: Über Aufstellung und Untersuchung von Gruppe und Irrationalität regulärer Riemann’scher Flächen, Math. Ann. 17 473–508 (1880). [CrossRef]
- Dyck, W.: Notiz über eine reguläre Riemann’sche Fläche vom Geschlecht drei und die zugehörige “Normalcurve” vierter Ordnung, Math. Ann. 17 (1880), 510–516.
- Bokowski, J.: A geometric realization without self-intersections does exist for Dyck’s regular map, Discrete Comput. Geom. 6 583–589 (1989).
- Brehm, U.; Maximally symmetric polyhedral realizations of Dyck’s regular map. Mathematika, 34,2, p 229-236 (1987). [CrossRef]
- Van Wijk, J. J.: Symmetric tiling of closed surfaces: visualization of regular maps. Conf. Proc. SIGGRAPH, New Orleans, pp 49: 1-12 (ACM Transactions on Graphics), 28 (3): 12, (2009). [CrossRef]
- Van Wijk, J. J., Visualization of Regular Maps: The Chase Continues. IEEE Trans Vis Comput Graph. 2014 Dec;20(12):2614-23. [CrossRef]
- Klein, F., Fricke, R.: Vorlesungen über die Theorie der elliptischen Modulfunktionen, Teubner, Leipzig, Germany, 1890.
- Grünbaum, B., Acoptic polyhedra. In Advances in Discrete and Computational Geometry; Chazelle, B.; et al., Eds.; Contemp. Math. 223; American Mathematical Society: Providence, RI, 1999; pp. 163–199.
- Bokowski, J., Cuntz, M.: Hurwitz’s regular map (3,7) of genus 7: A polyhedral realization. Art Discrete Appl Math 1, 1-17 (2018). [CrossRef]
- Bokowski, J., Pisanski, T.: Oriented matroids and complete-graph embeddings on surfaces. J. Comb. Theory, Ser. A (2007). [CrossRef]
- Bokowski, J.: Schöne Fragen aus der Geometrie, Ein interaktiver Überblick über gelöste und noch offene Probleme. Springer Spektrum (2020).
- Altshuler, A., Brehm, U. Neighborly maps with few vertices. Discrete Comput Geom 8, 93–104 (1992). [CrossRef]
- Séquin, C., Xiao, L.: K12 and the genus 6 Tiffany Lamp. EECS, CS Division, University of California Berkeley, CA 94720-1776, U.S.A. Home page of Carlo Séquin, Berkeley.
| Conder Notation | Genus | Schläfli Type | Map Author | Comb. Sym. | Embedding Symmetries | Dual Embedding | Fig. | |||
|---|---|---|---|---|---|---|---|---|---|---|
| R3.1 | 3 | 24 | 84 | 56 | Klein | 336 PSL(2,7) | T* | T* | Figure 2 | |
| R3.2 | 3 | 12 | 48 | 32 | Dyck | 192 | D3*, S2 | Figure 5 | ||
| R5.1 | 5 | 24 | 96 | 64 | Fricke, Klein | 384 | O*, S2 | D2, C3 | Figure 9 | |
| R6.1 | 6 | 15 | 75 | 50 | Coxeter, Moser | 300 | C3, C2, C1* | Figure 11 | ||
| R7.1 | 7 | 72 | 252 | 168 | Hurwitz, Macbeath | 1008 PSL(2,8) | C3, C2, S2, C1* | C3, C2 | Figure 12 | |
| R8.1 | 8 | 42 | 168 | 112 | 672 PSL(3,2) | D2, C4, C3, S2 | Figure 16 | |||
| R8.2 | 8 | 42 | 168 | 112 | 672 PSL(3,2) | D2, C4, C3 | Figure 17 | |||
| R10.1 | 10 | 36 | 162 | 108 | 648 | D2 | Figure 18 | |||
| R10.2 | 10 | 18 | 108 | 72 | 432 | C2 | Figure 19 | |||
| R13.1 | 13 | 36 | 180 | 120 | 720 | C3, C2 | Figure 21 | |||
| R13.2 | 13 | 24 | 144 | 96 | 576 | |||||
| R14.1 | 14 | 156 | 546 | 364 | 2184 PSL(2,13) | D2 | Figure 22 | |||
| R14.2 | 14 | 156 | 546 | 364 | 2184 PSL(2,13) | C2 | Figure 23 | |||
| R14.3 | 14 | 156 | 546 | 364 | 2184 PSL(2,13) | D2 | Figure 24 |
| Graph | Genus | Number of embeddings | Combinatorial polyhedra, articles | Geometrical embeddings, articles | |||
|---|---|---|---|---|---|---|---|
| 0 | 4 | 6 | 4 | 1 | |||
| 1 | 7 | 21 | 14 | 4 | [7] | [8,9] | |
| dual | 1 | 14 | 21 | 7 | 1 | [10,11] | |
| – | 9 | 36 | 24 | 16 | [12] | [12] | |
| – | 10 | 45 | 30 | 4 | [13] | [13] | |
| 6 | 12 | 66 | 44 | none | [14] | [3,4] | |
| 11 | 15 | 105 | 70 | unknown | [15] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
