Submitted:
20 February 2025
Posted:
21 February 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Physiology
3. Proposed Pathophysiological Mechanisms Leading to AVP/Copeptin Release in Myocardial Ischemia
4. The Assay
5. Copeptin and Acute Myocardial Infarction
5.1. Evidence Establishing the Combined Use of Copeptin with Conventional Troponin
5.2. Copeptin in Combination with High-Sensitivity Troponin
5.2.1. Evidence Suggesting that DMS Is Superior or Equal to High-Sensitivity Troponin Protocols
5.2.2. Controversial Evidence or Evidence Suggesting that DMS is Inferior to High-Sensitivity Troponin Protocols
5.2.3. Copeptin in Early Presenters
5.2.4. Copeptin in Combination with Risk Stratification Scores
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- The Top 10 Causes of Death Available online:. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 18 January 2025).
- Timmis, A.; Vardas, P.; Townsend, N.; Torbica, A.; Katus, H.; De Smedt, D.; Gale, C.P.; Maggioni, A.P.; Petersen, S.E.; Huculeci, R.; et al. European Society of Cardiology: Cardiovascular Disease Statistics 2021. European Heart Journal 2022, 43, 716–799. [Google Scholar] [CrossRef] [PubMed]
- Maroko, P.R.; Kjekshus, J.K.; Sobel, B.E.; Watanabe, T.; Covell, J.W.; Ross, J.; Braunwald, E. Factors Influencing Infarct Size Following Experimental Coronary Artery Occlusions. Circulation 1971, 43, 67–82. [Google Scholar] [CrossRef] [PubMed]
- Braunwald, E. Evolution of the Management of Acute Myocardial Infarction: A 20th Century Saga. The Lancet 1998, 352, 1771–1774. [Google Scholar] [CrossRef] [PubMed]
- Thrane, P.G.; Olesen, K.K.W.; Thim, T.; Gyldenkerne, C.; Mortensen, M.B.; Kristensen, S.D.; Maeng, M. Mortality Trends After Primary Percutaneous Coronary Intervention for ST-Segment Elevation Myocardial Infarction. Journal of the American College of Cardiology 2023, 82, 999–1010. [Google Scholar] [CrossRef]
- Zeymer, U.; Ludman, P.; Danchin, N.; Kala, P.; Laroche, C.; Sadeghi, M.; Caporale, R.; Shaheen, S.M.; Legutko, J.; Iakobsishvili, Z.; et al. Reperfusion Therapies and In-Hospital Outcomes for ST-Elevation Myocardial Infarction in Europe: The ACVC-EAPCI EORP STEMI Registry of the European Society of Cardiology. European Heart Journal 2021, 42, 4536–4549. [Google Scholar] [CrossRef]
- Nadarajah, R.; Ludman, P.; Appelman, Y.; Brugaletta, S.; Budaj, A.; Bueno, H.; Huber, K.; Kunadian, V.; Leonardi, S.; Lettino, M.; et al. Cohort Profile: The ESC EURObservational Research Programme Non-ST-Segment Elevation Myocardial Infraction (NSTEMI) Registry. European Heart Journal - Quality of Care and Clinical Outcomes 2022, 9, 8–15. [Google Scholar] [CrossRef]
- Puymirat, E.; Simon, T.; Cayla, G.; Cottin, Y.; Elbaz, M.; Coste, P.; Lemesle, G.; Motreff, P.; Popovic, B.; Khalife, K.; et al. Acute Myocardial Infarction: Changes in Patient Characteristics, Management, and 6-Month Outcomes Over a Period of 20 Years in the FAST-MI Program (French Registry of Acute ST-Elevation or Non-ST-Elevation Myocardial Infarction) 1995 to 2015. Circulation 2017, 136, 1908–1919. [Google Scholar] [CrossRef]
- Polonski, L.; Gasior, M.; Gierlotka, M.; Osadnik, T.; Kalarus, Z.; Trusz-Gluza, M.; Zembala, M.; Wilczek, K.; Lekston, A.; Zdrojewski, T.; et al. A Comparison of ST Elevation versus Non-ST Elevation Myocardial Infarction Outcomes in a Large Registry Database. International Journal of Cardiology 2011, 152, 70–77. [Google Scholar] [CrossRef]
- Gandhi, S.; Garratt, K.N.; Li, S.; Wang, T.Y.; Bhatt, D.L.; Davis, L.L.; Zeitouni, M.; Kontos, M.C. Ten-Year Trends in Patient Characteristics, Treatments, and Outcomes in Myocardial Infarction From National Cardiovascular Data Registry Chest Pain–MI Registry. Circ: Cardiovascular Quality and Outcomes 2022, 15. [Google Scholar] [CrossRef]
- Nadarajah, R.; Ludman, P.; Laroche, C.; Appelman, Y.; Brugaletta, S.; Budaj, A.; Bueno, H.; Huber, K.; Kunadian, V.; Leonardi, S.; et al. Presentation, Care, and Outcomes of Patients with NSTEMI According to World Bank Country Income Classification: The ACVC-EAPCI EORP NSTEMI Registry of the European Society of Cardiology. European Heart Journal - Quality of Care and Clinical Outcomes 2023, 9, 552–563. [Google Scholar] [CrossRef]
- Gilutz, H.; Shindel, S.; Shoham-Vardi, I. Adherence to NSTEMI Guidelines in the Emergency Department: Regression to Reality. Critical Pathways in Cardiology: A Journal of Evidence-Based Medicine 2019, 18, 40–46. [Google Scholar] [CrossRef]
- Cha, J.-J.; Bae, S.; Park, D.-W.; Park, J.H.; Hong, S.J.; Park, S.-M.; Yu, C.W.; Rha, S.-W.; Lim, D.-S.; Suh, S.Y.; et al. Clinical Outcomes in Patients With Delayed Hospitalization for Non–ST-Segment Elevation Myocardial Infarction. Journal of the American College of Cardiology 2022, 79, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Department Of Cardiology, Sisli International Kolan Hospital; Istanbul-Turkey; Erol, M. K.; Kayikcioglu, M.; Department of Cardiology, Faculty of Medicine, Ege University; Izmir-Turkey; Kilickap, M.; Department of Cardiology, Faculty of Medicine, Ankara University; Ankara-Turkey; Guler, A.; Department of Cardiology, Health Science University, Istanbul Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital; Istanbul-Turkey; Ozturk, O.; et al. Time Delays in Each Step from Symptom Onset to Treatment in Acute Myocardial Infarction: Results from a Nation-Wide TURKMI Registry. Anatolian J Cardiol 2021, 25, 294–303. [Google Scholar] [CrossRef]
- Viana, M.; Laszczyńska, O.; Araújo, C.; Borges, A.; Barros, V.; Ribeiro, A.I.; Dias, P.; Maciel, M.J.; Moreira, I.; Lunet, N.; et al. Patient and System Delays in the Treatment of Acute Coronary Syndrome. Revista Portuguesa de Cardiologia (English Edition) 2020, 39, 123–131. [Google Scholar] [CrossRef]
- Pendyal, A.; Rothenberg, C.; Scofi, J.E.; Krumholz, H.M.; Safdar, B.; Dreyer, R.P.; Venkatesh, A.K. National Trends in Emergency Department Care Processes for Acute Myocardial Infarction in the United States, 2005 to 2015. JAHA 2020, 9, e017208. [Google Scholar] [CrossRef] [PubMed]
- National Hospital Ambulatory Medical Care Survey: 2021 Emergency Department Summary Tables. 2021.
- Stepinska, J.; Lettino, M.; Ahrens, I.; Bueno, H.; Garcia-Castrillo, L.; Khoury, A.; Lancellotti, P.; Mueller, C.; Muenzel, T.; Oleksiak, A.; et al. Diagnosis and Risk Stratification of Chest Pain Patients in the Emergency Department: Focus on Acute Coronary Syndromes. A Position Paper of the Acute Cardiovascular Care Association. European Heart Journal: Acute Cardiovascular Care 2020, 9, 76–89. [Google Scholar] [CrossRef]
- Mockel, M.; Searle, J.; Muller, R.; Slagman, A.; Storchmann, H.; Oestereich, P.; Wyrwich, W.; Ale-Abaei, A.; Vollert, J.O.; Koch, M.; et al. Chief Complaints in Medical Emergencies: Do They Relate to Underlying Disease and Outcome? The Charité Emergency Medicine Study (CHARITEM). European Journal of Emergency Medicine 2013, 20, 103–108. [Google Scholar] [CrossRef]
- Maisel, A.; Mueller, C.; Neath, S.-X.; Christenson, R.H.; Morgenthaler, N.G.; McCord, J.; Nowak, R.M.; Vilke, G.; Daniels, L.B.; Hollander, J.E.; et al. Copeptin Helps in the Early Detection of Patients With Acute Myocardial Infarction. Journal of the American College of Cardiology 2013, 62, 150–160. [Google Scholar] [CrossRef]
- Shin, H.; Jang, B.-H.; Lim, T.H.; Lee, J.; Kim, W.; Cho, Y.; Ahn, C.; Choi, K.-S. Diagnostic Accuracy of Adding Copeptin to Cardiac Troponin for Non-ST-Elevation Myocardial Infarction: A Systematic Review and Meta-Analysis. PLoS ONE 2018, 13, e0200379. [Google Scholar] [CrossRef]
- Mueller, C. Biomarkers and Acute Coronary Syndromes: An Update. European Heart Journal 2014, 35, 552–556. [Google Scholar] [CrossRef]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D. ; The Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction Fourth Universal Definition of Myocardial Infarction (2018). Circulation 2018, 138. [Google Scholar] [CrossRef]
- Mueller, C.; Giannitsis, E.; Möckel, M.; Huber, K.; Mair, J.; Plebani, M.; Thygesen, K.; Jaffe, A.S.; Lindahl, B. ; the Biomarker Study Group of the ESC Acute Cardiovascular Care Association Rapid Rule out of Acute Myocardial Infarction: Novel Biomarker-Based Strategies. European Heart Journal: Acute Cardiovascular Care 2017, 6, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Collet, J.-P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC Guidelines for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation. European Heart Journal 2021, 42, 1289–1367. [Google Scholar] [CrossRef]
- Giannitsis, E.; Blankenberg, S.; Christenson, R.H.; Frey, N.; Von Haehling, S.; Hamm, C.W.; Inoue, K.; Katus, H.A.; Lee, C.-C.; McCord, J.; et al. Critical Appraisal of the 2020 ESC Guideline Recommendations on Diagnosis and Risk Assessment in Patients with Suspected Non-ST-Segment Elevation Acute Coronary Syndrome. Clin Res Cardiol 2021, 110, 1353–1368. [Google Scholar] [CrossRef] [PubMed]
- Mueller, C.; Möckel, M.; Giannitsis, E.; Huber, K.; Mair, J.; Plebani, M.; Thygesen, K.; Jaffe, A.S.; Lindahl, B. ; the ESC Study Group on Biomarkers in Cardiology of the Acute Cardiovascular Care Association Use of Copeptin for Rapid Rule-out of Acute Myocardial Infarction. European Heart Journal: Acute Cardiovascular Care 2018, 7, 570–576. [Google Scholar] [CrossRef]
- Holwerda, D.A. A Glycopeptide from the Posterior Lobe of Pig Pituitaries: 1. Isolation and Characterization. European Journal of Biochemistry 1972, 28, 334–339. [Google Scholar] [CrossRef]
- Acher, R.; Chauvet, J.; Rouille, Y. Dynamic Processing of Neuropeptides. JMN 2002, 18, 223–228. [Google Scholar] [CrossRef]
- Christ-Crain, M. Vasopressin and Copeptin in Health and Disease. Rev Endocr Metab Disord 2019, 20, 283–294. [Google Scholar] [CrossRef]
- Łukaszyk, E.; Małyszko, J. Copeptin: Pathophysiology and Potential Clinical Impact. Adv Med Sci 2015, 60, 335–341. [Google Scholar] [CrossRef]
- Săcărescu, A.; Turliuc, M.-D.; Brănișteanu, D.D. Role of Copeptin in the Diagnosis of Traumatic Neuroendocrine Dysfunction. Neuropeptides 2021, 89, 102167. [Google Scholar] [CrossRef]
- Nickel, C.H.; Bingisser, R.; Morgenthaler, N.G. The Role of Copeptin as a Diagnostic and Prognostic Biomarker for Risk Stratification in the Emergency Department. BMC Med 2012, 10, 7. [Google Scholar] [CrossRef] [PubMed]
- Morgenthaler, N.G. Copeptin: A Biomarker of Cardiovascular and Renal Function. Congestive Heart Failure 2010, 16. [Google Scholar] [CrossRef]
- Bevilacqua, M.; Norbiato, G.; Chebat, E.; Raggi, U.; Cavaiani, P.; Guzzetti, R.; Bertora, P. Osmotic and Nonosmotic Control of Vasopressin Release in the Elderly: Effect of Metoclopramide. The Journal of Clinical Endocrinology & Metabolism 1987, 65, 1243–1247. [Google Scholar] [CrossRef]
- Mu, D.; Cheng, J.; Qiu, L.; Cheng, X. Copeptin as a Diagnostic and Prognostic Biomarker in Cardiovascular Diseases. Front. Cardiovasc. Med. 2022, 9, 901990. [Google Scholar] [CrossRef]
- Rivier, C.; Vale, W. Interaction of Corticotropin-Releasing Factor and Arginine Vasopressin on Adrenocorticotropin Secretion in Vivo *. Endocrinology 1983, 113, 939–942. [Google Scholar] [CrossRef]
- Jalleh, R.; Torpy, D.J. The Emerging Role of Copeptin. Clin Biochem Rev 2021, 42, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Rivier, C.; Vale, W. Modulation of Stress-Induced ACTH Release by Corticotropin-Releasing Factor, Catecholamines and Vasopressin. Nature 1983, 305, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, G.; Subburaju, S.; Young, S.; Chen, J. The Parvocellular Vasopressinergic System and Responsiveness of the Hypothalamic Pituitary Adrenal Axis during Chronic Stress. Prog Brain Res 2008, 170, 29–39. [Google Scholar] [CrossRef]
- Nagy, G.; Mulchahey, J.J.; Smyth, D.G.; Neill, J.D. The Glycopeptide Moiety of Vasopressin-Neurophysin Precursor Is Neurohypophysial Prolactin Releasing Factor. Biochem Biophys Res Commun 1988, 151, 524–529. [Google Scholar] [CrossRef]
- Morgenthaler, N.G.; Struck, J.; Jochberger, S.; Dünser, M.W. Copeptin: Clinical Use of a New Biomarker. Trends Endocrinol Metab 2008, 19, 43–49. [Google Scholar] [CrossRef]
- Morgenthaler, N.G.; Struck, J.; Alonso, C.; Bergmann, A. Assay for the Measurement of Copeptin, a Stable Peptide Derived from the Precursor of Vasopressin. Clinical Chemistry 2006, 52, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Thibonnier, M.; Conarty, D.M.; Preston, J.A.; Wilkins, P.L.; Berti-Mattera, L.N.; Mattera, R. Molecular Pharmacology of Human Vasopressin Receptors. In Vasopressin and Oxytocin; Zingg, H.H., Bourque, C.W., Bichet, D.G., Eds.; Advances in Experimental Medicine and Biology; Springer US: Boston, MA, 1998; ISBN 978-1-4613-7210-3. [Google Scholar]
- Holmes, C.L.; Landry, D.W.; Granton, J.T. Science Review: Vasopressin and the Cardiovascular System Part 1 – Receptor Physiology. Crit Care 2003, 7, 427. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.K. Vasopressin and Vasopressin Receptor Antagonists. Electrolyte Blood Press 2008, 6, 51–55. [Google Scholar] [CrossRef]
- Guillon, G.; Grazzini, E.; Andrez, M.; Breton, C.; Trueba, M.; Gal, C.S.-L.; Boccara, G.; Derick, S.; Chouinard, L.; Gallo-payet, N. Vasopressin: A Potent Autocrine/Paracrine Regulator of Mammal Adrenal Functions. Endocrine Research 1998, 24, 703–710. [Google Scholar] [CrossRef]
- Grazzini, E.; Breton, C.; Derick, S.; Andres, M.; Raufaste, D.; Rickwaert, F.; Boccara, G.; Colson, P.; Guérineau, N.C.; Serradeil-Le Gal, C.; et al. Vasopressin Receptors in Human Adrenal Medulla and Pheochromocytoma1. The Journal of Clinical Endocrinology & Metabolism 1999, 84, 2195–2203. [Google Scholar] [CrossRef]
- Zenteno-Savin, T.; Sada-Ovalle, I.; Ceballos, G.; Rubio, R. Effects of Arginine Vasopressin in the Heart Are Mediated by Specific Intravascular Endothelial Receptors. European Journal of Pharmacology 2000, 410, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Mei, Q.; Liang, B.T. P2 Purinergic Receptor Activation Enhances Cardiac Contractility in Isolated Rat and Mouse Hearts. American Journal of Physiology-Heart and Circulatory Physiology 2001, 281, H334–H341. [Google Scholar] [CrossRef]
- Russell, J.A. Bench-to-Bedside Review: Vasopressin in the Management of Septic Shock. Crit Care 2011, 15, 226. [Google Scholar] [CrossRef]
- Roy, R.K.; Augustine, R.A.; Brown, C.H.; Schwenke, D.O. Acute Myocardial Infarction Activates Magnocellular Vasopressin and Oxytocin Neurones. J Neuroendocrinology 2019, 31, e12808. [Google Scholar] [CrossRef]
- Boeckel, J.-N.; Oppermann, J.; Anadol, R.; Fichtlscherer, S.; Zeiher, A.M.; Keller, T. Analyzing the Release of Copeptin from the Heart in Acute Myocardial Infarction Using a Transcoronary Gradient Model. Sci Rep 2016, 6, 20812. [Google Scholar] [CrossRef]
- Reimer, K.A.; Jennings, R.B.; Tatum, A.H. Pathobiology of Acute Myocardial Ischemia: Metabolic, Functional and Ultrastructural Studies. The American Journal of Cardiology 1983, 52, 72–81. [Google Scholar] [CrossRef]
- Vinhais Da Silva, A.V.; Chesseron, S.; Benouna, O.; Rollin, J.; Roger, S.; Bourguignon, T.; Chadet, S.; Ivanes, F. P2 Purinergic Receptors at the Heart of Pathological Left Ventricular Remodeling Following Acute Myocardial Infarction. American Journal of Physiology-Heart and Circulatory Physiology, 0059. [Google Scholar] [CrossRef]
- Nobian, A.; Mohamed, A.; Spyridopoulos, I. The Role of Arginine Vasopressin in Myocardial Infarction and Reperfusion. Kardiol Pol 2019, 77, 908–917. [Google Scholar] [CrossRef]
- Katan, M.; Morgenthaler, N.; Widmer, I.; Puder, J.J.; König, C.; Müller, B.; Christ-Crain, M. Copeptin, a Stable Peptide Derived from the Vasopressin Precursor, Correlates with the Individual Stress Level. Neuro Endocrinol Lett 2008, 29, 341–346. [Google Scholar]
- Sheng, J.A.; Bales, N.J.; Myers, S.A.; Bautista, A.I.; Roueinfar, M.; Hale, T.M.; Handa, R.J. The Hypothalamic-Pituitary-Adrenal Axis: Development, Programming Actions of Hormones, and Maternal-Fetal Interactions. Front. Behav. Neurosci. 2021, 14, 601939. [Google Scholar] [CrossRef]
- Mavani, G.P.; DeVita, M.V.; Michelis, M.F. A Review of the Nonpressor and Nonantidiuretic Actions of the Hormone Vasopressin. Front Med (Lausanne) 2015, 2, 19. [Google Scholar] [CrossRef] [PubMed]
- Donald, R.A.; Crozier, I.G.; Foy, S.G.; Richards, A.M.; Livesey, J.H.; Ellis, M.J.; Mattioli, L.; Ikram, H. Plasma Corticotrophin Releasing Hormone, Vasopressin, ACTH and Cortisol Responses to Acute Myocardial Infarction. Clinical Endocrinology 1994, 40, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Frangogiannis, N. The Inflammatory Response in Myocardial Infarction. Cardiovascular Research 2002, 53, 31–47. [Google Scholar] [CrossRef] [PubMed]
- Chikanza, I.C.; Petrou, P.; Chrousos, G. Perturbations of Arginine Vasopressin Secretion during Inflammatory Stress: Pathophysiologic Implications. Annals of the New York Academy of Sciences 2000, 917, 825–834. [Google Scholar] [CrossRef]
- Chikanza, I.C.; Grossman, A.S. Hypothalamic-Pituitary-Mediated Immunomodulation: Arginine Vasopressin Is a Neuroendocrine Immune Mediator. Rheumatology 1998, 37, 131–136. [Google Scholar] [CrossRef]
- Matter, M.A.; Paneni, F.; Libby, P.; Frantz, S.; Stähli, B.E.; Templin, C.; Mengozzi, A.; Wang, Y.-J.; Kündig, T.M.; Räber, L.; et al. Inflammation in Acute Myocardial Infarction: The Good, the Bad and the Ugly. Eur Heart J 2024, 45, 89–103. [Google Scholar] [CrossRef]
- Holmes, C.L.; Landry, D.W.; Granton, J.T. Science Review: Vasopressin and the Cardiovascular System Part 2 – Clinical Physiology. Crit Care 2004, 8, 15. [Google Scholar] [CrossRef] [PubMed]
- Okamura, T.; Ayajiki, K.; Fujioka, H.; Toda, N. J: Underlying Arginine Vasopressin-Induced Relaxation in Monkey Isolated Coronary Arteries, 1999; 17. [CrossRef]
- Fernández, N.; Garcı́a, J.L.; Garcı́a-Villalón, A.L.; Monge, L.; Gómez, B.; Diéguez, G. Coronary Vasoconstriction Produced by Vasopressin in Anesthetized Goats. Role of Vasopressin V1 and V2 Receptors and Nitric Oxide. European Journal of Pharmacology 1998, 342, 225–233. [Google Scholar] [CrossRef]
- Thibonnier, M.; Conarty, D.M.; Preston, J.A.; Plesnicher, C.L.; Dweik, R.A.; Erzurum, S.C. Human Vascular Endothelial Cells Express Oxytocin Receptors*. Endocrinology 1999, 140, 1301–1309. [Google Scholar] [CrossRef] [PubMed]
- Boyle, W.A.; Segel, L.D. Attenuation of Vasopressin-Mediated Coronary Constriction and Myocardial Depression in the Hypoxic Heart. Circulation Research 1990, 66, 710–721. [Google Scholar] [CrossRef]
- Ruan, W.; Ma, X.; Bang, I.H.; Liang, Y.; Muehlschlegel, J.D.; Tsai, K.-L.; Mills, T.W.; Yuan, X.; Eltzschig, H.K. The Hypoxia-Adenosine Link during Myocardial Ischemia—Reperfusion Injury. Biomedicines 2022, 10, 1939. [Google Scholar] [CrossRef] [PubMed]
- Szczepanska-Sadowska, E. Neuromodulation of Cardiac Ischemic Pain: Role of the Autonomic Nervous System and Vasopressin. J. Integr. Neurosci. 2024, 23, 49. [Google Scholar] [CrossRef]
- Day, T.A.; Sibbald, J.R. Noxious Somatic Stimuli Excite Neurosecretory Vasopressin Cells via A1 Cell Group. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 1990, 258, R1516–R1520. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Lim, J.Y.; Kim, Y.; Jung, S.T.; Hwang, S.W. The Role of Oxytocin, Vasopressin, and Their Receptors at Nociceptors in Peripheral Pain Modulation. Front Neuroendocrinol 2021, 63, 100942. [Google Scholar] [CrossRef]
- Ahn, D.K.; Kim, K.H.; Ju, J.S.; Kwon, S.; Park, J.S. Microinjection of Arginine Vasopressin into the Central Nucleus of Amygdala Suppressed Nociceptive Jaw Opening Reflex in Freely Moving Rats. Brain Research Bulletin 2001, 55, 117–121. [Google Scholar] [CrossRef]
- Baba, K.; Kawasaki, M.; Nishimura, H.; Suzuki, H.; Matsuura, T.; Ikeda, N.; Fujitani, T.; Yamanaka, Y.; Tsukamoto, M.; Ohnishi, H.; et al. Upregulation of the Hypothalamo-Neurohypophysial System and Activation of Vasopressin Neurones Attenuates Hyperalgesia in a Neuropathic Pain Model Rat. Sci Rep 2022, 12, 13046. [Google Scholar] [CrossRef]
- Cragg, B.; Ji, G.; Neugebauer, V. Differential Contributions of Vasopressin V1A and Oxytocin Receptors in the Amygdala to Pain-Related Behaviors in Rats. Mol Pain 2016, 12, 1744806916676491. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yang, Y.; Xu, H.-T.; Chen, J.-M.; Liu, W.-Y.; Lin, B.-C. Arginine Vasopressin Induces Periaqueductal Gray Release of Enkephalin and Endorphin Relating to Pain Modulation in the Rat. Regulatory Peptides 2007, 142, 29–36. [Google Scholar] [CrossRef]
- Wang, D.-X.; Yang, J.; Gu, Z.-X.; Song, C.-Y.; Liu, W.-Y.; Zhang, J.; Li, X.-P.; Li, H.; Wang, G.; Song, C.; et al. Arginine Vasopressin Induces Rat Caudate Nucleus Releasing Acetylcholine to Participate in Pain Modulation. Peptides 2010, 31, 701–705. [Google Scholar] [CrossRef]
- Rosen, S.D.; Camici, P.G. The Brain-Heart Axis in the Perception of Cardiac Pain: The Elusive Link between Ischaemia and Pain. Annals of Medicine 2000, 32, 350–364. [Google Scholar] [CrossRef]
- Reichlin, T.; Hochholzer, W.; Stelzig, C.; Laule, K.; Freidank, H.; Morgenthaler, N.G.; Bergmann, A.; Potocki, M.; Noveanu, M.; Breidthardt, T.; et al. Incremental Value of Copeptin for Rapid Rule Out of Acute Myocardial Infarction. Journal of the American College of Cardiology 2009, 54, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Dupuy, A.-M.; Chastang, E.; Cristol, J.-P.; Jreige, R.; Lefebvre, S.; Sebbane, M. Analytical Performances of the Newly Developed, Fully Automated Kryptor Copeptin Assay: Which Impact Factor for Myocardial Infarction Rules out in the Emergency Department? Clin Lab 2012, 58, 635–644. [Google Scholar]
- BRAHMS_THERMOFISHER_TECNICAL_CHARACTERISTICS.
- Sebbane, M.; Lefebvre, S.; Kuster, N.; Jreige, R.; Jacques, E.; Badiou, S.; Dumont, R.; Cristol, J.-P.; Dupuy, A.-M. Early Rule out of Acute Myocardial Infarction in ED Patients: Value of Combined High-Sensitivity Cardiac Troponin T and Ultrasensitive Copeptin Assays at Admission. The American Journal of Emergency Medicine 2013, 31, 1302–1308. [Google Scholar] [CrossRef] [PubMed]
- Sailer, C.O.; Refardt, J.; Blum, C.A.; Schnyder, I.; Molina-Tijeras, J.A.; Fenske, W.; Christ-Crain, M. Validity of Different Copeptin Assays in the Differential Diagnosis of the Polyuria-Polydipsia Syndrome. Sci Rep 2021, 11, 10104. [Google Scholar] [CrossRef]
- Khan, S.Q.; Dhillon, O.S.; O’Brien, R.J.; Struck, J.; Quinn, P.A.; Morgenthaler, N.G.; Squire, I.B.; Davies, J.E.; Bergmann, A.; Ng, L.L. C-Terminal Provasopressin (Copeptin) as a Novel and Prognostic Marker in Acute Myocardial Infarction: Leicester Acute Myocardial Infarction Peptide (LAMP) Study. Circulation 2007, 115, 2103–2110. [Google Scholar] [CrossRef]
- Reinstadler, S.J.; Klug, G.; Feistritzer, H.-J.; Mayr, A.; Harrasser, B.; Mair, J.; Bader, K.; Streil, K.; Hammerer-Lercher, A.; Esterhammer, R.; et al. Association of Copeptin with Myocardial Infarct Size and Myocardial Function after ST Segment Elevation Myocardial Infarction. Heart 2013, 99, 1525–1529. [Google Scholar] [CrossRef]
- Deveci, O.S.; Ozmen, C.; Karaaslan, M.B.; Celik, A.I. Could Serum Copeptin Level Be an Indicator of Coronary Artery Disease Severity in Patients with Unstable Angina? Int. Heart J. 2021, 62, 528–533. [Google Scholar] [CrossRef]
- Gu, Y.L.; Voors, A.A.; Zijlstra, F.; Hillege, H.L.; Struck, J.; Masson, S.; Vago, T.; Anker, S.D.; Van Den Heuvel, A.F.M.; Van Veldhuisen, D.J.; et al. Comparison of the Temporal Release Pattern of Copeptin with Conventional Biomarkers in Acute Myocardial Infarction. Clin Res Cardiol 2011, 100, 1069–1076. [Google Scholar] [CrossRef] [PubMed]
- Slagman, A.; Searle, J.; Müller, C.; Möckel, M. Temporal Release Pattern of Copeptin and Troponin T in Patients with Suspected Acute Coronary Syndrome and Spontaneous Acute Myocardial Infarction. Clinical Chemistry 2015, 61, 1273–1282. [Google Scholar] [CrossRef]
- Keller, T.; Tzikas, S.; Zeller, T.; Czyz, E.; Lillpopp, L.; Ojeda, F.M.; Roth, A.; Bickel, C.; Baldus, S.; Sinning, C.R.; et al. Copeptin Improves Early Diagnosis of Acute Myocardial Infarction. Journal of the American College of Cardiology 2010, 55, 2096–2106. [Google Scholar] [CrossRef] [PubMed]
- Möckel, M.; Searle, J.; Hamm, C.; Slagman, A.; Blankenberg, S.; Huber, K.; Katus, H.; Liebetrau, C.; Müller, C.; Muller, R.; et al. Early Discharge Using Single Cardiac Troponin and Copeptin Testing in Patients with Suspected Acute Coronary Syndrome (ACS): A Randomized, Controlled Clinical Process Study. European Heart Journal 2015, 36, 369–376. [Google Scholar] [CrossRef]
- Balmelli, C.; Meune, C.; Twerenbold, R.; Reichlin, T.; Rieder, S.; Drexler, B.; Rubini, M.G.; Mosimann, T.; Reiter, M.; Haaf, P.; et al. Comparison of the Performances of Cardiac Troponins, Including Sensitive Assays, and Copeptin in the Diagnostic of Acute Myocardial Infarction and Long-Term Prognosis between Women and Men. American Heart Journal 2013, 166, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, M.J.; Escárcega, R.O.; D’Ascenzo, F.; Magalhães, M.A.; Baker, N.C.; Torguson, R.; Chen, F.; Epstein, S.E.; Miró, Ò.; Llorens, P.; et al. A Systematic Review and Collaborative Meta-Analysis to Determine the Incremental Value of Copeptin for Rapid Rule-Out of Acute Myocardial Infarction. The American Journal of Cardiology 2014, 113, 1581–1591. [Google Scholar] [CrossRef]
- Raskovalova, T.; Twerenbold, R.; Collinson, P.O.; Keller, T.; Bouvaist, H.; Folli, C.; Giavarina, D.; Lotze, U.; Eggers, K.M.; Dupuy, A.-M.; et al. Diagnostic Accuracy of Combined Cardiac Troponin and Copeptin Assessment for Early Rule-out of Myocardial Infarction: A Systematic Review and Meta-Analysis. Eur Heart J Acute Cardiovasc Care 2014, 3, 18–27. [Google Scholar] [CrossRef]
- Roffi, M.; Patrono, C.; Collet, J.-P.; Mueller, C.; Valgimigli, M.; Andreotti, F.; Bax, J.J.; Borger, M.A.; Brotons, C.; Chew, D.P.; et al. 2015 ESC Guidelines for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur Heart J 2016, 37, 267–315. [Google Scholar] [CrossRef]
- Meune, C.; Zuily, S.; Wahbi, K.; Claessens, Y.-E.; Weber, S.; Chenevier-Gobeaux, C. Combination of Copeptin and High-Sensitivity Cardiac Troponin T Assay in Unstable Angina and Non-ST-Segment Elevation Myocardial Infarction: A Pilot Study. Archives of Cardiovascular Diseases 2011, 104, 4–10. [Google Scholar] [CrossRef]
- Potocki, M.; Reichlin, T.; Thalmann, S.; Zellweger, C.; Twerenbold, R.; Reiter, M.; Steuer, S.; Bassetti, S.; Drexler, B.; Stelzig, C.; et al. Diagnostic and Prognostic Impact of Copeptin and High-Sensitivity Cardiac Troponin T in Patients with Pre-Existing Coronary Artery Disease and Suspected Acute Myocardial Infarction. Heart 2012, 98, 558–565. [Google Scholar] [CrossRef] [PubMed]
- Zellweger, C.; Wildi, K.; Twerenbold, R.; Reichlin, T.; Naduvilekoot, A.; Neuhaus, J.D.; Balmelli, C.; Gabutti, M.; Al Afify, A.; Ballarino, P.; et al. Use of Copeptin and High-Sensitive Cardiac Troponin T for Diagnosis and Prognosis in Patients with Diabetes Mellitus and Suspected Acute Myocardial Infarction. International Journal of Cardiology 2015, 190, 190–197. [Google Scholar] [CrossRef]
- Stengaard, C.; Sørensen, J.T.; Ladefoged, S.A.; Lassen, J.F.; Rasmussen, M.B.; Pedersen, C.K.; Ayer, A.; Bøtker, H.E.; Terkelsen, C.J.; Thygesen, K. The Potential of Optimizing Prehospital Triage of Patients with Suspected Acute Myocardial Infarction Using High-Sensitivity Cardiac Troponin T and Copeptin. Biomarkers 2017, 22, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Wildi, K.; Zellweger, C.; Twerenbold, R.; Jaeger, C.; Reichlin, T.; Haaf, P.; Faoro, J.; Giménez, M.R.; Fischer, A.; Nelles, B.; et al. Incremental Value of Copeptin to Highly Sensitive Cardiac Troponin I for Rapid Rule-out of Myocardial Infarction. International Journal of Cardiology 2015, 190, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; Suh, G.J.; Song, S.H.; Jung, Y.S.; Kim, T.; Shin, S.M.; Kang, M.W.; Lee, M.S. Copeptin with High-Sensitivity Troponin at Presentation Is Not Inferior to Serial Troponin Measurements for Ruling out Acute Myocardial Infarction. Clin Exp Emerg Med 2020, 7, 35–42. [Google Scholar] [CrossRef]
- Mueller-Hennessen, M.; Lindahl, B.; Giannitsis, E.; Vafaie, M.; Biener, M.; Haushofer, A.C.; Seier, J.; Christ, M.; Alquézar-Arbé, A.; deFilippi, C.R.; et al. Combined Testing of Copeptin and High-Sensitivity Cardiac Troponin T at Presentation in Comparison to Other Algorithms for Rapid Rule-out of Acute Myocardial Infarction. International Journal of Cardiology 2019, 276, 261–267. [Google Scholar] [CrossRef]
- McCord, J.; Cabrera, R.; Lindahl, B.; Giannitsis, E.; Evans, K.; Nowak, R.; Frisoli, T.; Body, R.; Christ, M.; deFilippi, C.R.; et al. Prognostic Utility of a Modified HEART Score in Chest Pain Patients in the Emergency Department. Circ: Cardiovascular Quality and Outcomes 2017, 10, e003101. [Google Scholar] [CrossRef]
- Fox, K.A.A.; Dabbous, O.H.; Goldberg, R.J.; Pieper, K.S.; Eagle, K.A.; Van De Werf, F.; Avezum, Á.; Goodman, S.G.; Flather, M.D.; Anderson, F.A.; et al. Prediction of Risk of Death and Myocardial Infarction in the Six Months after Presentation with Acute Coronary Syndrome: Prospective Multinational Observational Study (GRACE). BMJ 2006, 333, 1091. [Google Scholar] [CrossRef]
- Giannitsis, E.; Huber, K.; Hamm, C.W.; Möckel, M. Instant Rule-out of Suspected Non-ST-Segment Elevation Myocardial Infarction Using High-Sensitivity Cardiac Troponin T with Copeptin versus a Single Low High-Sensitivity Cardiac Troponin T: Findings from a Large Pooled Individual Data Analysis on 10,329 Patients. Clin Res Cardiol 2021, 110, 194–199. [Google Scholar] [CrossRef]
- Giannitsis, E.; Slagman, A.; Hamm, C.W.; Gehrig, S.; Vollert, J.O.; Huber, K. Copeptin Combined with Either Non-High Sensitivity or High Sensitivity Cardiac Troponin for Instant Rule-out of Suspected Non-ST Segment Elevation Myocardial Infarction. Biomarkers 2020, 25, 649–658. [Google Scholar] [CrossRef]
- Giannitsis, E.; Clifford, P.; Slagman, A.; Ruedelstein, R.; Liebetrau, C.; Hamm, C.; Honnart, D.; Huber, K.; Vollert, J.O.; Simonelli, C.; et al. Multicentre Cross-Sectional Observational Registry to Monitor the Safety of Early Discharge after Rule-out of Acute Myocardial Infarction by Copeptin and Troponin: The Pro-Core Registry. BMJ Open 2019, 9, e028311. [Google Scholar] [CrossRef] [PubMed]
- Ricci, F.; Neumann, J.T.; Rübsamen, N.; Sörensen, N.A.; Ojeda, F.; Cataldo, I.; Zeller, T.; Schäfer, S.; Hartikainen, T.S.; Golato, M.; et al. High-Sensitivity Troponin I with or without Ultra-Sensitive Copeptin for the Instant Rule-out of Acute Myocardial Infarction. Front. Cardiovasc. Med. 2022, 9, 895421. [Google Scholar] [CrossRef] [PubMed]
- Chenevier-Gobeaux, C.; Sebbane, M.; Meune, C.; Lefebvre, S.; Dupuy, A.-M.; Lefèvre, G.; Peschanski, N.; Ray, P. Is High-Sensitivity Troponin, Alone or in Combination with Copeptin, Sensitive Enough for Ruling out NSTEMI in Very Early Presenters at Admission? A Post Hoc Analysis Performed in Emergency Departments. BMJ Open 2019, 9, e023994. [Google Scholar] [CrossRef]
- Stallone, F.; Schoenenberger, A.W.; Puelacher, C.; Rubini Gimenez, M.; Walz, B.; Naduvilekoot Devasia, A.; Bergner, M.; Twerenbold, R.; Wildi, K.; Reichlin, T.; et al. Incremental Value of Copeptin in Suspected Acute Myocardial Infarction Very Early after Symptom Onset. European Heart Journal: Acute Cardiovascular Care 2016, 5, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Hillinger, P.; Twerenbold, R.; Jaeger, C.; Wildi, K.; Reichlin, T.; Gimenez, M.R.; Engels, U.; Miró, O.; Boeddinghaus, J.; Puelacher, C.; et al. Optimizing Early Rule-Out Strategies for Acute Myocardial Infarction: Utility of 1-Hour Copeptin. Clinical Chemistry 2015, 61, 1466–1474. [Google Scholar] [CrossRef]
- Boeddinghaus, J.; Reichlin, T.; Nestelberger, T.; Twerenbold, R.; Meili, Y.; Wildi, K.; Hillinger, P.; Giménez, M.R.; Cupa, J.; Schumacher, L.; et al. Early Diagnosis of Acute Myocardial Infarction in Patients with Mild Elevations of Cardiac Troponin. Clin Res Cardiol 2017, 106, 457–467. [Google Scholar] [CrossRef]
- Wildi, K.; Boeddinghaus, J.; Nestelberger, T.; Twerenbold, R.; Badertscher, P.; Wussler, D.; Giménez, M.R.; Puelacher, C.; Du Fay De Lavallaz, J.; Dietsche, S.; et al. Comparison of Fourteen Rule-out Strategies for Acute Myocardial Infarction. International Journal of Cardiology 2019, 283, 41–47. [Google Scholar] [CrossRef]
- Body, R.; Carley, S.; McDowell, G.; Jaffe, A.S.; France, M.; Cruickshank, K.; Wibberley, C.; Nuttall, M.; Mackway-Jones, K. Rapid Exclusion of Acute Myocardial Infarction in Patients With Undetectable Troponin Using a High-Sensitivity Assay. Journal of the American College of Cardiology 2011, 58, 1332–1339. [Google Scholar] [CrossRef]
- Myocardial Infarction (Acute): Early Rule out Using High-Sensitivity Troponin Tests (Elecsys Troponin T High-Sensitive, ARCHITECT STAT High Sensitive Troponin-I and AccuTnI+3 Assays) | Guidance | NICE Available online:. Available online: https://www.nice.org.uk/guidance/dg15 (accessed on 3 February 2025).
- Meller, B.; Cullen, L.; Parsonage, W.A.; Greenslade, J.H.; Aldous, S.; Reichlin, T.; Wildi, K.; Twerenbold, R.; Jaeger, C.; Hillinger, P.; et al. Accelerated Diagnostic Protocol Using High-Sensitivity Cardiac Troponin T in Acute Chest Pain Patients. International Journal of Cardiology 2015, 184, 208–215. [Google Scholar] [CrossRef]
- Restan, I.Z.; Sanchez, A.Y.; Steiro, O.-T.; Lopez-Ayala, P.; Tjora, H.L.; Langørgen, J.; Omland, T.; Boeddinghaus, J.; Nestelberger, T.; Koechlin, L.; et al. Adding Stress Biomarkers to High-Sensitivity Cardiac Troponin for Rapid Non-ST-Elevation Myocardial Infarction Rule-out Protocols. European Heart Journal. Acute Cardiovascular Care 2022, 11, 201–212. [Google Scholar] [CrossRef]
- Pedersen, C.K.; Stengaard, C.; Bøtker, M.T.; Søndergaard, H.M.; Dodt, K.K.; Terkelsen, C.J. Accelerated Rule-Out of Acute Myocardial Infarction Using Prehospital Copeptin and in-Hospital Troponin: The AROMI Study. European Heart Journal 2023, 44, 3875–3888. [Google Scholar] [CrossRef]
- Jaffe, A.S.; Body, R.; Mills, N.L.; Aakre, K.M.; Collinson, P.O.; Saenger, A.; Hammarsten, O.; Wereski, R.; Omland, T.; Sandoval, Y.; et al. Single Troponin Measurement to Rule Out Myocardial Infarction. Journal of the American College of Cardiology 2023, 82, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Bohyn, E.; Dubie, E.; Lebrun, C.; Jund, J.; Beaune, G.; Lesage, P.; Belle, L.; Savary, D. Expeditious Exclusion of Acute Coronary Syndrome Diagnosis by Combined Measurements of Copeptin, High-Sensitivity Troponin, and GRACE Score. The American Journal of Emergency Medicine 2014, 32, 293–296. [Google Scholar] [CrossRef]
- Morawiec, B.; Przywara-Chowaniec, B.; Muzyk, P.; Opara, M.; Ho, L.; Tat, L.C.; Muller, O.; Nowalany-Kozielska, E.; Kawecki, D. Combined Use of High-Sensitive Cardiac Troponin, Copeptin, and the Modified HEART Score for Rapid Evaluation of Chest Pain Patients. Disease Markers 2018, 2018, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wildi, K.; Gimenez, M.R.; Twerenbold, R.; Reichlin, T.; Jaeger, C.; Heinzelmann, A.; Arnold, C.; Nelles, B.; Druey, S.; Haaf, P.; et al. Misdiagnosis of Myocardial Infarction Related to Limitations of the Current Regulatory Approach to Define Clinical Decision Values for Cardiac Troponin. Circulation 2015, 131, 2032–2040. [Google Scholar] [CrossRef] [PubMed]
- Crea, F.; Jaffe, A.S.; Mueller, C.; Collinson, P.O.; Hamm, C.W.; Lindahl, B.; Mills, N.L.; Thygesen, K.; Patrono, C.; Roffi, M. Should the 1h Algorithm for Rule in and Rule out of Acute Myocardial Infarction Be Used Universally?Sometimes Earlier May Not Be betterBackground, Fundamental Concepts, and Scientific Evidence of the High-Sensitivity Cardiac Troponin 0h/1h-Algorithm for Early Rule-out or Rule-in of Acute Myocardial Infarction. Eur Heart J 2016, 37, 3316–3323. [Google Scholar] [CrossRef]
- Jesse, R.L. On the Relative Value of an Assay Versus That of a Test. Journal of the American College of Cardiology 2010, 55, 2125–2128. [Google Scholar] [CrossRef]
- Alquézar, A.; Santaló, M.; Rizzi, M.; Gich, I.; Grau, M.; Sionis, A.; Ordóñez-Llanos, J. ; Investigadores del Estudio TUSCA [Combined high-sensitivity copeptin and troponin T evaluation for the diagnosis of non-ST elevation acute coronary syndrome in the emergency department]. Emergencias 2017, 29, 237–244. [Google Scholar]
- Anand, A.; Shah, A.S.V.; Beshiri, A.; Jaffe, A.S.; Mills, N.L. Global Adoption of High-Sensitivity Cardiac Troponins and the Universal Definition of Myocardial Infarction. Clinical Chemistry 2019, 65, 484–489. [Google Scholar] [CrossRef]
- Mueller, C.; Giannitsis, E.; Christ, M.; Ordóñez-Llanos, J.; deFilippi, C.; McCord, J.; Body, R.; Panteghini, M.; Jernberg, T.; Plebani, M.; et al. Multicenter Evaluation of a 0-Hour/1-Hour Algorithm in the Diagnosis of Myocardial Infarction With High-Sensitivity Cardiac Troponin T. Annals of Emergency Medicine 2016, 68, 76–87.e4. [Google Scholar] [CrossRef]
- Nestelberger, T.; Wildi, K.; Boeddinghaus, J.; Twerenbold, R.; Reichlin, T.; Giménez, M.R.; Puelacher, C.; Jaeger, C.; Grimm, K.; Sabti, Z.; et al. Characterization of the Observe Zone of the ESC 2015 High-Sensitivity Cardiac Troponin 0 h/1 h-Algorithm for the Early Diagnosis of Acute Myocardial Infarction. International Journal of Cardiology 2016, 207, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Reinhold, T.; Giannitsis, E.; Möckel, M.; Frankenstein, L.; Vafaie, M.; Vollert, J.O.; Slagman, A. Cost Analysis of Early Discharge Using Combined Copeptin/Cardiac Troponin Testing versus Serial Cardiac Troponin Testing in Patients with Suspected Acute Coronary Syndrome. PLoS ONE 2018, 13, e0202133. [Google Scholar] [CrossRef] [PubMed]

| Studies | Type of study | No. of pts | Cut-offs/ protocol | Rule out population/ protocol | AUC | Sensitivity (%) (95% CI) |
NPV (%) (95% CI) |
AUC | Sensitivity (%) (95% CI) |
NPV (%) (95% CI) |
|
|---|---|---|---|---|---|---|---|---|---|---|---|
| Reichlin et al., 2009 [80] | Prospective single center | 487 | cn cTnT <0.01 ng/L copeptin <14 pmol/L |
Overall | 0.86 (0.80-0.92) | 0.97 (0.95-0.98) | 98.8 | 99.7 | |||
| Keller et al., 2010 [90] | Multicenter | 1386 | cn cTnT <0.03 ng/L copeptin <9.8 pmol/L |
Overall | 0.84 (0.82-0.87) | 62 (56.2-67.5) |
88.5 (86.4-90.4) |
0.93 (0.92-0.95) | 90.9 (87.1-93.9) |
95.8 (93.9-97.2) |
|
| CPO <3h | 0.77 (0.72-0.82) | 43 (34-52.3) |
82.4 (78.3-86) |
0.9 (0.88-0.93) |
85.1 (77.5-90.9) |
92.4 (88.2-95.4) |
|||||
| Overall, for exclusion of NSTEMI | 0.87 | 64.7 | 92.4 | 0.93 | 89.3 | 96.5 | |||||
| CPO <3h, for exclusion of NSTEMI | 0.79 | 46.7 | 89.0 | 0.9 | 81.3 | 94.0 | |||||
| Lipinski et al., 2014 [93] | Systematic review and Meta-analysis | 9244 | hs-cTnT ±copeptin |
0.912 (0.870-0.954) | 0.878 (0.855-0.898 | 0.962 (0.954-0.968 | 0.795 (0.648-0.941) | 0.957 (0.943-0.969) |
0.982 (0.975-0.987) | ||
| Raskovalova et al., 2014 [94] | Systematic review and Meta-analysis | 6534 | cn cTnT ±copeptin |
for exclusion of NSTEMI |
- |
0.80 (0.73-0.88) |
- |
- |
0.95 (0.91-0.98) |
- |
|
| 4330 | hs-cTnT ±copeptin | - | 0.91 (0.86-0.97) |
- | - | 0.98 (0.96-1.00) |
- | ||||
| 3996 | cTnI ultra ±copeptin | - | 0.79 (0.74-0.85) |
- | - | 0.93 (0.88-0.98) |
- | ||||
| Balmelli et al., 2013 [92] | Prospective multicenter | 1247 | cn cTnT <0.035 μg/L hs-cTnT <14 ng/L copeptin <18.9 pmol/L |
Overall |
cn cTnT 0.90 (0.84-0.95) hs-cTnT 0.94 (0.91-0.98) |
0.96 (0.94-0.98 0.96 (0.93-0.98) |
1y mortality of DMS vs hs-cTnT alone AUC 0.87 (0.90-0.94) 0.87 (0.81-0.94) No gender differences in AUC when comparing SMS vs DMS |
||||
|
for exclusion of NSTEMI |
cn cTnT 0.83 (0.77-0.90) hs-cTnT 0.92 (0.88-0.96) |
0.89 (0.83-0.95) 0.92 (0.88-0.96) |
|||||||||
| Maisel et al., 2013 [20] | Prospective multicenter | 1967 | cn cTnI<40 ng/l, copeptin<14 pmol/L |
CPO <6 h |
0.86 | 0.97 | 92.2 (85.9-95.9) |
99.2 (98.5-99.6) |
Copeptin strong predictor of short-term (<30d) mortality, cn cTnI predictor of long-term (>60d) mortality | ||
| Mockel et al., 2015 [19] | Multicenter RCT | 902 | POC cTnT < 30 ng/L hs-TnT <14 ng/L cn cTnI <56 ng/L cn cTnI <45 ng/L ± copeptin <10 pmol/L |
Overall |
- |
- |
- |
- |
- |
- |
-30d MACE did not differ between SMS and DMS (5.19% vs 5.17%) -↓ LOS with DMS hours (IQR) 4 (2-6) vs 7 (4-9) -↑ ED discharge |
|
Studies |
Type of study |
No. of pts |
Cut-offs/ protocol |
Rule out population/protocol |
Rule out by cTn | Rule out by cTn plus Copeptin | Pearls and Additional findings |
||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| AUC | Sensitivity (%) (95% CI) |
NPV (%) (95% CI) |
AUC | Sensitivity (%) (95% CI) |
NPV (%) (95% CI) |
||||||
| Zellweger et al., 2015 [98] | Prospective multicenter | 379 Diabetic pts |
hs-TnT <14ng/L copeptin <9 pmol/L |
0.90 (0.86-0.93) |
- |
- |
0.90 (0.87-0.93) |
- |
- |
Combination of copeptin plus cn cTnT or hs-cTnT improved prediction of 2-year mortality | |
| Mueller-Hennessen et al., 2019 [102] | Prospective international multicenter | 922 | hs-TnT <14ng/L copeptin <10 or <14, or <20 pmol/L | 0.92 (0.90-0.94) |
89.0 (82.9-93.4) |
97.4 (95.9-98.5) |
0.93 (0.91-0.95) | 93.5-94.8 | 98.1-98.3 |
1 hour algorithm, LoB (hs-cTnT <3ng/L), LoD (hs-cTnT <5ng/L) higher sensitivity, NPV compared to DMS. Addition of HEART or GRACE score to DMS improves NPV and sensitivity |
|
| LoB (hs-cTnT <3ng/L) | 98.7 (95.4-99.8) |
99.4 (97.8-99.9) |
|||||||||
| LoD (hs-cTnT <5ng/L) | 98.1 (94.4-99.6) |
99.3 (97.9-99.9) |
|||||||||
| 1h algorithm | 96.8 (92.6-98.9) |
99.2 (98.1-99.7) |
|||||||||
| ESC algorithm | 98.7 (95.4-99.8) |
99.5 (98.0-99.9) |
|||||||||
| Sebbane et al., 2013 [83] | Prospective single center | 194 | hs-TnT >14ng/L Us copeptin >13.11 pmol/L |
Overall CPO<12h | 0.89 (0.85-0.92) |
76.9 (63.2-87.5) |
91 (84.8-95.3) |
0.93 (0.89-0.97) | 96.2 (86.8–99.5) |
97.9 (92.5–99.7) |
|
| For exclusion of NSTEMI | 76 (54.9-90.6) |
95.3 (90-98.2) |
96 (79.6-99.9) |
98.9 (94.2-100) |
|||||||
| Potocki et al., 2012 [97] | Prospective multicenter |
1.170 |
cTnT 10ng/l hs-TnT <14 ng/l copeptin <9pmol/L |
CAD | 0.92 (0.89 -0.96) | 93.6 (85.7-97.9) | 97.7 (94.8-99.3) |
0.94 (0.91-0.97) | 98.7 (93.0-99.8) | 99.3 (96.3-99.9) |
Copeptin independent predictor of 1y mortality |
| No CAD | 0.96 | 94.3 (88.1-97.9) | 98.9 (97.5-99.6) | 0.97 | 99.1 (94.8-99.8) |
99.7 (98.5-100.0) |
|||||
| Stengaard et al, 2017 [99] | Retrospective | 962 Prehospital |
Hs-cTnT <14ng/L copeptin <9.8 pmol/L prehospital |
Overall | 0.81 (0.78-0.85) |
80 (73-85) |
93 (91-96) |
0.85 (0.83-0.88) | 96 (91-98) |
98 (96-99) |
|
| CPO <1h | 0.75 (0.69-0.82) |
67 (55-78) |
91 (87-94) |
0.84 (0.79-0.88) | 97 (90-100) |
99 (95-100) |
|||||
| Giannitsis et al., 2019 [107] | Prospective multicenter | 2.294 | CncTn or Hs-cTn < 99th percentile Copeptin <10 pmol/l |
-30d mortality 0.1% (95% CI: 0%-0.6%) for DMS vs 1.1% (95% CI: 0.6%-1.8%) for SMS -↓ LOS with DMS minutes (95%CI) 228min (219-239) vs 288min (279 - 300) |
|||||||
| Chenevier-Gobeaux et al; 2019 [109] | post hoc analysis | 449 | hs-cTnT <3 ng/L, or <5 ng/L, or <14 ng/L copeptin <12 pmol/L |
hs-cTnT <14 ng/L CPO < 2h |
0.853 (0.789-0.904) | 80 (51-95) |
0.897 (0.84-0.94) | 93 (66-100) |
|||
| hs-cTnT <14 ng/L CPO 2-4h |
77 (54-91) |
95 (88-98) |
95 (75-100) |
99 (91-100) |
|||||||
| Giannitsis et al., 2020 [106] | Retrospective | 10.329 | Hs-cTnT < 5ng/L or <14 ng/L Hs-cTnI < 2ng/L <34 ng/L Copeptin <10 pmol/L or <14 pmol/L |
hs-cTnT <14 ng/L CPO 2-4h |
77 (54-91) |
95 (88-98) |
95 (75-100) |
99 (91-100) |
|||
| Kim et al., 2020 [101] | Prospective single center |
263 | hs-cTnI >26.2 ng/L copeptin >10 pmol/L |
0-h | 0.914 (0.873-0.955) | 96.4 (81.7-99.9) |
99.5 (97.3-100) |
0.840 (0.811-0.870) | 100 (87.7-100) |
100 (97.7-100) |
NSTEMI |
| 2-h | 0.928 (0.905-0.950) | 100 (87.7-100) |
100 (98.2-100) |
||||||||
| 0/2h | 0.928 (0.905-0.950) | 100 (87.7-100) |
100 (98.2-100) |
||||||||
| Ricci et al., 2022 [108] | Prospective single centre | 1136 | hs-cTnI ≤ 27 ng/L Copeptin < 10 pmol/L or hs-cTnI < 5ng/L + Low risk ECG |
DMS 0-h |
97.4 (95.4-98.7) |
No significant difference in 12-month composite outcome. Discharge rate: 37.4% DMS vs 32.9% SMS vs 35.4% ESC 0/1h |
|||||
|
Studies |
Type of study |
No. of pts |
Cut-offs/ protocol |
Rule out population/ protocol |
Rule out by cTn | Rule out by cTn plus Copeptin | Pearls and Additional findings |
||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| AUC | Sensitivity (%) (95% CI) |
NPV (%) (95% CI) |
AUC | Sensitivity (%) (95% CI) |
NPV (%) (95% CI) |
||||||
| Stallone et al., 2016 [110] | Prospective multicenter | 2000 | hs-cTnT <14ng/L copeptin <9 pmol/L |
CPO <2 hours |
0.87 (0.83-0.90) |
75 (65-83) |
93 (90-95) |
0.86 (0.82-0.90) | 91 (84-96) |
96 (93-98) |
AUC difference not sig. |
| CPO >2 hours |
- |
96 (92-98) | 99 (98-99) |
- |
99 (97-100) |
99 (99–100) |
|||||
| Hillinger et al. 2015 [111] | Prospective multicenter | 1.439 | hs-cTnT <14ng/L copeptin <10 pmol/L |
0-hour biomarkers |
- |
- |
97.1 (95.9-98.1) |
- |
- |
98.6 (97.4-99.3) |
Additive value of 1h copeptin -not sig. 1h-hs-cTn improves AMI diagnosis |
| 1-hour biomarkers |
- |
- |
99.6 (98.7-99.9) |
- |
- |
98.6 (97.3-99.3) |
|||||
| CPO <2h | 88.8 (80.3-94.5) |
95.9 (86.0-99.5) |
|||||||||
| Boeddinghaus et al., 2017 [112] | Prospective single center | 1356 | hs-cTnI <26.2ng/L hs-cTnT <14 ng/L copeptin <9.8 pmol/L |
0-h hs-cTnI |
0.51 (0.39-0.64) |
- |
- |
0.52 (0.39-0.65) |
- |
- |
0-h hs-cTnI plus 1-h hs-cTnI changes improved AUC 0.80 (95% CI 0.70–0.90) |
| 1-h hs-cTnI | 0.78 (0.68-0.88) |
||||||||||
| Wildi et al., 2019 [113] | Prospective international multicenter | 3696 | hs-cTnI/T < 99th percentile copeptin <9 pmol/l |
Hs-cTnT |
- |
99.5-100 | 99.8-100 |
- |
96.7 (94.2-98.1) |
98.7 (97.8-99.3) |
DMS was inferior to cTn strategies |
| Hs-cTnI |
- |
98.9-100 | 99.7-100 |
- |
90.4 (86.8-93.3) |
96.9 (95.6-97.8) |
|||||
| Shin et al., 2018 [21] | Systematic review and Meta-analysis | 7.998 | Cn cTn or hs-cTn ± Copeptin |
0.91 (0.90-0.91) |
0.81 (0.74-0.87) |
0.96 (0.95-0.98) |
0.85 (0.83-0.86) |
0.92 (0.89-0.95) |
0.98 (0.96-0.99) |
||
| Hs-cTnT ±Copeptin |
0.90 (0.88-0.92) |
0.86 (0.79-0.93) |
0.97 (0.95-0.99) |
0.83 (0.80-0.86) | 0.93 (0.91-0.96) |
0.94 (0.89-0.98) |
|||||
| Restan et al. 2022 [117] | Two cohorts | 959 |
Copeptin <9 pmol/L ± hs-cTnT <5ng/L or hs-cTnI <4ng/L |
Overall hs-cTnT hs-cTnI |
0.91 (0.89-0.93) 0.93 (0.91-0.95) |
98.9 (94.0 -100) 97.8 (92.2 -99.7) |
99.6 (97.0 - 99.9) 99.5 (97.9 - 99.9) |
0.91 (0.89-0.93) 0.85 (0.82-0.87) |
98.9 (94.0 - 100) 97.8 (92.2 -99.7) (P = 1.0) |
99.5 (96.7 - 99.9) 99.4 (97.5 - 99.8) (P < 0.001) |
For exclusion of NSTEMI |
| CPO <3 h hs-cTnT hs-cTnI |
0.838 (0.781- 0.885) 0.890 (0.840- 0.929) |
97.1 (85.1 - 99.9) 91.4 (76.9 -98.2) |
98.5 (90.3 -99.8) 97.1 (91.7 -99.0) |
0.846 (0.790-0.892) 0.901 (0.852-0.938) |
100 (90.0 -100) (P = 0.32) 100 (90.0 - 100) (P = 0.08) |
100 (P = 0.38) 100 (P = 0.13) |
AUC difference not sig. Sensitivity improvement not sig. |
||||
| Pedersen et al., 2023 [118] | Multicenter RCT | 4351 | Prehospital copeptin <9.8 pmol/L hs-cTnT <14ng/L |
Overall, 0/3 h algorithm |
87.6 (81.3-92.4) |
98.9 (98.3-99.3) |
98.8 (94.2-99.4) |
99.6 (99.0-99.9) |
DMS ↓ mean LOS by 0.9 h (95% CI 0.7-1.1 h) DMS non inferior to SMS for 30d MACE |
||
| 1585 subgroup | 0/1h | 99.2 (95.9-100.0) |
99.9 (99.4-100.0) |
98.5 (94.6-99.8) |
99.7 (99.0-100.0) |
||||||
| 0h hs-cTnT <LOD |
99.2 (95.9-100.0) |
99.6 (97.7-100.0) |
|||||||||
|
Studies |
Type of study |
No. of pts |
Cut-offs/protocol |
Rule out protocol |
Rule out by cTn | Rule out by cTn plus Copeptin | Pearls and Additional findings |
||
|---|---|---|---|---|---|---|---|---|---|
| Sensitivity (%) (95% CI) |
NPV (%) (95% CI) |
Sensitivity (%) (95% CI) |
NPV (%) (95% CI) |
||||||
| Bohyn et al., 2014 [120] | Prospective observational | 247 | hs-cTnT <14 ng/L copeptin <14 pmol/L |
72 (58-83) | 92 (88-95) |
90 (79-96) |
95 (90-98) |
||
| DMS + GRACE score<108 |
98 (90-100) |
99 (94-100) |
|||||||
| Moraweic et al., 2018 [121] | prospective | 154 | hs-cTnT <14 ng/L copeptin <17.4 pmol/L |
hs-cTnT alone |
99.3 (88-97.9) |
85.4 (70.8-94.4) |
Higher (100%) sensitivity, NPV for DMS + mHS, compared to mHS alone or hsTnT + mHS regarding AMI/death both at 30d and 1 year |
||
| hs-cTnT + mHS ≤ 3 ± copeptin |
99.1 (94.8-100) |
94.4 (72.2-99.9) |
100 (96.6–100) |
100 (75.3–100) |
|||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
