Submitted:
18 February 2025
Posted:
19 February 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction

2. Materials and Methods
2.1. Tomographic Inversion for the Vp, Vs and Vp/Vs Structures
2.2. Dataset and Parameterization of Inversions
3. Results
3.1. The 2020–2024 Inversion

- •
- a wide relative low P-velocity anomaly (2.0 < Vp ≤ 4.0 km/s) in the central part of the caldera, mainly extending inland and down from approximately 0.5 km to 3.0 depth (L1 in Figure 2a). Between 2.5 and 3 km depth, this anomaly takes on an almost L-shaped aspect.
- •
- a relative low Vp (4.0 < Vp ≤ 5.0 km/s) region located at a depth of 3.0 and 4.0 km (L2 in Figure 2a), showing an almost elliptical shape and encircling a small high Vp anomaly (5.5 < Vp ≤ 6.0 km/s) at 4.0 km depth. This elliptical anomaly appears to delimit the morphological boundary of the internal resurgent dome [16], within which deeper earthquakes are mainly concentrated.
- •
- some portions of the arc-like high P-velocity anomaly (3.0 < Vp ≤ 5.0 km/s), previously identified in earlier tomographic studies [7,8,9,11] (H1 in Figure 2a). This anomaly, attributed to the buried rim of the Campi Flegrei outer caldera, is primarily located along the southern and western borders of the Gulf of Pozzuoli; it extends from about 0.5 km to approximately 2 km in depth, with seismic velocities increasing with depth. It has been interpreted as consolidated lavas and/or tuffs and interbedded lava sequences that signify the buried rim of the caldera [7].
- •
- a wide relative high-Vs anomaly (2.5 < Vs ≤ 3.0) located inland at about 2 km depth, between Pozzuoli and Campi Flegrei, coinciding with the region where a great part of earthquakes occurred (HS in Figure 2b).
- •
- ▪
- Analyzing the Vp/Vs structure, we obtain slightly more conservative absolute values of Vp/Vs with respect to the previous studies. They range from 1.6 to 2.5, suggesting that direct inversion of Vp/Vs from S-P data is probably more stable than deriving Vp/Vs from separate Vp and Vs models.
- ▪
- •
- two high Vp/Vs (≥ 1.9) volumes (H2 in Figure 2c and Figure 3c) are located in the shallower central part of the caldera, at depths ranging from approximately 0 to 1.5 km, surrounded by regions with normal to low Vp/Vs. The larger of these volumes lies beneath the inland area of Pozzuoli and partially extends offshore.
- •
- •
- a volume with a low Vp/Vs ratio with values ranging from 1.6 to 1.66 that rises from depth in the central part of the caldera and reaches approximately 1.5 km b.s.l. (L3 in Figure 2c and Figure 3c). This structure widens as it extends downward merging into an almost continuous layer at 3.5 km, that likely extends beyond 4.0 km depth.

4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Natale, J.; Camanni, G.; Ferranti, L.; Isaia, R.; Sacchi, M.; Spiess, V.; Steinmann, L.; Vitale, S. Fault systems in the offshore sector of the Campi Flegrei caldera (Southern Italy): Implications for nested caldera structure, resurgent dome, and volcano-tectonic evolution. Journal of Structural Geology 2022, 163, 104723. [Google Scholar] [CrossRef]
- Giaccio, B.; Haydas, I.; Isaia, R.; Deino, A.; Nomade, S. High-precision 14C and 40Ar/39Ar dating of Campanian Ignimbrite (Y-5) reconciles the time-scales of climatic cultural processes at 40 ka. Sci. Rep. 2017, 7, 45940. [Google Scholar] [CrossRef]
- Deino, A.L.; Orsi, G.; De Vita, S.; Piochi, M. The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera, Italy) assessed by 40Ar/39Ar dating method. J. Volcanol. Geotherm. Res. 2004, 133, 157–170. [Google Scholar] [CrossRef]
- De Vivo, B.; Rolandi, G. Volcanological risk associated with Vesuvius and Campi Flegrei. In Vesuvius, Campi Flegrei, and Campanian Volcanism, De Vivo, B., Belkin, H.E., Rolandi, G., Eds.; Elsevier, 2020, pp. 471–493, ISBN 9780128164549. [CrossRef]
- Del Gaudio, C.; Aquino, I.; Ricciardi, G.P.; Ricco, C.; Scandone, R. Unrest episodes at Campi Flegrei: A reconstruction of vertical ground movements during 1905–2009. J. Volcanol. Geotherm. Res. 2010, 195, 48–56. [Google Scholar] [CrossRef]
- Aster, R.C.; Meyer, R.P. Three-dimensional velocity structure and hypocentral distribution in the Campi Flegrei caldera, Italy. Tectonophysics 1988, 149, 195–218. [Google Scholar] [CrossRef]
- Zollo, A.; Judenherc, S.; Auger, E.; D’Auria, L.; Virieux, J.; Capuano, P.; Chiarabba, C.; de Franco, R.; Makris, J.; Michelini, A.; et al. Evidence for the buried rim of Campi Flegrei caldera from 3-d active seismic imaging. Geophys. Res. Lett. 2003, 30, 2002. [Google Scholar] [CrossRef]
- Judenherc, S.; Zollo, A. The Bay of Naples (southern Italy): Constraints on the volcanic structures inferred from a dense seismic survey. J. Geophys. Res. Solid Earth 2004, 109, B10312. [Google Scholar] [CrossRef]
- Vanorio, T.; Virieux, J.; Capuano, P.; Russo, G. Three-dimensional seismic tomography from P wave and S wave microearthquake travel times and rock physics characterization of the Campi Flegrei caldera. J. Geophys. Res. Solid Earth 2005, 110, B03201. [Google Scholar] [CrossRef]
- Chiarabba, C.; Moretti, M. An insight into the unrest phenomena at the Campi Flegrei caldera from Vp and Vp/Vs tomography. Terra Nova 2006, 18, 373–379. [Google Scholar] [CrossRef]
- Battaglia, J.; Zollo, A.; Virieux, J.; Dello Iacono, D. Merging active and passive data sets in traveltime tomography: The case study of Campi Flegrei Caldera (Southern Italy). Geophyiscal Prospecting 2008, 56, 555–573. [Google Scholar] [CrossRef]
- Dello Iacono, D.; Zollo, A.; Vassallo, M.; Vanorio, T.; Judenherc, S. Seismic images and rock properties of the very shallow structure of Campi Flegrei caldera (southern Italy). Bull. Volcanol. 2009, 71, 275–284. [Google Scholar] [CrossRef]
- Calò, M.; Tramelli, A. Anatomy of the Campi Flegrei caldera using enhanced seismic tomography models. Sci. Rep. 2018, 8, 16254. [Google Scholar] [CrossRef] [PubMed]
- De Landro, G.; Amoroso, O.; Russo, G.; Zollo, A. 4D travel-time tomography as a tool for tracking fluid-driven medium changes in off-shore oil-gas exploitation areas. Energies 2020, 13, 5878. [Google Scholar] [CrossRef]
- Giacomuzzi, G.; Chiarabba, C.; Bianco, F.; De Gori, P.; Piana Agostinetti, N. Tracking transient changes in the plumbing system at Campi Flegrei Caldera. Earth Planet. Sci. Lett. 2024, 637, 118744. [Google Scholar] [CrossRef]
- Sbrana, A.; Marianelli, P.; Pasquini, G. The Phlegrean Fields volcanological evolution. J. Maps 2021, 17, 557–570. [Google Scholar] [CrossRef]
- Patanè, D.; Barberi, G.; Cocina, O.; De Gori, P.; Chiarabba, C. Time-Resolved Seismic Tomography Detects Magma Intrusions at Mount Etna. Science 2006, 313, 821–823. [Google Scholar] [CrossRef] [PubMed]
- Foulger, G.R.; Julian, B.R.; Pitt, A.M.; Hill, D.P.; Malin, P.E.; Shalev, E. Three-dimensional crustal structure of Long Valley caldera, California, and evidence for the migration of CO2 under Mammoth Mountain. J. Geophys. Res. Solid Earth 2003, 108, 2147. [Google Scholar] [CrossRef]
- Tezel, T.; Julian, B.R.; Foulger, G.R.; Nunn, C.; Mhana, N. Preliminary 4D Seismic Tomography Images for The Geysers, 2008- 2014. In Proceedings, 41st Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, USA, 22–24 February 2016.
- Londoño, J.M.; Kumagai, H. 4D seismic tomography of Nevado del Ruiz Volcano, Colombia, 2000–2016. J. Volcanol. Geotherm. Res. 2018, 358, 105–123. [Google Scholar] [CrossRef]
- Kissling, E.; Ellsworth, W.L.; Eberhart-Phillips, D.; Kradolfer, U. Initial reference models in local earthquake tomography. J. Geophys. Res. Solid Earth 1994, 99, 19635–19646. [Google Scholar] [CrossRef]
- Priolo, E.; Lovisa, L.; Zollo, A.; Böhm, G.; D’Auria, L.; Gautier, S.; Gentile, F.; Klin, P.; Latorre, D.; Michelini, A.; et al. The Campi Flegrei Blind Test: Evaluating the Imaging Capability of Local Earthquake Tomography in a Volcanic Area. Int. J. Geophy. 2012, 37, 1–37. [Google Scholar] [CrossRef]
- Thurber, C.H. Local earthquake tomography: velocities and Vp/Vs-theory. In Seismic Tomography: Theory and Practice, Iyer, H.M., Hirahara, K., Eds.; Springer, Chapman and Hall, London, 1993, pp. 563–583.
- Zhang, H.; Thurber, C.H. Double-Difference Tomography: The Method and Its Application to the Hayward fault, California. Bull. Seismol. Soc. Am. 2003, 93, 1875–1889. [Google Scholar] [CrossRef]
- Haslinger, F.; Kissling, E.; Ansorge, J.; Hatzfeld, D.; Papadimitriou, E.; Karakostas, V.; Makropoulos, K.; Kahle, H.-G.; Peter, Y. 3D crustal structure form local earthquake tomography around the Gulf of Arta (Ionian region, NW Greece). Tectonophysics 1999, 304, 201–218. [Google Scholar] [CrossRef]
- Haslinger, F.; Kissling, E. Investigating effects of 3-D ray tracing methods in local earthquake tomography. Phys. Earth Planet. Inter. 2001, 123, 103–114. [Google Scholar] [CrossRef]
- Zhang, H.; Thurber, C.; Bedrosian, P. Joint inversion for Vp, Vs, and Vp/Vs at SAFOD, Parkfield, California. Geochem. Geophys. Geosyst. 2009, 10, Q11002. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, H.; Froment, B. Structural control on earthquake behaviors revealed by high-resolution Vp/Vs imaging along the Gofar transform fault, East Pacific Rise. Earth Planet. Sci. Lett. 2018, 499, 243–255. [Google Scholar] [CrossRef]
- Ricciolino, P.; Lo Bascio, D.; Esposito, R. GOSSIP - Database sismologico Pubblico INGV-Osservatorio Vesuviano. Istituto Nazionale di Geofisica e Vulcanologia (INGV) 2024. Available online: https://doi.org/10.13127/gossip.
- Zollo, A.; Maercklin, N.; Vassallo, M.; Dello Iacono, D.; Virieux, J.; Gasparini, P. Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera. Geophys. Res. Lett. 2008, 35, L12306. [Google Scholar] [CrossRef]
- AGIP, 1987. Geologia e geofisica del sistema geotermico dei Campi Flegrei. Technical Report SERG-ESG 1987, San Donato Italy, p. 17.
- Guo, H.; Thurber, C. Temporal changes in seismic velocity and attenuation at The Geysers geothermal field, California, from double-difference tomography. J. Geophys. Res. Solid Earth 2022, 127, e2021JB022938. [Google Scholar] [CrossRef]
- Troise, C.; De Natale, G.; Schiavone, R.; Somma, R.; Moretti, R. The Campi Flegrei caldera unrest: Discriminating magma intrusions from hydrothermal effects and implications for possible evolution. Earth-Science Rev. 2019, 188, 108–122. [Google Scholar] [CrossRef]
- Lees, J.M. Seismic tomography of magmatic systems. J. Volcanol. Geotherm. Res. 2007, 167, 37–56. [Google Scholar] [CrossRef]
- Takei, Y. Effect of pore geometry on Vp /Vs: from equilibrium geometry to crack. J. Geophys. Res. Solid Earth 2002, 107, ECV 6-1–ECV 6-12. [Google Scholar] [CrossRef]
- Ito, H.; DeVilbiss, J.; Nur, A. Compressional and shear waves in saturated rock during water-steam transition. J. Geophys. Res. Solid Earth 1979, 84, 4731–4735. [Google Scholar] [CrossRef]
- Wang, Z.; Nur, A.M. Effects of CO2 flooding on wave velocities in rocks with hydrocarbons. SPE Res. Eng. 1989, 4, 429–436. [Google Scholar] [CrossRef]
- Petrillo, Z.; Chiodini, G.; Mangiacapra, A.; Caliro, S.; Capuano, P.; Russo, G.; Cardellini, C.; Avino, R. Defining a 3D physical model for the hydrothermal circulation at Campi Flegrei caldera (Italy). J. Volcanol. Geotherm. Res. 2013, 264, 172–182. [Google Scholar] [CrossRef]
- Piochi, M.; Kilburn, C.R.J.; Di Vito, M.A.; Mormone, A.; Tramelli, A.; Troise, C.; De Natale, G. The volcanic and geothermally active Campi Flegrei caldera: an integrated multidisciplinary image of its buried structure. Int. J. Earth Sci. (Geol. Rundsch) 2014, 103, 401–421. [Google Scholar] [CrossRef]
- Aiuppa, A.; Avino, R.; Brusca, L.; Caliro, S.; Chiodini, G.; D’Alessandro, W.; Favara, R.; Federico, C.; Ginevra, W.; Inguaggiato, S.; et al. Mineral control of arsenic content in thermal waters from volcano-hosted hydrothermal systems: Insights from island of Ischia and Phlegrean Fields (Campanian Volcanic Province, Italy). Chem. Geol. 2006, 229, 313–330. [Google Scholar] [CrossRef]
- Chiodini, G.; Todesco, M.; Caliro, S.; Del Gaudio, C.; Macedonio, G.; Russo, M. Magma degassing as a trigger of bradyseismic events: The case of Phlegrean Fields (Italy). Geophys. Res. Lett. 2003, 30, 1434. [Google Scholar] [CrossRef]
- Mavko, G.; Mukerji, T.; Dvorkin, J. The Rock Physics Hanbook: Tools for Seismic Analysis of Porous Media, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009; ISBN 978-05-1162-675-3. [Google Scholar] [CrossRef]
- Nur, A. Dilatancy, pore fluids, and premonitory variations of ts/tp travel times. Bull. Seismol. Soc. Am. 1972, 62, 1217–1222. [Google Scholar] [CrossRef]
- O’Connell, R.J.; Budiansky, B. Seismic velocities in dry and saturated cracked solids. J. Geophys. Res. 1974, 79, 5412–5426. [Google Scholar] [CrossRef]
- Caliro, S.; Avino, R.; Capecchiacci, F.; Carandente, A.; Chiodini, G.; Cuoco, E.; Minopoli, C.; Rufino, F.; Santi, A.; Rizzo, A.L.; et al. Chemical and isotopic characterization of groundwater and thermal waters from the Campi Flegrei caldera (southern Italy). J. Volcanol. Geotherm. Res. 2025, 460, 108280. [Google Scholar] [CrossRef]
- Moretti, R.; Troise, C.; Sarno, F.; De Natale, G. Caldera unrest driven by CO2-induced drying of the deep hydrothermal system. Sci. Rep. 2018, 8, 8309. [Google Scholar] [CrossRef]
- Chiodini, G.; Caliro, S.; Avino, R.; Bini, G.; Giudicepietro, F.; De Cesare, W.; Ricciolino, P.; Aiuppa, A.; Cardellini, C.; Petrillo, Z.; et al. Hydrothermal pressure-temperature control on CO2 emissions and seismicity at Campi Flegrei (Italy). J. Volcanol. Geotherm. Res. 2021, 414, 107245. [Google Scholar] [CrossRef]
- Buono, G.; Caliro, S.; Paonita, A.; Pappalardo, L.; Chiodini, G. Discriminating carbon dioxide sources during volcanic unrest: The case of Campi Flegrei caldera (Italy). Geology 2023, 51, 397–401. [Google Scholar] [CrossRef]
- Tizzani, P.; Fernández, J.; Vitale, A.; Escayo, J.; Barone, A.; Castaldo, R.; Pepe, S.; De Novellis, V.; Solaro, G.; Pepe, A.; et al. 4D imaging of the volcano feeding system beneath the urban area of the Campi Flegrei caldera. Remote Sensing of Environment 2024, 315, 114480. [Google Scholar] [CrossRef]
- Giudicepietro, F.; Casu, F.; Bonano, M.; De Luca, C.; De Martino, P.; Di Traglia, F.; Di Vito, M.A.; Macedonio, G.; Manunta, M.; Monterroso, F.; et al. First evidence of a geodetic anomaly in the Campi Flegrei caldera (Italy) ground deformation pattern revealed by DInSAR and GNSS measurements during the 2021–2023 escalating unrest phase. International Journal of Applied Earth Observation and Geoinformation 2024, 132, 104060. [Google Scholar] [CrossRef]
- Astort, A.; Trasatti, E.; Caricchi, L.; Polcari, M.; De Martino, P.; Acocella, V.; Di Vito, M.A. Tracking the 2007–2023 magma-driven unrest at Campi Flegrei caldera (Italy). Commun. Earth Environ. 2024, 5, 506. [Google Scholar] [CrossRef]
- Zhao, D.; Hasegawa, A.; Horiuchi, S. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan. J. Geophys. Res. Solid Earth 1992, 97, 19909–19928. [Google Scholar] [CrossRef]
- Rawlinson, N.; Spakman, W. On the use of sensitivity tests in seismic tomography. Geophys. J. Int. 2016, 205, 1221–1243. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
